
VELTAIR: Towards High-Performance Multi-tenant Deep
Learning Services via Adaptive Compilation and Scheduling

Zihan Liu

1
Shanghai Jiao Tong University

2
Shanghai Qi Zhi Institute

Shanghai, China

altair.liu@sjtu.edu.cn

Jingwen Leng
∗

1
Shanghai Jiao Tong University

2
Shanghai Qi Zhi Institute

Shanghai, China

leng-jw@sjtu.edu.cn

Zhihui Zhang

1
Shanghai Jiao Tong University

2
Shanghai Qi Zhi Institute

Shanghai, China

zhihui.zhang@sjtu.edu.cn

Quan Chen

1
Shanghai Jiao Tong University

2
Shanghai Qi Zhi Institute

Shanghai, China

chen-quan@cs.sjtu.edu.cn

Chao Li

1
Shanghai Jiao Tong University

2
Shanghai Qi Zhi Institute

Shanghai, China

lichao@cs.sjtu.edu.cn

Minyi Guo
∗

1
Shanghai Jiao Tong University

2
Shanghai Qi Zhi Institute

Shanghai, China

guo-my@cs.sjtu.edu.cn

ABSTRACT

Deep learning (DL) models have achieved great success in many

application domains. As such, many industrial companies such as

Google and Facebook have acknowledged the importance of multi-

tenant DL services. Although the multi-tenant service has been

studied in conventional workloads, it is not been deeply studied on

deep learning service, especially on general-purpose hardware.

In this work, we systematically analyze the opportunities and

challenges of providing multi-tenant deep learning services on

the general-purpose CPU architecture from the aspects of sched-

uling granularity and code generation. We propose an adaptive

granularity scheduling scheme to both guarantee resource usage

efficiency and reduce the scheduling conflict rate. We also propose

an adaptive compilation strategy, by which we can dynamically

and intelligently pick a program with proper exclusive and shared

resource usage to reduce overall interference-induced performance

loss. Compared to the existing works, our design can serve more

requests under the same QoS target in various scenarios (e.g., +71%,

+62%, +45% for light, medium, and heavy workloads, respectively),

and reduce the averaged query latency by 50%.

CCS CONCEPTS

• Computer systems organization→ Neural networks; Cloud
computing; • Computing methodologies → Concurrent algo-

rithms.

KEYWORDS

Multi-tenant, Deep Learning Service, Compiling, Scheduling

∗
Jingwen Leng and Minyi Guo are the corresponding authors of this paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00

https://doi.org/10.1145/3503222.3507752

ACM Reference Format:

Zihan Liu, Jingwen Leng, Zhihui Zhang, QuanChen, Chao Li, andMinyi Guo.

2022. VELTAIR: Towards High-Performance Multi-tenant Deep Learning

Services via Adaptive Compilation and Scheduling. In Proceedings of the
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), February 28 – March 4,
2022, Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3503222.3507752

1 INTRODUCTION

Deep learning (DL) models have achieved great success in the

various domains including vision [29, 36, 49, 50, 52, 53], natural

language processing [15, 24], and even graph learning [62, 67]. To

meet the need of rising computation power of DL models, com-

puter architects have proposed various hardware designs includ-

ing general-purpose hardware [45] and domain-specific architec-

tures [7, 10, 18, 19, 26, 27, 32, 58, 61, 68] for accelerating deep learn-

ing models for their superior energy efficiency.

Different from the computation-heavy training process, it is diffi-

cult for the inference of a single deep learning model to fully use the

hardware, which typically runs with a small batch size [2]. As such,

sharing multiple DL models on a single hardware, i.e., multi-tenant

deep learning serving, has become increasingly important [12, 21].

Compared to the single-tenant serving, multi-tenancy brings sev-

eral challenges, including resource management and allocation,

shared resource competition [40, 60], tasks scheduling [39, 51], etc.

For conventional multi-tenant workloads, researchers have pro-

posed various solutions based on resource partition [6], hardware

isolation [34], and so on. Similarly, researchers have proposed var-

ious architectural support for multi-tenant DL serving [2, 12, 21]

that leverages temporal and spatial multitasking.

However, the multi-tenant DL serving has its unique challenges,

which are overlooked by previous multi-tenant DL serving works.

We first find that owing to the complex inner-structure of the DL

models [11], the scheduling granularity has a profound impact on

the multi-model serving throughput. Meanwhile, we demonstrate

that the performance of DL models is very sensitive to code genera-

tion strategies [8, 56, 65, 66]. In specific, those current DL compilers

mainly focus on optimizing the performance of a single model or

388

https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3503222.3507752

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo

even a single layer by various code transformations under the as-

sumption of singe-tenancy. Our experimental results show that the

performance of generated code degrades rapidly under multi-tenant

scenarios due to the shared resource contention.

In this work, we propose Veltair, a software solution that

provides the high-throughput and low-interference multi-tenant

deep learning serving. We systematically analyze the resource

allocation conflict and inter-layer interference on the CPU plat-

form, which closely represents the industrial practice [28]. Our

analysis indicates that the fixed scheduling granularity adopted

by previous works [12, 21] is sub-optimal when the system load

changes. Meanwhile, we perform a naive extension to the TVM’s

auto-scheduler [8], which lets us identify the best-performing code

version under different interference levels. We show that the per-

formance of the best code version under a specific interference

level degrades quickly under a different interference level. These

insights call for both adaptive scheduling and adaptive compilation

for achieving the high-performance multi-tenant DL serving.

For the adaptive scheduling, we find that the sub-optimal per-

formance of the fixed model-wise scheduling scheme is caused by

the inefficient CPU resource utilization, while the fixed layer-wise

scheduling scheme is caused by the frequent resource conflict. To

reduce the resource conflict with CPU resource usage efficiency

guaranteed under different situations, we propose a layer-block

granularity scheduling strategy, which is finer than the model-wise

scheduling but coarser than layer-wise scheduling. By setting a

dynamic threshold, we can achieve both low conflict possibility and

high CPU resource usage efficiency.

For the adaptive compilation, we analyze the relationship be-

tween the interference-prone code version and the interference-

tolerant code version for a set of deep learning layers. We find

that those different versions essentially lie in the Pareto frontier of

trade-off space between parallelism and locality. Given this insight,

we propose a single pass compiling strategy based on the existing

auto-scheduler. The extended auto-scheduler is able to compile

multiple versions of implementations that are suitable for different

system interference pressure levels.

To evaluate our design, we choose various workloads from the

industry-level MLPerf [48] benchmark ranging from light to heavy

workload and compare with the existing multi-tenant DL serving

solution, Planaria [21]. Compared to the existing work, our design

servesmore requests under the sameQoS target in various scenarios

(e.g., +71%, +62%, +45% for light, medium, and heavy workloads,

respectively), and reduce the averaged query latency by 50%.

To summarize, we make the following contributions in this work.

• We analyze and identify the performance-critical optimiza-

tion knobs for multi-tenant DL services, including the adap-

tive scheduling and the adaptive compilation (Sec. 3).

• We propose a static multi-version compiler that extends

the existing TVM’s compilation framework and can identify

different optimal code versions under different interference

levels. The key novelty in our compiler is a multi-version

search algorithm in a single pass (Sec. 4.1).

• We propose a runtime scheduler design that dynamically

forms a layer-block as the scheduling unit. The scheduler

Figure 1: (a) All models in MLPerf vision can meet the QoS

target by using a few cores. (b) Performance slowdown when

simply co-locating multiple tasks together.

uses a dynamic threshold-based layer-block formation algo-

rithm to balance the resource usage efficiency and scheduling

conflict rate (Sec. 4.2).

• We evaluate and compare the proposed ideas in Veltair,

where the combined adaptive compilation and scheduler can

improve the system by 45% - 71% in different workload mixes.

We also show that the query execution latency in our design

is within 10% gap of the isolated execution case, meaning

Veltair is close to the performance upper bound on the

studied hardware platform (Sec. 5).

2 MOTIVATION AND CHALLENGES FOR

MULTI-TENANT DNNS

In this section, we explain why the CPU architecture is suitable for

providing the multi-tenant DL services. In specific, we show that

the existing high-performance CPU is more than enough to serve

multiple deep learning inference tasks under their QoS target. We

then show that the quality of code generation is the key to fully

unleashing the potential of the underlying hardware.

2.1 DNN Execution Characterization on CPU

With the tremendous improvement of hardware architecture design

and manufacturing process, the performance of single computing

hardware is increasing rapidly, making training and inference of

deep neural networks easier and faster. Some companies even use

CPUs as their deep learning back-end. These hardware mostly use

multi-degree parallelism to increase overall throughput. However,

when providing deep learning inference services with small batch

sizes, these hardware will suffer from severe under-utilization since

the deep learning inference service is not intense enough to fill the

hardware resource.

As illustrated in Fig. 1a, a high-performance CPU (AMD Thread-

ripper 3990X [1]) is more than enough to provide deep learning

inference tasks. When serving vision tasks in MLPerf [48], the CPU

platform can reach around 300 Query per Second by simply us-

ing all CPU cores for a task. So, to fully utilize the hardware and

increase the energy efficiency, increasing deep learning service

providers begin to introduce the task-level parallelism by shar-

ing one computing hardware among multiple customers/requests

which is called multi-tenant deep learning service, by either

389

VELTAIR: Towards High-Performance Multi-tenant Deep Learning Service via ... ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland
L

at
en

cy
:m

s

0
4
8

12
16

Model
ResNet-50 GoogLeNet MobileNet EfficientNet

TVM
MKL-DNN

Figure 2: Performance comparison between vendor-supplied

MKL-DNN library and TVM compiler.

temporal multiplexing (e.g. PREMA [12], AI-MT [2]) or spatial mul-

tiplexing (e.g. NVIDIA Multi-Process Service [44], NVIDIA Ampere

Multi-Instance GPU [47]). By leveraging task-level parallelism, mul-

tiple customers/requests can fully occupy the throughput of the

hardware, thus increasing the overall efficiency.

