
Asymmetric Resilience: Exploiting Task-level Idempotency
for Transient Error Recovery in Accelerator-based Systems

Jingwen Leng1, Alper Buyuktosunoglu2, Ramon Bertran2, Pradip Bose2, Quan Chen1, Minyi Guo1, Vijay Janapa Reddi3,4
1Shanghai Jiao Tong University, 2IBM T. J. Watson Research Center, 3Harvard University, 4The University of Texas at Austin

ABSTRACT
Accelerators make the task of building systems that are re-
silient against transient errors like voltage noise and soft er-
rors hard. Architects integrate accelerators into the system
as black box third-party IP components. So a fault in one
or more accelerators may threaten the system’s reliability if
there are no established failure semantics for how an error
propagates from the accelerator to the main CPU. Existing
solutions that assure system reliability come at the cost of
sacrificing accelerator generality, efficiency, and incur sig-
nificant overhead, even in the absence of errors. To over-
come these drawbacks, we examine reliability management
of accelerator systems via hardware-software co-design, cou-
pling an efficient architecture design with compiler and run-
time support, to cope with transient errors. We introduce
asymmetric resilience that architects reliability at the system
level, centered around a hardened CPU, rather than at the
accelerator level. At runtime, the system exploits task-level
idempotency to contain accelerator errors and use memory
protection instead of taking checkpoints to mitigate over-
heads. We also leverage the fact that errors rarely occur
in systems, and exploit the trade-off between error recov-
ery performance and improved error-free performance to en-
hance system efficiency. Using GPUs, which are at the fore-
front of accelerator systems, we demonstrate how our sys-
tem architecture manages reliability in both integrated and
discrete systems, under voltage-noise and soft-error related
faults, leading to extremely low overhead (less than 1%) and
substantial gains (20% energy savings on average).

1 Introduction
Domain specific architecture (DSA) [1] is the key enabler for
emerging computation intensive applications such as deep
learning [2, 3] and DNA sequencing [4]. The principle of
DSAs is to tailor the processor design to a specific domain
by identifying and accelerating the “hot” part of an applica-
tion. As such, the DSAs are also called hardware accelera-
tors [5, 6, 7, 8], which provide continued performance and
power efficiency improvements beyond the general-purpose
CPU that is stalled by the end of Dennard scaling and the
diminishing returns from microarchitecture enhancements.

While heterogeneous accelerator systems provide good
performance and power efficiency benefits, they can intro-
duce reliability challenges. For example, prior work [9, 10]
has shown that the GPU’s MTBF (mean time between fail-
ures) is almost eight times lower than the CPU’s in a large-
scale system. As such, the reliability of a heterogeneous
accelerator system may be compromised, which could seri-

Reliability

Efficiency

Programmability

CPU

Accelerator

(a) (b)

Fig. 1: (a) Efficiency, reliability, and programmability trade-
off in accelerator-based systems. (b) Applying existing tech-
niques can hurt the peak performance of an accelerator [15].

ously hinder their adoption in mission-critical domains such
as autonomous driving. In fact, the recent accelerator system
for Tesla’s autonomous driving uses the dual module redun-
dancy for protecting against transient hardware errors [11].

Therefore, a key challenge facing the development of fu-
ture systems is the design and implementation of resiliency
techniques that can maintain the overall system reliability in
the face of increasing accelerator integration. But as Fig. 1(a)
shows, optimizing a system comprised of different process-
ing accelerators for overall performance, efficiency, and re-
liability is difficult because the “sweet spot” for each accel-
erator can be inherently different from one another [12, 13].

In this work, we focus on the effective recovery of ac-
celerators from errors. More specifically, we focus on tran-
sient error recovery, which is important in the face of deep
technology scaling [14]. The typical approach for recover-
ing from transient errors in a heterogeneous system involves
checkpoint and replay, which can significantly degrade the
accelerator’s performance. In Fig. 1(b), we use LogCA [15]
(a recently proposed analytical performance model) to esti-
mate the overall performance impact. For each accelerator
task (i.e., a device call), if the system takes a checkpoint of
the offloaded data [16], the speedup can be cut by half. Other
approaches, such as epoch-based checkpointing, can reduce
the cost [17]. However, this becomes complicated when the
epoch includes mixed CPU and accelerator computation.