On the other hand, some deep learning tasks also consist of

multiple sub-tasks. For example, auto-piloting on a smart vehicle

consists of multiple direction object sensing and tracking tasks,

SLAM tasks, decision-making tasks, etc.; personal voice assistant

service on a home device consists of voice recognition, voice synthe-

sis, etc. Those sub-tasks can but also should be launched in a parallel

way for real-time interaction, and thus may share the resources on

a single computing hardware. Currently, few deep learning systems

are designed to face the multi-tenant serving scenarios. So in this

work, we propose to explore the optimization opportunities at both

compiling and runtime for co-locating and scheduling multiple

tasks on a single hardware. Specifically, we focus on the problem

of co-locating multiple latency-critical DL tasks on a multi-core

architecture hardware, and the objective is to serve as many DL

tasks as possible (i.e., maximize the metric of query per second)

under the task latency constraints (i.e., ensuring that it finishes

within a time limit). However, our design can be easily extended to

support the co-location of DL tasks and best-effort tasks.

To co-locate multiple deep learning tasks on a single computing

back-end, one naive approach is to simply dump all the candidate

tasks onto the hardware and fill the empty slot once a task is com-

plete. However, the most important challenge is how to manage the

limited hardware resources like physical cores for the CPU archi-

tecture, streaming multiprocessors (SMs) for the GPU architecture,

or even sub-arrays of a systolic architecture.

In addition to exclusive resources, various shared resources on

the computing back-end are critical to the performance of a task,

including cache bandwidth, cache capacity, memory bandwidth, etc.

Naively scheduling all candidate tasks to the hardware would result

in severe interference and performance loss due to the competition

of these resources. We conduct a simple experiment that co-locates

multiple ResNet-50, GoogLeNet, and SSD inference tasks on a single

CPU. As illustrated in Fig. 1b, the task suffers from up to 1.8× latency
under heavy workload pressure. As such, the inference can severely

impact the QoS, but is considered by current DL serving systems.

In contrast, our work considers both compilation and scheduling

strategies to handle the interference.

Table 1: Optimization strategies in Veltair and prior works.

Multiplexing Granularity Compilation Work

Temporal

Static (Model)

Static

PREMA [12]

Static (Layer) AI-MT [2]

Spatial

Static (Model)

Static

Planaria [21]

Static (Model/Layer) Parties [6]

Static (Model/Layer) Adaptive Protean [35]

Adaptive (Layer Block) Adaptive Veltair (ours)

2.2 DNN Compilation on CPU

Although vendor-provided libraries can offer optimized DNN com-

putation with convenient APIs, an increasing number of researchers

and developers have begun to use automatic high-performance

code generators for even higher performance. Among deep learn-

ing compilers, TVM gains great success for its convenience, high

quality of generated code, and cross-platform capability. Moreover,

things are getting more convenient once the TVM Auto-Scheduler

(i.e., Ansor [65]) is introduced. Now, researchers can simply define

the computation logic they want, run the auto-scheduling proce-

dure, and TVM would return the code with similar or even better

performance compared to vendor-provided libraries, such as MKL-

DNN [30] and MLAS [41] on CPU, cuDNN [46] on GPU.

The other advantage of using the DNN compiler is that the gener-

ated code is user-visible while vendor-supplied libraries are usually

closed-sourced. Given those reasons, we choose the TVM compiler

to generate the codes for running DNN models in this work. We

also conduct a performance comparison experiment between the

Intel MKL-DNN [30] and TVM. As Fig. 2 shows, the TVM generally

outperforms the vendor-supplied library.

For compiling DNN layers or models on the CPU, we mainly

consider the nested loop transformation and some CPU-specific

annotation or pragma including parallelization and unrolling. The

compiling procedure is actually a trade-off between the parallelism

and locality of the program, which we will discuss later in the paper.

3 OPTIMIZATION SPACE ANALYSIS

In this section, we first identify the optimization space that is critical

for achieving high-performance multi-tenant DL services. In spe-

cific, we study the two optimization knobs, namely the scheduling

granularity and compilation strategy.

We characterize the impact of those two knobs on the perfor-

mance measured by QoS satisfaction rate [4, 6, 51, 57] representing

how many requests are finished within the QoS target of multi-

tenant deep learning services on the CPU.

Our main finding is two-fold. First, a fixed scheduling granu-

larity, such as the entire model [12] or the sub-layer block [2, 21],

leads to the sub-optimal performance, owing to the diversity of

DNN models and their distinctive inner characteristics. Second, the

performance of the existing compilation strategies, which aim to

maximize the code performance under the solo-run case, degrades

significantly when multiple DNN models run together and inter-

fere with each other. Such two findings motivate the design of the

adaptive scheduling and adaptive compilation in Veltair.

390

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo

(b)

L
at

en
cy

: m
s

0
5

10
15
20
25
30
35

Query Per Second
50 150 300

Model
Layer
Block(6)
Block(11)

Figure 3: Performance comparison of different scheduling

granularities under different query arrival rate. (a) QoS satis-

faction rate. (b) Average query latency.

3.1 Optimization Space Definition

We first explain and define the optimization space of multi-tenant

DL services. Conventional workloads such as Silo [55] andMoses [33]

choose the entire query as the scheduling unit because the query has

no internal structures. In contrast, DNNs are layer-based, for which

the scheduling unit can range from one layer to the entire model.

Meanwhile, DNNs are also computation-intensive, and their perfor-

mances are sensitive to the code quality as shown in Sec. 2.2. In this

work, we consider these two knobs jointly, i.e., scheduling gran-

ularity and compilation strategy, for achieving high-performance

multi-tenant deep learning services.

Scheduling granularity refers to the size of the entity for al-

locating resources and scheduling on the hardware. For example,

in the conventional online services, prior works typically choose

the entire query as the scheduling unit [6, 34, 35, 39]. However, we

have more choices on the scheduling granularity in deep learning

services because DNN models have a complex inner organization

consisting of layers or operators, such as conv (i.e., convolution),

relu and pooling. As such, we can either choose an entire model

(i.e., coarse-grained) or a single layer (i.e., fine-grained) as the sched-

uling unit. To achieve higher resource usage efficiency and reduce

the resource usage conflict, we consider a new scheduling granu-

larity of multiple layers as a unit, which we call layer block.
Compilation strategy refers to the code generation options

for a DNN model or a DNN layer. For example, we have described

the different code generation options (i.e., nested loop transforma-

tion) in Sec. 2.2. As we will show later, the optimal code generation

option for minimizing the execution latency depends on the inter-

ference levels caused by co-running DNN models. To the best of

our knowledge, we are the first to consider the compilation as an

optimization knob in the multi-tenant DNN serving scenario.

Tbl. 1 compares the choices of those two optimization knobs in

prior state-of-the-art solutions against Veltair. Specifically, our

work is adaptive in both the scheduling granularity and compilation

strategy. Previous work AI-MT [2] and Planaria [21] decompose

a layer into multiple smaller parts, or sub-layers, for more flexi-

ble scheduling. However, the improvement is limited as we will

show that the layer-wise scheduling unit is already inferior to our

adaptive block scheduling in Sec. 3.2. In other words, sub-layer

scheduling is overly fine-grained. Other work Protean [35] and Par-

ties [6] mainly target conventional interactive services, so both of

8 16 24 32 40 48 56

CPU cores

0

1

2

3

4

5

6

7

8

S
p

ee
d

-u
p

 r
a
ti

o

(a)
Size:56×56, C:(64, 64), Ker=1×1

Size:224×224, C:(3, 64), Ker=7×7

Size:7×7, C:(512, 1024), Ker=1×1

Size:56×56, C:(64, 64), Ker=3×3

0 10

Time

0

10

20

30

40

50

60

C
P

U
 r

eq
u

ir
em

en
t

(b)
Model

Block(6)

Block(11)

Layer

Figure 4: (a) Speedup trend of increasing core number for 4

different conv layers selected from the ResNet-50 model. (b)

Core number allocation comparison for different schedul-

ing granularities under the same QoS target. The layer-wise

scheduling approach (red shadowed area) represents themin-

imum required core number for meeting the QoS target.

them use static scheduling. The static scheduling can either choose

the layer or the entire model in the case of multi-tenant DL services.

Note that Protean [35] also uses an adaptive compilation strategy,

only targeting non-DL workloads. As such, it can not be applied to

compile DNN models because they have a different set of compiler

optimization options as we will show later. In the following parts

of this section, we will justify the choice of our optimization knobs

through detailed experimental results.

3.2 Scheduling Granularity Analysis

We first compare the performance of multi-tenant DL services un-

der different scheduling granularities, including layer-wise, model-

wise, and layer-block scheduling. We then explain why these static

schedulings fail to fully utilize the hardware resources, which leads

to the need for an adaptive scheduling granularity.

Experimental Setup. For the model-wise scheduling, we im-

plement a simple First Come First Serve (FCFS) strategy used in

prior work [25, 51]. In other words, the tasks will be served im-

mediately if there are available resources while waiting otherwise.

For the layer-wise scheduling, we implement an algorithm simi-

lar to Planaria [21] that allocates the resource to every layer and

allow tile-wise preemption if the requested resources exceed the

available number. For the layer block scheduling, we simply set

the layer block-size to 6 and 11 respectively to study the impact of

the block-size. We compare the performance of those scheduling

schemes under different query arrival rates (i.e., query per second,

QPS). We report the QoS satisfaction ratio in Fig. 3a and averaged

model execution latency in Fig. 3b as evaluation metrics. For the

fair comparison of different scheduling strategies, we run a total

number of 30, 000 ResNet-50 models with identical uniform arriving

times to eliminate the instability caused by the randomness.

Results. As shown in Fig. 3a, the performance of both model-

wise and layer-wise scheduling degrade much faster than the block-

wise scheduling. Meanwhile, the best block-size for optimal perfor-

mance varies with the query arrival rate. For example, the block-size

of 6 layers performs best at 150 QPS, while the block-size of 11 is

better at 200 QPS. We have the same observations in Fig. 3b for

the averaged query execution latency. These results confirm the

criticality of scheduling granularity for multi-tenant DL services.

391

VELTAIR: Towards High-Performance Multi-tenant Deep Learning Service via ... ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

(b)

O
ve

rh
ea

d:
 u

s
0.01

1

100

10000

Layer (Operator) ID

Overhead
Median(Overhead)
Mean(Overhead)

Figure 5: (a) Scheduling conflict rate comparison for different

scheduling granularities under different query arrival rates.

(b) Measured per-layer conflict scheduling overhead.

Model-Wise Inefficiency. We find that the distinctive compu-

tation resource requirement across DNN layers is the root cause

for why the model-wise scheduling is sub-optimal. Fig. 4a plots

the speedup for different ResNet layers under different CPU core

numbers, which shows that different layers have different scala-

bility trends when allocated core number increases. However, the

model-wise scheduling evenly assigns a fixed number of cores to

all layers in the model, which results in the CPU core resource

wastage because many layers only require a small number of cores.

Fig. 4b compares the core number allocation between the model-

wise scheduling and layer-wise scheduling. Intuitively, the layer-

wise scheduling scheme represents the minimum core allocation

for satisfying the model’s QoS target. We find that the model-wise

scheme allocation (black line) is far from the optimal core allocation

(red shadowed area). As a result, the QoS satisfaction ratio drops

dramatically once the query arrival rate exceeds 50 QPS in Fig. 3a.

Layer-Wise Inefficiency. Wefind that the layer-wise scheduling

is sub-optimal owing to the frequent scheduling conflict when the

query arrival rate is high. For example, there are layers in Fig. 4b

that require large core numbers (e.g., more than 48 out of 64 cores).

The scheduling conflict occurs when a layer requests more cores

than currently available cores. Fig. 5a compares the conflict rate

among different scheduling granularities, where the layer-wise

scheduling is highest (e.g., 23.8% conflict rate with 300 QPS).

For a layer that experiences scheduling conflict, we implement a

technique to increase the resource utilization. In specific, we first let

the layer use all the available cores and increase its core usage once

more cores become available. However, using more cores needs to

spawnmore threads, whose overhead is non-negligible andworsens

the model’s overall latency. To illustrate this point, we quantify

this overhead for each layer in ResNet-50 by measuring a layer’s

latency with and without scheduling conflict. Fig. 5b shows the

results, with the mean of 220 𝜇𝑠 and median of 100 𝜇𝑠 .

The scheduling conflict overhead measured above explains the

overall latency of the layer-wise scheduling for ResNet-50 at the 300

QPS. The execution latency without scheduling conflict is 18.54𝑚𝑠 .

But with the conflict rate of 23.8%, the total conflict overhead is

estimated to be 23.8% × 55 × 220 𝜇𝑠 = 2.86𝑚𝑠 , with the 55 layers

(53 conv and 2 GEMM) in ResNet-50. As such, the estimated overall

latency is 2.86 + 18.54 = 21.4𝑚𝑠 , which matches the measured

latency for the layer-wise scheduling at 300 QPS in Fig. 3b.

(b)

Pe
rf

or
m

an
ce

0

400

800

1200

1600

Interference Pressure: %
0% 20% 40% 60% 80% 100%

Impl. 1
Impl. 4
Impl. 3
Impl. 2
Best

Figure 6: (a) Performance of four versions of the same layer

under different interference levels. (b) The best performance

(dotted line) is achieved by combining all four versions.

Summary. The above results show that the optimal scheduling

scheme should strike a good balance between the averaged resource

usage and the scheduling conflict. The model-wise scheduling gen-

erates the smooth resource usage pattern and hence low conflict,

but uses unnecessarily more resources to meet the QoS target. In

contrast, layer-wise scheduling uses the minimum CPU resources,

but the per-layer characteristics lead to a substantial scheduling

conflict overhead. The layer block scheduling combines the advan-

tages of both model-wise and layer-wise scheduling. Furthermore,

the optimal performance cannot be achieved by simply setting a

fixed layer block size as demonstrated in Fig. 3. In other words, the

optimal block organization depends on the model characteristics

and query arrival rate. As such, we propose to use adaptive layer

block-size, and will explain it with greater details in later sections.

3.3 Compilation Strategy Analysis

We now perform a set of experiments to study the impact of com-

pilation strategies on multi-tenant deep learning services. The key

insight in our experiments is that the optimal compilation strategy

changes under different interference levels. As such, the adaptive

compilation is needed to achieve high-performance multi-tenant

DL services. Furthermore, we propose to use multi-version static

compilation to avoid the overhead of just-in-time (JIT) compilation.

Extending TVM Auto-Scheduler. Recall that in Sec. 2.2, the

current TVM compilation strategy uses an auto-scheduler [65] to

search for the implementation that achieves the best or the lowest

0% 25% 50% 75% 100%

Interference level: %

0%

10%

20%

30%

40%

50%

60%

70%

P
er

fo
rm

a
n

ce
 L

o
ss

:
%

10% Perf.
drop region

(a)
Version Num=1

Version Num=2

Version Num=3

Version Num=4

Version Num=5

10% 20% 30% 40% 50% 60% 70%

Performance loss: %

0.0

0.2

0.4

0.6

0.8

1.0

O
p

er
a
to

rs
 a

m
o
u

n
t

(b)

Version Num=1

Version Num=2

Version Num=3

Version Num=4

Version Num=5

Figure 7: (a) Performance loss of retaining different numbers

of versions compared against retaining all ten versions under

different interference levels. (b) Distribution of code version

count to maintain various performance loss.

392

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo

CPU

Task Template

Exec.
Engine

Runtime Monitor

Layer-blocks queue

Alg. 2: Dynamic
Layer Block

Dominant
implementations

Alg.1: Single Pass
Multi-Version

Code
Scheduler

Candidate
implementations

Profiling

Offline Compiler
Alg. 3: VELTAIR

Runtime Scheduler

 Sec 4.1: Find multiple implementations
to handle different interference levels.

 Sec 4.3: VELTAIR runtime scheduler,
aware of system interference and conflict.

 Sec 4.2: Generate layer blocks with
dynamic size for low conflict scheduling.

Figure 8: Overview of Veltair, which comprises of the offline static compiler and the online runtime scheduler for adaptive

compiling and scheduling. The static compiler and runtime scheduler leverage the single-pass multi-version search and

dynamic threshold-based layer-block formation algorithm, respectively. By monitoring the system load and interference

pressures, the scheduler adaptively selects the optimal code version and scheduling granularities.

latency. This compilation strategy does not consider the existence

of interference when multiple DNNmodels run together, which can

lead to a significant performance slowdown as shown in Fig. 1b.

To mitigate the impact of interference, we propose a naive exten-

sion for the TVM’s existing auto-scheduler [65]. To identify the best

code implementation for the target layer at a given interference

level, we launch a background layer that produces the desired level

of interference and run the TVM’s auto-scheduler with long enough

iterations (e.g., 1024 iterations). As such, the returned schedule can

be regarded as the optimal version under this interference level. In

this experiment, we use a frequently occurred ResNet conv layer
with the feature map size of 14 × 14, kernel size of 3 × 3, input and
output channel size of 256, and study the performance of different

compilation strategies under different interference levels.

Results. Fig. 6 compares the performance of four different im-

plementations under different interference levels. In specific, the

four implementations correspond to the optimal ones searched with

zero, low, medium, and high interference levels, respectively. As

Fig. 6a shows, the impl.-1, which is also the default choice of TVM

auto-scheduler, achieves the best performance when no interfer-

ence exists. However, its performance also degrades rapidly, which

can be up to 7× at the high inference level. In contrast, the impl.-4
has the lowest performance when no inference exists but achieves

the highest performance under the high interference. These re-

sults show that the optimal code implementations vary according

to the interference levels, and our simple extension to the TVM

auto-scheduler can effectively find these optimal implementations.

Since a model may experience all ranges of interferences in the

multi-tenant DL services at one run, a static code version cannot

achieve the best performance. Fig. 6b further quantifies the perfor-

mance trend of the above four versions against different interfer-

ence levels, where each version outperforms others only within a

narrow interference interval. As such, we have to combine all the

four versions across all the interference levels to achieve the best

performance, which is the dotted grey line in Fig. 6.

General Cases. We further profile the rest of the ResNet-50

layers under different interference levels to fully understand the

impact of the compilation strategy. Specifically, we choose ten

interference levels and identify the best-performing version at each

level, which leads to a total number of ten implementation versions

for each layer. Fig. 7a compares the performance loss of using a

various number of versions against using all the ten versions. If we

use only one implementation, the performance loss increases as

the interference level increases. In contrast, using five versions out

of the ten versions can maintain the performance loss within 10%.

Multi-Version Static Compilation. One naive way to exploit

the above insights for multi-tenant DL services is to perform a

Just-in-Time (JIT) compilation according to the interference level.

However, the JIT compilation overhead can offset the benefit of

adaptive compilation. Instead, we propose to use the static multi-

version compilation to achieve the same benefit of the adaptive

JIT compilation. Fig. 7b plots the ratio of code version count to

maintain various performance losses compared to the case of using

all the ten versions. Although the above results have shown that it

requires five code versions to stay within 10% performance loss, the

majority (i.e., over 80%) of layers only require three code versions.

4 DETAILED DESIGN OF VELTAIR

In this work, we propose Veltair, a software solution for high-

performance multi-tenant deep learning model serving. Based on

the previous insights, Veltair performs adaptive compiling and

scheduling. Fig. 8 shows its overview that has twomain components,

i.e., the offline static compiler and the online runtime scheduler.

Instead of performing dynamic compilation whose overhead can

account for the model serving latency, we propose to use a static

multi-version compiler that extends the existing TVM’s compilation

framework and can identify different optimal code versioned under

different interference levels. The key novelty in our compiler is a

single-pass multi-version search algorithm (described in Sec. 4.1).

The Veltair runtime scheduler dynamically forms the layer

block as the scheduling unit, which balances the core usage effi-

ciency and scheduling conflict rate. The key in the scheduler is a

dynamic threshold-based layer block formation algorithm that we

describe in Sec. 4.2. The runtime scheduler exploits a performance

393

VELTAIR: Towards High-Performance Multi-tenant Deep Learning Service via ... ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Blocking Size

P
a
ra

ll
el

is
m

(a)
Light Interference

Heavy Interference

Blocking Size
P

a
ra

ll
el

is
m

Step 1

(b)
All implementations

Blocking Size

P
a
ra

ll
el

is
m

Step 2

(c)
All implementations

Unqualified implementations

Blocking Size

P
a
ra

ll
el

is
m

Step 3

(d)
All implementations

Unqualified implementations

Pareto Frontier

Figure 9: (a) The heavy-inference-optimal version generally prefers a large parallelism and a small blocking size (low locality),

while the light-inference-optimal version prefers the opposite. (b-d) Steps to find optimal code version under different interfer-

ence levels. We use an exemplary conv layer of 𝐻𝑖𝑛 =𝑊𝑖𝑛 = 7, 𝐶𝑖𝑛 = 832, 𝐶𝑜𝑢𝑡 = 384, 𝐻𝐾 =𝑊𝐾 = 1, 𝐻𝑜𝑢𝑡 =𝑊𝑜𝑢𝑡 = 7.

counter-based interference proxy. By monitoring the system load

and interference pressures, it adaptively selects the optimal code

version and scheduling granularities, which are detailed in Sec. 4.3.