We present asymmetric resilience, a system-level archi-
tecture design for heterogeneous system reliability. In asym-
metric resilience, we break the system down into domains.
We deploy accelerators in the weak resilient domain and
the CPU in the strong resilient domain. The idea is to en-
sure the system’s reliability using the most resilient domain.
The strong domain hosts the reliable CPU, and the weak do-
main hosts the error-prone accelerators. The two domains,
strong and weak, are optimized for resiliency and perfor-
mance/power, respectively. In doing so, we simplify system

1. Resilient Domains
NPU

xPU

Diversity

Efficiency

Runtime
Dependency tracking

Error recovery

Compiler (optional*):
Static analysis

Code annotation

Architecture:
Memory isolation

Memory protection
* Accelerator name for
illustrative purpose only

…

Challenge Our Approach Implementation

CPU GPU Accelerator

Memory

Weak Resilient DomainStrong Resilient Domain

//mem[0:N] (WAR)
load mem[0:N]
computation
store mem[0:N]

//partial write
//mem[0:N]
computation
store mem[1]

2. Task-level Idempotency

For any memory region, the task does not have
1. Write after read (WAR) dependency
2. Partial write (only write to a subset of region)

Fig. 2: Overview of asymmetric resilience. It requires synergy between the architecture, compiler, and runtime system. The
accelerator only needs to detect the error. The CPU and its software components handle the error on its behalf. We use a GPU
for real system demonstration, and an analytical model for other accelerators (due to the lack of real systems for accelerators).

reliability management into error detection (at the accelera-
tor level) and error recovery (at the CPU level).

The next step is to understand how to orchestrate relia-
bility management between the different accelerator and the
CPU domains. To this end, we build upon the concept of
idempotency [18]. We extend idempotency to the task-level
for minimizing transient error recovery overhead. A task is
idempotent if its multiple executions lead to the same result.
Task-level idempotency suits accelerators because it is de-
termined only by the accelerator’s task interface, which is
often well-defined with input/output information. This criti-
cal nugget of information opens up powerful hardware/soft-
ware co-design opportunities. For example, in the event of
an error, we can eliminate the checkpointing overhead for
the input and output memory by using memory protection
schemes and re-issuing/executing the accelerator task.

First, we implement and evaluate asymmetric resilience
on a real system, using a GPU as an accelerator in the sys-
tem. We demonstrate that asymmetric resilience is already
feasible to apply to today’s systems. We identify the interac-
tion between the architecture, compiler, and runtime system
in achieving high system-level efficiency. Fig. 2 shows an
overview of our work. The compiler performs static analysis
on a GPU kernel (i.e., task) and annotates the code with the
derived input and output information. Based on the informa-
tion, the runtime leverages the augmented memory system
to grant write permission only to the output memory. During
kernel execution, most memory regions are protected in the
read-only mode. For the output memory, the runtime looks
for opportunities to regenerate it by re-executing a single or
multiple previously launched kernel rather than take a check-
point. This optimization sacrifices recovery performance but
results in a negligible error-free execution overhead.

Second, we evaluate the effects of asymmetric resilience
on discrete versus integrated accelerator systems. We study
the integrated CPU-GPU systems and examine two types of
error event: voltage (or L di

dt) noise and soft errors. As GPUs
are programmable, we use a set of representative programs
to cover as large accelerator space as possible. For most ker-
nels, our system does not need to take any checkpoint and
can recover from transient errors from a kernel by simply
relaunching the erroneous kernel. For the rest kernels, the
runtime tracks dependencies and decides the minimum set
of kernels to relaunch. Our system has negligible overhead
(less than 1%) during error-free execution, and it incurs an
error recovery penalty that is linear with error probability.

Thanks to this low overhead, we show how using asymmet-
ric resilience, we can safely unlock the benefits of voltage
undervolting. We achieve 19.6% savings in energy, which is
close to the ideal oracle-based energy savings of 21%.

Third, we study asymmetric resilience in the context of
emerging hardware accelerators. A key challenge with a
forward-looking study is the lack of real systems contain-
ing accelerators that are readily available to the public for
experimentation. Therefore, as the best effort, we evaluate
how asymmetric resilience works based on its first-order de-
sign principles and an analytical model. We consider accel-
erators from seven new domains and show that asymmetric
resilience applies to all but one, and show the effectiveness.

In summary, we make the following contributions:

• We propose asymmetric resilience as an architectural de-
sign to ensure the reliability of heterogeneous systems in
the presence of transient errors. Such a design relies on
the CPU for error recovery and exempts GPUs and other
accelerators from heavy resiliency optimizations (Sec. 3).

• We describe how the concept of task-level idempotency
can be leveraged to efficiently implement asymmetric re-
silience with the right architectural- and system-level sup-
port at the CPU, GPU, and the memory subsystem (Sec. 4).

• We describe hardware-software co-design of the compo-
nents, including the compiler and runtime that allows us
to minimize the system overhead within 1% (Sec. 5).

We organize the rest of the paper as follows. Sec. 2 mo-
tivates the need for asymmetric resilience in heterogeneous
systems. Sec. 3 gives its overview. Sec. 4 and Sec. 5 de-
scribes its architectural and software support respectively.
Sec. 6 describes the experimental setup. Sec. 7 evaluates the
asymmetric resilient design and its associated benefits in the
CPU-GPU system. It also quantifies the overhead for apply-
ing the design to accelerators with an accelerator-agnostic
analytical model. We compare with related work in Sec. 8.
Finally, we conclude the paper in Sec. 9 with future thoughts.