4.1 Single-Pass Static Multi-Version Compiler

In Sec. 3.3, we have described the benefits of adaptive compilation

for handling the interference in the multi-tenant DL services. We

have proposed a naive extension for the TVM auto-scheduler to

search for the best code version at a given interference level. The

extended auto-scheduler launches an additional background layer

that can generate the desired interference level during the search

process. This approach is effective for identifying the best code

version at different interference levels but is time-consuming as it

requires multiple passes of the TVM auto-scheduler. A single pass

for a layer is typically 20 minutes on our high-end CPU, which

means searching for five versions would take close to two hours.

To facilitate the multi-version compilation process, we propose

a single-pass search algorithm that adds almost no overhead to the

original TVM auto-scheduler. Our key insight is that we can use the

well-known computer architecture tradeoff between parallelism

and locality to explain why certain versions are extremely sensitive

to interference while others are much less sensitive. Built upon this

insight, we can explore the parallelism-locality tradeoff space in a

single search pass, from which we then pick the desired versions.

Parallelism-Locality Tradeoff. We first use experimental re-

sults to illustrate that the finding of different optimal versions

under different interference levels is essentially a tradeoff between

program parallelism and locality. In this experiment, we use the

straightforward extension described in Sec. 3.3 to search for the two

optimal code versions, one under the light interference level and

the other one under the heavy interference level. We then record

the corresponding complication flags for these two versions. Based

on the recorded flags, we compute a parallelism metric by simply

multiplying the loop unrolling factor and parallelization factor. We

compute a locality metric by directly using the tiling/blocking size.

In Fig. 9a, we compare the above two metrics of the two code

versions that achieve the best performance under the light infer-

ence and heavy inference, respectively. We observe that the heavy-

inference-optimal version generally prefers high parallelism and

a small blocking size, while the light-inference-optimal version

prefers the opposite. We then derive the following insight: gener-

ated codes with a higher locality (a larger blocking size) perform bet-

ter under the light interference (interference-vulnerable), while
generated codes with a higher parallelism perform better under the

heavy interference (interference-tolerant).
The above insight reflects thewell-understood parallelism-locality

tradeoff. To exploit the large locality, a layer needs to use more

on-chip memory like the LLC in CPU, which are shared resources

among multiple CPU cores. However, the performance of the layer

quickly degrades when there is contention on the shared resources

(L3 cache and the corresponding bandwidth according to our obser-

vation). To mitigate the impact of contention, the layer can limit its

locality and use more parallelism to remedy its performance loss.

Single-Pass Compilation. We now use the examples in Fig. 9b-

d to walk through our single-pass compilation algorithm, which

has three steps. The details of the algorithm are provided in Agl. 1.

Algorithm 1 Static multi-version compilation in a single pass.

Input: 𝑙𝑎𝑦𝑒𝑟𝑠 [𝑁], 𝑞𝑜𝑠
Output: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑖𝑚𝑝𝑙𝑠 [𝑁] [𝑉], 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑖𝑚𝑝𝑙𝑠 [𝑁] []
1: function FindingImpl(𝑙𝑎𝑦𝑒𝑟𝑠 , 𝑞𝑜𝑠)

2: for _𝑙 in 𝑙𝑎𝑦𝑒𝑟𝑠 [𝑁] do
3: _𝑙 .𝑞𝑜𝑠 ← 𝑞𝑜𝑠 × _𝑙 .𝑜𝑝_𝑐𝑜𝑢𝑛𝑡∑

𝑥∈𝑙𝑎𝑦𝑒𝑟𝑠 [1:𝑁] (𝑥.𝑜𝑝_𝑐𝑜𝑢𝑛𝑡)
4: 𝑖𝑚𝑝𝑙𝑠 [] ← 𝐴𝑛𝑠𝑜𝑟 (_𝑙, 1024)
5: 𝑖𝑚𝑝𝑙𝑠 [] ← [𝑥 .𝑡𝑖𝑚𝑒 ≤ _𝑙 .𝑞𝑜𝑠 𝑓 𝑜𝑟 𝑥 𝑖𝑛 𝑖𝑚𝑝𝑙𝑠]
6: 𝑑_𝑖𝑚𝑝𝑙 [] ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 (𝑖𝑚𝑝𝑙𝑠)
7: 𝑑_𝑖𝑚𝑝𝑙 [] .𝑠𝑜𝑟𝑡 (𝑘𝑒𝑦 = 𝑥 .𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒)
8: for _𝑖 in 𝑑_𝑖𝑚𝑝𝑙, 𝑠𝑡𝑒𝑝 ← 𝑑_𝑖𝑚𝑝𝑙 .𝑙𝑒𝑛𝑔𝑡ℎ

𝑉
do

9: 𝑐_𝑖𝑚𝑝𝑙 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (_𝑖)
10: end for

11: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑖𝑚𝑝𝑙𝑠.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑐_𝑖𝑚𝑝𝑙)
12: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑖𝑚𝑝𝑙𝑠.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑑_𝑖𝑚𝑝𝑙)
13: end for

14: return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑖𝑚𝑝𝑙𝑠 , 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑖𝑚𝑝𝑙𝑠

15: end function

394

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo

0 10

Time

0

10

20

30

40

50

60

C
P

U
 r

eq
u

ir
em

en
t

thres

(a)
Model

Layer

Model Layer LBs(6) LBs(11) LBs(Dyn)

Scheduling granularity

0

10

20

30

40

50

60

C
P

U
 c

o
re

s
u

sa
g
e

(b)
Average CPU Usage

Max CPU Usage

Figure 10: (a) Forming the layer-blocks by a threshold and

minimize the layer-blocks’ CPU usage. (b) Average and max-

imal CPU usage of various scheduling granularity.

The first step (Line 2 - 4 in Agl. 1) directly leverages the TVM’s

auto-scheduler to collect candidate implementations. In this step,

we enable the operator fusion optimization in the auto-scheduler,

which includes common fusion patterns like convolution followed

by ReLU (conv-relu) and convolution followed by batch normal-

ization and ReLU (conv-batchnorm-relu). Instead of searching for
the best-performing implementation, we record as many samples

as possible and calculate their parallelism and locality metrics as

Fig. 9b shows. In the second step (Line 5), we then filter out samples

whose performance can not satisfy this layer’s QoS target as Fig. 9c

shows.We set the layer’s performance as the minimal floating-point

operation per second (i.e., FLOPS) that the corresponding model

needs to achieve to meet the model’s latency target.

In the third step (Line 6 to 7 and Line 14 to 29), we select the

dominant implementations via 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑡 function, where

there are no other implementations with both smaller blocking

size and parallelism than each chosen one. In other words, these

dominant implementations form the Pareto frontier (red markers

in Fig. 9d), which is an optimal solution to the multi-objective

optimization problem. In the last step (Line 8 to 12), we uniformly

choose five versions from the Pareto frontier (circled ones in Fig. 9d).

Since not all layers require five versions to maintain the close

performance to the optimal, we test the performance of the selected

five versions under different interference levels and remove the

ones whose performance is within 90% of the full five versions.

This optimization leads to the reduced storage overhead of code

multi-versioning.

4.2 Dynamic Threshold Based Layer-Block

Formation

As previously explained in Sec. 3.2, the layer-block-based schedul-

ing outperforms the layer-wise and model-wise scheduling through

balancing the minimal average core usage and scheduling conflict

rate. However, a fixed-sized layer-block is not efficient because the

optimal block size varies with the system load and the interference

from other co-executed models. As such, we propose a dynamic-
sized layer-block approach to achieve the high core efficiency and

low conflict rate according to the system load and interference level.

To reduce the scheduling conflict rate via the layer-block sched-

uling, we first identify the layers that are most likely to trigger

conflicts. To identify these conflict-prone layers, we calculate the

required CPU core number for each layer to complete within its

QoS target, from which we can compute the model’s averaged core

number. We compare the layer-wise core number against the model-

wise average value, and identify the layers with a much higher CPU

core number requirement than the averaged value as conflict-prone

layers. For each conflict-prone layer, we form a layer-block that can

reduce its core usage by increasing the core usage for other layers

in the block while still satisfying the QoS target.

We walk through the ResNet example in Fig. 10a to illustrate

the intuition of our method. We first form the layer-wise (red shad-

owed area) and model-wise (black horizontal line) scheduling plan

in Fig. 10a. We denote the average core count in the mode-wise

scheduling as 𝐴𝑣𝑔_𝐶 . We then use a runtime-decided threshold

𝑡ℎ𝑟𝑒𝑠 that ranges from zero to maximal core count. We iterate over

all layers and identify the conflict-prone ones whose core require-

ment exceeds𝐴𝑣𝑔_𝐶+𝑡ℎ𝑟𝑒𝑠 , i.e., the blue line in Fig. 10a. We refer to

each conflict-prone layer to the splitting pivot, which is essentially

the beginning layer for a block. As a result, there are four blocks

marked by arrows. For each formed block, we calculate its QoS

target by summing up all its layers. We then recalculate the core

requirement (yellow line) of each block to satisfy its QoS target.

Agl. 2 formally describes the above dynamic threshold-based

layer-block formation algorithm. where the threshold is determined

at runtime according to the system load and co-executed models’

characteristics. Sec. 4.3 will provide the details of how we adjust the

threshold. With Agl. 2, we can generate proper layer-blocks using

no more than𝐴𝑣𝑔_𝐶+𝑡ℎ𝑟𝑒𝑠 CPU cores under different system loads.

The basic idea is that when the system load is low, we use a high

threshold since the conflict possibility is low, which means each

layer can use as many cores as possible for maximizing the CPU

resource usage efficiency. When the system load is high, we use

Algorithm 2 Dynamic threshold based layer-block formation

algorithm.

Input: 𝑙𝑎𝑦𝑒𝑟𝑠 [𝑁], 𝑖𝑚𝑝𝑙𝑠 , 𝑡ℎ𝑟𝑒𝑠

Output: 𝐿𝑎𝑦𝑒𝑟_𝐵𝑙𝑜𝑐𝑘

1: function Finding1stPivot(𝑙𝑎𝑦𝑒𝑟𝑠 , 𝑖𝑚𝑝𝑙𝑠 , 𝑡ℎ𝑟𝑒𝑠)

2: 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔_𝑝𝑖𝑣𝑜𝑡 ← 0

3: 𝐴𝑣𝑔_𝐶 ← 𝐶𝑜𝑟𝑒
@ 𝑀𝑜𝑑𝑒𝑙 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 (𝑙𝑎𝑦𝑒𝑟𝑠)

4: for _𝑙 in 𝑙𝑎𝑦𝑒𝑟𝑠 [1 : 𝑁] do
5: if 𝐶𝑜𝑟𝑒 (𝑖𝑚𝑝𝑙𝑠 [_𝑙]) ≥ 𝑡ℎ𝑟𝑒𝑠 +𝐴𝑣𝑔_𝐶 then

6: 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔_𝑝𝑖𝑣𝑜𝑡 ← _𝑙

7: break

8: end if

9: end for

10: return 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔_𝑝𝑖𝑣𝑜𝑡

11: end function

12: function FormingLBs(𝑙𝑎𝑦𝑒𝑟𝑠)

13: 𝐿𝑎𝑦𝑒𝑟_𝐵𝑙𝑜𝑐𝑘 ← [], 𝑏𝑒𝑔𝑖𝑛 ← 0

14: while 𝑙𝑎𝑦𝑒𝑟𝑠.𝑙𝑒𝑛𝑔𝑡ℎ() ≠ 0 do

15: 𝑠𝑝 ← 𝐹𝑖𝑛𝑑𝑖𝑛𝑔1𝑠𝑡𝑃𝑖𝑣𝑜𝑡 (𝑙𝑎𝑦𝑒𝑟𝑠, 𝑖𝑚𝑝𝑙𝑠, 𝑡ℎ𝑟𝑒𝑠)
16: 𝐿𝑎𝑦𝑒𝑟_𝐵𝑙𝑜𝑐𝑘.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑙𝑎𝑦𝑒𝑟𝑠 [𝑏𝑒𝑔𝑖𝑛 : 𝑠𝑝])
17: 𝑙𝑎𝑦𝑒𝑟𝑠 ← 𝑙𝑎𝑦𝑒𝑟𝑠 [𝑠𝑝 + 1 :]
18: 𝑏𝑒𝑔𝑖𝑛 ← 𝑠𝑝 + 1
19: end while

20: return 𝐿𝑎𝑦𝑒𝑟_𝐵𝑙𝑜𝑐𝑘𝑠

21: end function

395

VELTAIR: Towards High-Performance Multi-tenant Deep Learning Service via ... ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

L3 Miss Rate L3 Access IPC FP OP

Performance counters

10
−2

10
−1

10
0

P
C

A
 c

o
m

p
o
n

en
t

ra
ti

o

Accont for
less than 1%

(a)

Predicted interference level
M

ea
su

re
d

 i
n

te
rf

er
en

ce
 l

ev
el

(b)

Light Interference

Medium Interference

Heavy Interference

Severe Interference

Figure 11: (a) Dominant components of performance coun-

ters according to PCA. (b) Accuracy validation of the interfer-

ence pressure proxy using L3 miss rate and access counters.

a low threshold which means each layer should have core counts

close to the average value for reducing the scheduling conflict rate.

The essence of Agl. 2 is to reduce the high core usage of error-

prone layers and remedy its latency loss by increasing the core us-

age of other layers. This can increase average core usage compared

to the most efficient layer-wise scheduling. However, according

to our evaluation, the gap between optimal CPU resource usage

is smaller than 10%, which is acceptable. Fig. 10b compares the

average core usage and maximum core usage of different sched-

uling granularities when co-locating two ResNet-50 models. Our

algorithm is effective at reducing the gap between optimal CPU

cores usage (i.e., achieving high resource efficiency) and maximum

core usage (i.e., reducing the scheduling conflict rate).

4.3 Veltair Runtime Scheduler

In this subsection, we describe the details of the runtime scheduler

in Veltair. Our scheduler monitors the current CPU inference level

and dynamically chooses the code version derived from Sec. 4.1 and

scheduling granularity using the algorithm described in Sec. 4.2. In

specific, we explain how we derive the system interference pressure

level and how we determine the dynamic threshold for Agl. 2.

Interference Proxy. We first build the proxy for monitoring the

system interference pressure level by using hardware performance

counters. According to previous studies [35, 63, 64], performance

counters have a strong relation with interference pressure level. We

define the interference pressure level of the system as the average

performance slowdown ratio of layers running on the system. To

figure out what performance counters decide the interference level,

we conduct a principal component analysis (PCA) [17] on collected

performance counters, including L3 cache miss Rate, L3 access,

instruction per cycle (IPC), float-point operations, etc. It turns out

that L3 cache-related counters account for over 99% of the data

variance, as shown in Fig. 11a. As such, we choose the L3 miss

rate and L3 access to construct a simple linear interference model.

As shown in Fig. 11b, the predicted interference level matches the

measured interference level well. Using this simple linear model, we

can derive the interference pressure level with low cost at runtime.

Dynamic Scheduling Threshold. The threshold used by the

layer-block formation in Sec. 4.2 indicates the additional core counts

that each layer block can use beyond the model’s averaged require-

ment. When a model runs exclusively, it can use as many cores

as it desires. However, when multiple models run concurrently,

each model should try to reduce its core usage to avoid scheduling

conflicts. As such, we use a simple heuristic that determines the

threshold by subtracting the total core number by the sum of all

models’ average core count and distributing the remaining cores

according to each model’s average core count. For example, three

models A, B, C use 12, 12, 24 CPU cores on average respectively. On

average, 64− (12 + 12 + 24) = 16 cores are idle, and we assign 4, 4, 8

as threshold to A, B, C respectively. In our study, we observe that

a model with a high average core usage typically has a high peak

core usage. Thus, dividing the idle cores by the model’s average

core usage can better fit each model’s computation demand.

Putting All Together. We now describe the runtime scheduler

in Veltair that exploits the aforementioned algorithms. Agl. 3 illus-

trates the pseudo-code of the scheduler, where the task dispatcher

simply sends tasks to a worker if there are enough idle cores. The

code implementation search is done offline at the compiling stage

as Agl. 1 details. At runtime, Veltair collects the performance

counters once a layer block is finished, and the scheduler will form

the next layer block from the remaining layers according to the

current system load with different implementations according to

the current interference pressure level. As mentioned before, codef

implementations with different interference tolerance levels have

significant differences in parallelism and locality, which means the

same layer in a model will have different CPU requirements un-

der different interference pressure levels leading to different layer

blocks. Note that when selecting the interference tolerance level of

the next layer-block, we will ignore the ongoing but soon-to-finish

layer-blocks, since they will have little influence on system inter-

ference from now on. To determine the soon-to-finish layer-block,

we examine whether its remaining execution latency is within a

Algorithm 3 The details of Veltair scheduler.

1: function VeltairTaskDispatcher

2: Dispatch tasks following 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 distribution

3: end function

4: function VeltairWorker

5: while true do

6: if worker is busy then

7: Wait for last task to finish

8: end if

9: 𝑡 ← 𝑓 𝑒𝑡𝑐ℎ_𝑡𝑎𝑠𝑘 (), 𝑏𝑒𝑔𝑖𝑛 ← 0

10: while 𝑡 .𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ≠ 𝑇𝑟𝑢𝑒 do

11: 𝑖 ← 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

12: 𝑡ℎ𝑟𝑒𝑠 ← #𝐶𝑇𝑜𝑡𝑎𝑙−
∑
𝑡𝑎𝑐𝑡𝑖𝑣𝑒 (#𝐶𝑀𝑜𝑑𝑒𝑙 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 (𝑡))

13: 𝑝𝑖𝑣𝑜𝑡 ← 𝐹𝑖𝑛𝑑𝑖𝑛𝑔1𝑠𝑡𝑃𝑖𝑣𝑜𝑡 (𝑡, 𝑖𝑚𝑝𝑙𝑠𝑖 , 𝑡ℎ𝑟𝑒𝑠)
14: 𝑡 [𝑏𝑒𝑔𝑖𝑛 : 𝑝𝑖𝑣𝑜𝑡] .𝐸𝑥𝑒𝑐𝑢𝑡𝑒 ()
15: 𝑡 ← 𝑡 [𝑝𝑖𝑣𝑜𝑡 + 1 :]
16: 𝑏𝑒𝑔𝑖𝑛 ← 𝑝𝑖𝑣𝑜𝑡 + 1
17: end while

18: end while

19: end function

396

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo
N

or
m

al
iz

ed
 Q

PS

0.00

0.50

1.00

1.50

2.00

Workload
EfficientNet MobileNet Tiny-YOLOv2 Light ResNet-50 GoogLeNet Median SSD Bert Heavy Mix

Planaria PREMA Veltair-AS Veltair-AC Veltair-FULL

Figure 12: Query per second (QPS) with 95% tasks QoS satisfied for various workloads and scheduling strategies.

threshold (e.g., 10%) according to our offline profile-based latency

model and interference proxy model.

5 EVALUATION

We now demonstrate the effectiveness of the adaptive compiling

and scheduling in Veltair. We first describe our evaluation setup,

baseline, and metrics. We compare the performance of Veltair

against other work and show that the combination of our adap-

tive compiling and scheduling is essential for achieving the hight-

performance in multi-tenant DL services.

5.1 Experimental Setup

Multi-Tenant Deep Learning Models. To simulate the realistic

situation of deep learning services, we use deep learning models

from MLPerf (Server) [48] as listed in Tbl. 2. The evaluated models

include image classification, object detection, and neural machine

translation (NMT) tasks. We categorize the workload of the mod-

els from light, medium to heavy, and set the QoS target for them

according to the guidance of MLPerf.

Workload Generation. We also follow the MLPerf guidance to

generate random queries with Poisson distribution, where the 𝜆 pa-

rameter of the distribution stands for the QPS (query per second) of

the workload. We evaluate our design under Light, Medium, Heavy,
and Mix workload. For the mixed workload, the frequency of every

task is set to be inversely proportional to QoS requirements [42].

Hardware and Software. For all experiments, we use a machine

equipped with a high-end server-level CPU Ryzen Threadripper

3990X [1] and 256 GB DDR4 RAM at 3200 MHz. The CPU has 64

physical cores and 256MB L3 cache capacity, and works at 2.9 GHz

with AVX-2 enabled. To obtain stable experimental results, we turn

Table 2: Evaluated multi-tenant DL models.

Category Workload Name QoS (ms)

Medium ResNet-50 [29] 15

Image Medium GoogLeNet [52] 15

Classification Light EfficientNet [53] 10

Light MobileNet-V2 [50] 10

Object Heavy SSD [36] 100

Detection Light Tiny-YOLOV2 [49] 10

NMT Heavy Bert-Large [15] 130

off certain features such as simultaneous multi-threading (SMT)

and dynamic voltage and frequency scaling (DVFS). We believe

that turning off these features do not change our insights owing

to the following reasons. The SMT mainly enhances the sharing of

L1 cache, while we identify LLC as the main contentious resource.

However, SMT leads to a significant latency fluctuation because

of the possibility that two logical threads of different tasks are

assigned to the same physical core. The DVFS also leads to latency

fluctuation that increases the conflict rate. We implement the static

multi-version compiler by extending the TVM v0.8 [8]. For the

runtime scheduler implementation, we use MPICH 3.3.2 [16], which

serves the multi-tenant DNN models via multi-processing. The OS

is Ubuntu 20.04 on Windows Subsystem for Linux (WSL 2).

Evaluation Metrics. We use QPS with 95% tasks QoS satisfied,

average latency, and CPU usage efficiency as our evaluation metrics.

• QPS with 95% Tasks QoS Satisfied: thismetric represents how

many requests the system can serve per second with almost

all the query requests (95%) finish within the QoS target.

• Average Latency: This metric measures the average execu-

tion latency of all the queries.

• CPU Usage Efficiency: This metric measures the average

CPU usage of the tasks by dividing the total execution time

by the sum of multiplying of the core usage and execution

time of each layer.

Baseline Choice. Since we co-locate multiple DNN models and

let them spatially share the hardware, we choose Planaria [21] as

the baseline in our evaluation. It should be noted that Planaria is

based on the hardware-software co-design, while we port the soft-

ware scheduling part to the CPU platform. To justify why we only

consider the spatial multitasking scenario, we also implement an-

other baseline scheduling method PREMA [12], which is a temporal

multitasking algorithm and lets tasks with high priority preempt.

Evaluation Plan. We study the effectiveness of different com-

ponents by evaluating the following configurations of Veltair.

• Veltair-AS: with only adaptive scheduling.

• Veltair-AC: with only adaptive compilation.

• Veltair-FULL: with both adaptive scheduling and adaptive

compilation enabled.

5.2 Query per Second (QPS) Improvement

Fig. 12 demonstrates the QPS improvement of Veltair against

the baseline Planaria [21] for studied models in different levels of

workloads. Veltair-FULL achieves an average of 71%, 62%, 44%

397

VELTAIR: Towards High-Performance Multi-tenant Deep Learning Service via ... ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

Figure 13: Average query execution latency comparison be-

tween solo-run (isolated) and variousVeltair configurations

(Veltair-AS, Veltair-AC, Veltair-FULL).

improvement in the light, medium, heavy workloads respectively,

and an average of 68% improvement in the mix workloads.

We also observe that the adaptive compilation (Veltair-AC)

achieves better improvements than the adaptive scheduling (Veltair-

AS). However, these two techniques are synergistic, and both are

critical components for fulfilling the performance improvement of

the full version of our design (Veltair-FULL). Without the adap-

tive scheduling, Veltair-AC only achieves 50% QPS improvement

in contrast to the 68% improvement of Veltair-FULL in the mix

workloads. The reason is that without adaptive scheduling, many

layers will choose implementations with lower locality but higher

parallelism to handle interference, leading to increased CPU re-

quirement and thus increased conflict possibility. In contrast, the

dynamic layer block formation in adaptive scheduling can mitigate

these conflicts.

In Fig. 12, we also observe that the temporal multitasking-based

multi-DNN serving scheme (PREMA [12]) generally performsworse

than the spatial multitasking-based multi-DNN serving. This obser-

vation justifies the choice of spatial multitasking of our work.

5.3 Query Execution Latency Result

We compare the average query latency of various Veltair con-

figurations against the solo-run case in Fig. 13. For each model,

the latency is measured at the QPS where 95% of queries can meet

their QoS target (i.e., same to the QPS metric in Fig. 12). Since the

solo-run latency is the shortest latency each model can achieve

on the studied CPU platform, this comparison lets us identify how

much additional room there is for further optimization in Veltair.

Fig. 13 shows that the inference latency of Veltair-AS is 1.6× of
the isolated solo-run execution, which means the adaptive sched-

uling cannot reduce the execution latency. On the other hand, the

latency of Veltair-AC is 1.17× of the isolated execution, confirm-

ing its ability for reducing latency under interference. With both

adaptive scheduling and compilation, the average latency is only

1.1× of the isolated execution, which means that Veltair-FULL is

close enough to the optimal serving result on the studied platform.

5.4 Result of CPU Efficiency

In Veltair, the layer-block-based scheduling leads to smoother

CPU core usage with reduced conflict rate but potentially uses

more cores. We quantify the gap of average core usage between

Veltair scheduling and the layer-wise scheduling. Recall that the

fine-grained layer-wise scheduling indicates theminimal core usage.

Fig. 14 shows that even under 75% system load, the core usage gap

of Veltair is less than 10% compared to the minimal core usage

(a)

G
ap

 V
.S

. o
pt

im
al

0%

20%

40%

60%

80%

System Load
25% 75% Model

Light
Medium
Heavy

(c)

3%

11%

39%
32%

14%

1 Ver 2 Ver
3 Ver 4 Ver
5 Ver

Figure 14: (a) Gap between optimal core usage of layer block-

based scheduling strategy under different system load, com-

paring to the fine-grained layer-wise scheduling. (b) Improve-

ment under different version number. (c) The ratio of number

of used versions for all the layers in seven DNN models.

of the layer-wise scheduling. In contrast, the model-wise has a

much larger gap of 47%. These results confirm that our layer-block-

based scheduling strikes a balance between reducing the scheduling

conflict rate and maintaining the high resource usage.

5.5 Sensitivity and Overhead Analysis

Sensitivity. In Veltair, we empirically set the maximal version

number𝑉 to 5. We now study the performance improvement under

different 𝑉 in Fig. 14b, which shows the improvement saturates

after four versions. Fig. 14c plots the version count distribution

for different layers, which shows that only 3% layers require five

versions. These results justify the choice of using five versions.

Scheduling Overhead. The scheduling overhead of Veltair

mainly consists of two parts. The first part is the runtime layer

block formation procedure, which scans the layers only once and

has the complexity of𝑂 (𝑁). The second part comes from the linear-

model-based interference proxy. Owing to the low complexity of

the scheduling algorithm and the proxy model, we find that their

overall overhead is less than 0.1𝑚𝑠 for serving each DNN model.

6 RELATEDWORKS

We compare and contrast Veltair with previous works in the

following three aspects, including the task co-location, multi-tenant

deep learning services, and deep learning compiler.

6.1 Task Co-location in Datacenter

The rapid improvement of hardware computation power makes

it possible to share the hardware among multiple tasks for higher

throughput. Many works have studied how to co-locate a latency-

critical (LC) task with multiple best-effort tasks [4, 5, 39]. Par-

ties [6] proposes a resource-partitioning technique to co-locate

multiple LC services. For more intelligent resource partition and

management, CuttleSys [34] proposes a sampling-reconstruction-

prediction-based strategy with reconfigurable architecture. Bubble-

series [40, 60] proposed an online contention measurement and

control system to relax the performance loss caused by contention

and is free from the online compiler, execution checkpoint, code

variants rerouting, etc. While previous works mainly focus on re-

source partition, isolation, and management, Protean [35] and other

398

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo

works [54] extend the optimization space by introducing runtime

code transformation for lower L3 cache pollution.

6.2 Multi-Tenant Deep Learning Service

Different from conventional workload, deep learning services are

computation-intensive with complex inner structures and should

be specifically treated when co-locating them. DART [59] proposes

a pipeline-based method to co-locate multiple DNN workloads on

multiple heterogeneous computation nodes. While in this work,

we mainly consider co-locating multiple DNN tasks on one ho-

mogenous hardware. PREMA [12] and AI-MT [2] propose temporal

multiplexing architectures with preemption-based strategy and

computation-memory overlapping-based strategy, respectively. In

contrast, Planaria [21] proposes a spatially decomposable systolic

architecture to co-locate tasks with proper computation and mem-

ory resources. This work aims at relaxing the problem from com-

piling and scheduling aspect with less constraint on the back-end

hardware as long as it is programmable. In addition to hardware-

software co-design, DyNet [43] mainly handles the problem of

scheduling RNNs. LazyBatch [11] proposes a batch-based approach

to handle multiple DNN requests. Ebird [13] also proposes a batch-

based approach to enable concurrent execution of DNNs with high

data transfer-compute overlapping. Abacus [14] proposes an op-

erator overlapping strategy based on precise latency prediction.

Besides the multi-DNN serving scenario, emerging microservice-

based workloads also have complex inner structures similar to DNN

models [20], to which our design may also be applied.

6.3 Deep Learning Compiler

For the better flexibility and performance of DNN model execution,

recent researchers propose various DL compilers including TVM [8],

TensorComprehensions [56], Tiramisu [3], TensorFlow-XLA [22].

These DL compilers are often integrated with front-end optimizers

like TASO [31] or Grappler [23]. Meanwhile, they also introduce

domain-specific language to make it convenient for users to define

their own computation. For the code generation optimization with a

huge search space, researchers apply both machine-learning-based

methods including AutoTVM [9], Ansor [65], FlexTensor [66] and

heuristic basedmethods including DLFusion [37] and Paleozoic [38].

These compilers target general-purpose hardware or DL accelera-

tors, and generally outperform vendors-provided libraries. However,

these works mainly focus on optimizing the performance of the

stand-alone execution of DNN operators. In contrast, we explore

compilation optimization for co-locating multiple deep learning

tasks, for which we show the interference-aware compilation is

critical.

7 CONCLUSION

In this work, we proposed Veltair, a compiler-scheduler system for

high performance multi-tenant deep learning service. By leveraging

multi-version compiling and layer-block scheduling, we achieve

1.7× system maximal QPS and reduce 50% of the computation la-

tency with little overhead. We first evaluate the proper scheduling

granularity in deep learning tasks, and we propose a layer-block

scheduling strategy with dynamically adjustable size to reduce the

resource conflict. Then we study the compilation options and pro-

pose a single-pass multi-version compilation to handle the perfor-

mance loss of interference caused by shared resource competition

in multiple neural networks co-locating. We demonstrate the ad-

vantages of Veltair in the aspects of improvement in QPS, QoS

satisfaction rate, computation latency, and resource usage efficiency

using the standard MLPerf Server test suite.

ACKNOWLEDGEMENT

This work was supported by the National Key R&D Program of

China under Grant 2021ZD0110104, the National Natural Science

Foundation of China (NSFC) grant (U21B2017, 62072297, 61832006).

We thank the anonymous reviewers and our shepherd Prof. Xipeng

Shen for their constructive feedback for improving the work. We

also thank Zhanda Zhu, Zihan Liu, Yijia Diao, and Vega Jiang for

the beneficial discussion and continuous support.

REFERENCES

[1] AMD. 2020. Ryzen Threadripper 3990X Processor. https://www.amd.com/en/

products/cpu/amd-ryzen-threadripper-3990x.

[2] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. 2020. A Multi-Neural Network

Acceleration Architecture. In 47th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020. IEEE,
940–953. https://doi.org/10.1109/ISCA45697.2020.00081

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-

durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman P.

Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and

Portable Code. In IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). https://doi.org/10.1109/CGO.2019.8661197

[4] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and

Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-Preemptive Acceler-

ators to Improve Utilization in Warehouse-Scale Computers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017.
ACM, 17–32. https://doi.org/10.1145/3037697.3037700

[5] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax:

QoS Awareness and Increased Utilization for Non-Preemptive Accelerators in

Warehouse Scale Computers. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016. ACM, 681–696.

https://doi.org/10.1145/2872362.2872368

[6] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PARTIES: QoS-

Aware Resource Partitioning for Multiple Interactive Services. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). https://doi.org/10.1145/

3297858.3304005

[7] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. DianNao: a small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2014, Salt Lake City, UT, USA, March
1-5, 2014. ACM, 269–284. https://doi.org/10.1145/2541940.2541967

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,

Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos

Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End

Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018. USENIX Association, 578–594. https://doi.org/10.5555/3291168.3291211

[9] Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize

Tensor Programs. In Advances in Neural Information Processing Systems 31. 3393–
3404. https://doi.org/10.5555/3327144.3327258

[10] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Ar-

chitecture for Energy-Efficient Dataflow for Convolutional Neural Networks.

In 43rd ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2016, Seoul, South Korea, June 18-22, 2016. IEEE Computer Society, 367–379.

https://doi.org/10.1109/ISCA.2016.40

[11] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. 2021. Lazy Batching: An

SLA-aware Batching System for Cloud Machine Learning Inference. In IEEE
International Symposium on High-Performance Computer Architecture, HPCA
2021, Seoul, South Korea, February 27 - March 3, 2021. IEEE, 493–506. https:

//doi.org/10.1109/HPCA51647.2021.00049

399

https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://doi.org/10.1109/ISCA45697.2020.00081
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1145/3037697.3037700
https://doi.org/10.1145/2872362.2872368
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.5555/3291168.3291211
https://doi.org/10.5555/3327144.3327258
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/HPCA51647.2021.00049
https://doi.org/10.1109/HPCA51647.2021.00049

VELTAIR: Towards High-Performance Multi-tenant Deep Learning Service via ... ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland

[12] Yujeong Choi andMinsoo Rhu. 2020. PREMA: A PredictiveMulti-Task Scheduling

Algorithm For Preemptible Neural Processing Units. In IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2020, San Diego, CA,
USA, February 22-26, 2020. IEEE, 220–233. https://doi.org/10.1109/HPCA47549.

2020.00027

[13] Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang, Jingwen Leng, Li Li, and

Mingyi Guo. 2019. Ebird: Elastic Batch for Improving Responsiveness and

Throughput of Deep Learning Services. In 37th IEEE International Conference on
Computer Design, ICCD 2019, Abu Dhabi, United Arab Emirates, November 17-20,
2019. IEEE, 497–505. https://doi.org/10.1109/ICCD46524.2019.00075

[14] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng, Jieru Zhao,

Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. 2021. Enable simulta-

neous DNN services based on deterministic operator overlap and precise latency

prediction. In The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). https://doi.org/10.1145/3458817.3476143

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. https://doi.org/10.

18653/v1/n19-1423

[16] Message Passing Interface Forum. 1994. MPI: A message - passing interface

standard.

[17] Karl Pearson F.R.S. 1901. On lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 2, 11 (1901), 559–572. https://doi.org/10.1080/14786440109462720

[18] Yiming Gan, Yuxian Qiu, Lele Chen, Jingwen Leng, and Yuhao Zhu. 2020. Low-

Latency Proactive Continuous Vision. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques (PACT). https:

//doi.org/10.1145/3410463.3414650

[19] Yiming Gan, Yuxian Qiu, Jingwen Leng, Minyi Guo, and Yuhao Zhu. 2020.

Ptolemy: Architecture Support for Robust Deep Learning. In 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 241–255.
https://doi.org/10.1109/MICRO50266.2020.00031

[20] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,

et al. [n.d.]. An Open-Source Benchmark Suite for Microservices and Their

Hardware-Software Implications for Cloud & Edge Systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17,
2019. 3–18. https://doi.org/10.1145/3297858.3304013

[21] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmen-

dra Reddy Yatham, Navateja Alla, Hardik Sharma, Mohammad Alian, Eiman

Ebrahimi, Nam Sung Kim, Cliff Young, and Hadi Esmaeilzadeh. 2020. Planaria:

Dynamic Architecture Fission for Spatial Multi-Tenant Acceleration of Deep

Neural Networks. In 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 2020, Athens, Greece, October 17-21, 2020. IEEE, 681–697.
https://doi.org/10.1109/MICRO50266.2020.00062

[22] Google. 2020. XLA: Optimizing Compiler for TensorFlow. https://www.

tensorflow.org/xla.

[23] Google. 2021. TensorFlow graph optimization with Grappler. https://www.

tensorflow.org/guide/graph_optimization.

[24] Yue Guan, Jingwen Leng, Chao Li, Quan Chen, and Minyi Guo. 2020. How Far

Does BERT Look At: Distance-based Clustering and Analysis of BERT’s Attention.

In Proceedings of the 28th International Conference on Computational Linguistics
(COLING). International Committee on Computational Linguistics, 3853–3860.

https://doi.org/10.18653/v1/2020.coling-main.342

[25] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir

Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance

Predictability from the Bottom Up. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020.
USENIX Association, 443–462. https://doi.org/10.5555/3488766.3488791

[26] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang,

Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse

DNN models without hardware-support via tile-wise sparsity. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). IEEE/ACM. https://doi.org/10.1109/SC41405.2020.00020

[27] Cong Guo, Yangjie Zhou, Jingwen Leng, Yuhao Zhu, Zidong Du, Quan Chen,

Chao Li, Bin Yao, and Minyi Guo. 2020. Balancing Efficiency and Flexibility

for DNN Acceleration via Temporal GPU-Systolic Array Integration. In 57th
ACM/IEEE Design Automation Conference, DAC 2020, San Francisco, CA, USA, July
20-24, 2020. IEEE, 1–6. https://doi.org/10.1109/DAC18072.2020.9218732

[28] Kim M. Hazelwood, Sarah Bird, David M. Brooks, Soumith Chintala, Utku Diril,

Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James

Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong,

and Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter

Infrastructure Perspective. In IEEE International Symposium on High Performance
Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. IEEE
Computer Society, 620–629. https://doi.org/10.1109/HPCA.2018.00059

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770–778. https://doi.org/10.1109/CVPR.2016.90

[30] Intel. 2019. Math Kernel Library for Deep Neural Networks. https://github.com/

rsdubtso/mkl-dnn.

[31] Zhihao Jia, Oded Padon, James J. Thomas, Todd Warszawski, Matei Zaharia, and

Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic

generation of graph substitutions. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP). ACM, 47–62. https://doi.org/10.1145/

3341301.3359630

[32] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, et al. 2017. In-Datacenter Performance Analysis

of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28,
2017. ACM, 1–12. https://doi.org/10.1145/3079856.3080246

[33] Harshad Kasture and Daniel Sánchez. 2016. Tailbench: a benchmark suite and

evaluation methodology for latency-critical applications. In 2016 IEEE Interna-
tional Symposium on Workload Characterization, IISWC 2016, Providence, RI, USA,
September 25-27, 2016. IEEE Computer Society, 3–12. https://doi.org/10.1109/

IISWC.2016.7581261

[34] Neeraj Kulkarni, Gonzalo Gonzalez-Pumariega, Amulya Khurana, Christine A.

Shoemaker, Christina Delimitrou, and David H. Albonesi. 2020. CuttleSys: Data-

Driven Resource Management for Interactive Services on Reconfigurable Multi-

cores. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). https://doi.org/10.1109/MICRO50266.2020.00060

[35] Michael A. Laurenzano, Yunqi Zhang, Lingjia Tang, and Jason Mars. 2014. Pro-

tean Code: Achieving Near-Free Online Code Transformations for Warehouse

Scale Computers. In 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, (MICRO). IEEE Computer Society, 558–570. https://doi.org/10.1109/

MICRO.2014.21

[36] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed,

Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.

In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 9905). Springer, 21–37. https://doi.org/10.1007/978-3-319-46448-0_2

[37] Zihan Liu, Jingwen Leng, Quan Chen, Chao Li, Wenli Zheng, Li Li, and Minyi

Guo. 2020. DLFusion: An Auto-Tuning Compiler for Layer Fusion on Deep Neural

Network Accelerator. In IEEE International Conference on Parallel & Distributed
Processing with Applications (ISPA). IEEE, 118–127. https://doi.org/10.1109/ISPA-

BDCloud-SocialCom-SustainCom51426.2020.00041

[38] Zihan Liu, Jingwen Leng, Guandong Lu, Chenhui Wang, Quan Chen, and Minyi

Guo. 2020. Survey and design of paleozoic: a high-performance compiler tool

chain for deep learning inference accelerator. CCF Trans. High Perform. Comput.
2, 4 (2020), 332–347. https://doi.org/10.1007/s42514-020-00044-7

[39] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. 2015. Heracles: improving resource efficiency at scale. In

Proceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1145/2749469.2749475

[40] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.

2011. Bubble-Up: increasing utilization in modern warehouse scale computers via

sensible co-locations. In IEEE/ACM International Symposium on Microarchitecture
(MICRO). https://doi.org/10.1145/2155620.2155650

[41] Microsoft. 2021. Optimize and Accelerate Machine Learning Inferencing and

Training. https://onnxruntime.ai/.

[42] Pascale Minet, Eric Renault, Ines Khoufi, and Selma Boumerdassi. 2018. Analyzing

Traces from a Google Data Center. In 14th International Wireless Communications
& Mobile Computing Conference, (IWCMC). IEEE, 1167–1172. https://doi.org/10.

1109/IWCMC.2018.8450304

[43] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,

Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,

Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng

Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul

Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta,

and Pengcheng Yin. 2017. DyNet: The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 (2017).

[44] NVIDIA. [n.d.]. Multi-Process Service. NVIDIA.
[45] NVIDIA. 2021. NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-

us/data-center/a100/.

[46] NVIDIA. 2021. NVIDIA cuDNN. https://developer.nvidia.com/cudnn.

[47] NVIDIA. 2021. NVIDIA MULTI-INSTANCE GPU. https://www.nvidia.com/en-

us/technologies/multi-instance-gpu/.

[48] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther

Schmuelling, Carole-Jean Wu, et al. 2020. MLPerf Inference Benchmark. In 47th
ACM/IEEE Annual International Symposium on Computer Architecture, (ISCA).
IEEE, 446–459. https://doi.org/10.1109/ISCA45697.2020.00045

[49] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In

2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 6517–6525. https:

400

https://doi.org/10.1109/HPCA47549.2020.00027
https://doi.org/10.1109/HPCA47549.2020.00027
https://doi.org/10.1109/ICCD46524.2019.00075
https://doi.org/10.1145/3458817.3476143
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1145/3410463.3414650
https://doi.org/10.1145/3410463.3414650
https://doi.org/10.1109/MICRO50266.2020.00031
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1109/MICRO50266.2020.00062
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization
https://doi.org/10.18653/v1/2020.coling-main.342
https://doi.org/10.5555/3488766.3488791
https://doi.org/10.1109/SC41405.2020.00020
https://doi.org/10.1109/DAC18072.2020.9218732
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/CVPR.2016.90
https://github.com/rsdubtso/mkl-dnn
https://github.com/rsdubtso/mkl-dnn
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/IISWC.2016.7581261
https://doi.org/10.1109/IISWC.2016.7581261
https://doi.org/10.1109/MICRO50266.2020.00060
https://doi.org/10.1109/MICRO.2014.21
https://doi.org/10.1109/MICRO.2014.21
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00041
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00041
https://doi.org/10.1007/s42514-020-00044-7
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2155620.2155650
https://onnxruntime.ai/
https://doi.org/10.1109/IWCMC.2018.8450304
https://doi.org/10.1109/IWCMC.2018.8450304
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://developer.nvidia.com/cudnn
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690

ASPLOS ’22, February 28 – March 4, 2022, Lausanne, Switzerland Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo

//doi.org/10.1109/CVPR.2017.690

[50] Mark Sandler, AndrewG. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 4510–4520.

https://doi.org/10.1109/CVPR.2018.00474

[51] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai

Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU

cluster engine for accelerating DNN-based video analysis. In Proceedings of the
27th ACM Symposium on Operating Systems Principles (SOSP). ACM. https:

//doi.org/10.1145/3341301.3359658

[52] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. 2015. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 1–9. https://doi.org/10.1109/CVPR.2015.7298594

[53] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling

for Convolutional Neural Networks. In Proceedings of the 36th International
Conference onMachine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA (Proceedings of Machine Learning Research, Vol. 97). PMLR, 6105–6114.

[54] Lingjia Tang, Jason Mars, and Mary Lou Soffa. 2012. Compiling for niceness:

mitigating contention for QoS in warehouse scale computers. In 10th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
2012, San Jose, CA, USA, March 31 - April 04, 2012. ACM, 1–12. https://doi.org/10.

1145/2259016.2259018

[55] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, 18–32.

https://doi.org/10.1145/2517349.2522713

[56] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,

Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert

Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance

Machine Learning Abstractions. CoRR abs/1802.04730 (2018).

[57] Wei-JenWang, Yue-Shan Chang, Win-Tsung Lo, and Yi-Kang Lee. 2013. Adaptive

scheduling for parallel tasks with QoS satisfaction for hybrid cloud environments.

J. Supercomput. 66, 2 (2013), 783–811. https://doi.org/10.1007/s11227-013-0890-2

[58] Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen

Leng. 2021. Dual-side Sparse Tensor Core. In 48th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2021, Valencia, Spain, June 14-18, 2021.
IEEE, 1083–1095. https://doi.org/10.1109/ISCA52012.2021.00088

[59] Yecheng Xiang and Hyoseung Kim. 2019. Pipelined Data-Parallel CPU/GPU

Scheduling for Multi-DNN Real-Time Inference. In IEEE Real-Time Systems Sym-
posium, RTSS 2019, Hong Kong, SAR, China, December 3-6, 2019. IEEE, 392–405.
https://doi.org/10.1109/RTSS46320.2019.00042

[60] Hailong Yang, Alex D. Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux:

precise online QoS management for increased utilization in warehouse scale

computers. In The 40th Annual International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1145/2485922.2485974

[61] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,

Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse

neural networks. In 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016. IEEE Computer

Society, 20:1–20:12. https://doi.org/10.1109/MICRO.2016.7783723

[62] Zhihui Zhang, Jingwen Leng, Lingxiao Ma, Youshan Miao, Chao Li, and Minyi

Guo. 2020. Architectural Implications of Graph Neural Networks. IEEE Computer
Architecture Letter (2020). https://doi.org/10.1109/LCA.2020.2988991

[63] Wenyi Zhao, Quan Chen, Hao Lin, Jianfeng Zhang, Jingwen Leng, Chao Li, Wenli

Zheng, Li Li, andMinyi Guo. 2019. Themis: Predicting and Reining in Application-

Level Slowdown on Spatial Multitasking GPUs. In 2019 IEEE International Parallel
and Distributed Processing Symposium, (IPDPS). IEEE, 653–663. https://doi.org/

10.1109/IPDPS.2019.00074

[64] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. HSM: A Hybrid Slow-

down Model for Multitasking GPUs. In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 1371–1385. https:

//doi.org/10.1145/3373376.3378457

[65] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer

Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,

and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs

for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). https://doi.org/10.5555/3488766.3488815

[66] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flex-

Tensor: An Automatic Schedule Exploration and Optimization Framework for

Tensor Computation on Heterogeneous System. In Architectural Support for
Programming Languages and Operating Systems, Lausanne (ASPLOS). https:

//doi.org/10.1145/3373376.3378508

[67] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2021. Graph Neural Networks:

A Review of Methods and Applications. arXiv:1812.08434 [cs.LG]

[68] Yangjie Zhou, Mengtian Yang, Cong Guo, Jingwen Leng, Yun Liang, Quan Chen,

Minyi Guo, and Yuhao Zhu. 2021. Characterizing and Demystifying the Implicit

Convolution Algorithm on Commercial Matrix-Multiplication Accelerators. In

2021 IEEE International Symposium on Workload Characterization (IISWC). https:

//doi.org/10.1109/IISWC53511.2021.00029

401

https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1145/2259016.2259018
https://doi.org/10.1145/2259016.2259018
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1007/s11227-013-0890-2
https://doi.org/10.1109/ISCA52012.2021.00088
https://doi.org/10.1109/RTSS46320.2019.00042
https://doi.org/10.1145/2485922.2485974
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/LCA.2020.2988991
https://doi.org/10.1109/IPDPS.2019.00074
https://doi.org/10.1109/IPDPS.2019.00074
https://doi.org/10.1145/3373376.3378457
https://doi.org/10.1145/3373376.3378457
https://doi.org/10.5555/3488766.3488815
https://doi.org/10.1145/3373376.3378508
https://doi.org/10.1145/3373376.3378508
https://arxiv.org/abs/1812.08434
https://doi.org/10.1109/IISWC53511.2021.00029
https://doi.org/10.1109/IISWC53511.2021.00029

	Abstract
	1 Introduction
	2 Motivation and Challenges for Multi-Tenant DNNs
	2.1 DNN Execution Characterization on CPU
	2.2 DNN Compilation on CPU

	3 Optimization Space Analysis
	3.1 Optimization Space Definition
	3.2 Scheduling Granularity Analysis
	3.3 Compilation Strategy Analysis

	4 Detailed Design of Veltair
	4.1 Single-Pass Static Multi-Version Compiler
	4.2 Dynamic Threshold Based Layer-Block Formation
	4.3 Veltair Runtime Scheduler

	5 Evaluation
	5.1 Experimental Setup
	5.2 Query per Second (QPS) Improvement
	5.3 Query Execution Latency Result
	5.4 Result of CPU Efficiency
	5.5 Sensitivity and Overhead Analysis

	6 Related Works
	6.1 Task Co-location in Datacenter
	6.2 Multi-Tenant Deep Learning Service
	6.3 Deep Learning Compiler

	7 Conclusion
	References