2 Accelerator System Reliability Challenges
Our work focuses on the transient error recovery in the con-
text of heterogeneous systems that are equipped with accel-
erators. In such a system with unprotected data exchange,
an error in the accelerator (such as the GPU) can corrupt the
CPU’s states, leading to the program or even operating sys-
tem crash [29]. In this section, we explain the fundamental

2

Category Related Work Generalization Ability Efficiency

Epoch based checkpoint and restart CRUM [19], CheCUDA [20], NVCR [21], CheCL [22],
✓ ✗

(no idempotency) HeteroCheckpoint [23], VOCL-FT [17], and others [16, 24, 25]

Instruction sequence idempotency Encore [26], Clover [27], iGPU [28] ✗ ✓

Task-level idempotency with resilient domains Asymmetric resilience (this work) ✓ ✓

Tbl. 1: Prior checkpoint and restart (CPR) work either does not work well for accelerators, or has low efficiency.

requirements for handling transient accelerator errors. How-
ever, none of the existing error handling technique satisfies
all the fundamental requirements at the same time, which
requires a dedicated study for the accelerator-rich system.

2.1 Need for Generality and Efficiency

Resilient accelerator-based computing systems require ac-
celerators to detect and recover from transient errors. We
focus more on the error recovery than on error detection,
as we find that accelerators’ unique features make the error
recovery task more challenging. Sec. 4.2 discusses the er-
ror detection in greater details. We consider the commonly
adopted checkpoint and restart (CPR) scheme for accelera-
tor error recovery, which has two fundamental requirements:
generalization and efficiency. We explain why the existing
CPR schemes fail to achieve them simultaneously.

Generality The growing number of accelerator architec-
tures requires a recovery technique that can work across a
broad range of architecture implementations. Specialized
accelerators target different computation domains (e.g., data
base [30] and robotics [7]). As a consequence, they result in
vastly different architecture implementations. Even within
a given application domain, different accelerators can have
different microarchitecture implementations. For instance,
neural network accelerators can leverage different forms of
parallelism (e.g., layer parallelism [5] versus neuron paral-
lelism [31]). Such differences inevitably lead to diverse mi-
croarchitecture implementations. To make matters worse ac-
celerators can use asynchronous and non-deterministic con-
trol logic [32] for improved efficiency. Consequently, tradi-
tional recovery schemes that rely on the assumption of a Von
Neumann architecture cannot readily apply to accelerators,
and in the case it does it is inefficient (as we demonstrate).

Efficiency The other challenge for accelerator error recov-
ery is retaining their highly sought after performance effi-
ciency. Computing systems almost always adopt acceler-
ators because of their superior performance and efficiency.
However, CPR based schemes unfortunately impact their ef-
ficiency. CPR incurs checkpoint overheads for checkpoint-
ing the system’s relevant memory and the accelerators’ inter-
nal states. Checkpointing the address space becomes costly
relative to the short accelerator task duration, thereby dom-
inating the total execution time. Accelerators also have large
internal states that can incur severe checkpointing overheads.
Accelerators use large on-chip SRAM caches and buffers
and exploit massive parallelism [6, 32]. So, if we naively ap-
ply CPR, accelerator systems can incur significant overhead
that defeats the purpose of using accelerators altogether.

2.2 Limitations of State-of-the-Art

We identify two state-of-the-art techniques for accelerator
error recovery (as shown in Tbl. 1) and explain why neither
satisfies the generalization and efficiency requirements at the
same time. We do not consider the fine-grained techniques
like instruction-level redundancy [33, 34] as accelerators of-
ten have little or even no instruction-level support.

Epoch-based Checkpointing A typical and straightforward
approach for ensuring accelerator reliability is to take the
checkpoint of an accelerator’s state before using it and restor-
ing the state when an error occurs [16]. However, that re-
quires checkpointing regardless of whether the error event
occurs. Our evaluation shows that this approach incurs a
steady 10× overhead (Sec. 7 provides more details), which
defeats the purpose of adopting accelerators in the first place.

Other researchers proposed more efficient solutions [17,
20], which periodically take checkpoints at the granularity of
an epoch. This approach amortizes the checkpointing over-
head by dividing a GPU program into epochs. However, the
epoch can mix the CPU and accelerator (GPU) computation.
That requires taking the checkpoint of the entire system data,
which includes both the CPU and accelerator(s). Our eval-
uation shows that such a solution still incurs a significant
overhead of around 10% - 100% (as we demonstrate later in
Sec. 7), similar to the numbers reported by prior work.

Idempotency-based Checkpoint Prior work [26] has lever-
aged the idempotency property to reduce the checkpoint over-
head. A code region is idempotent if it does not have write
after read (WAR) dependency for all registers, which can be
identified through dataflow and pointer analysis. The idem-
potency property guarantees the same result of multiple ex-
ecutions so that a re-execution can recover from the tran-
sient error. However, it is difficult to extend this property
to non-Von Neumann architecture-based accelerators where
programs are not expressed in the form of sequential in-
structions. Furthermore, prior work assumed a robust fault
model where a transient error is detected before corrupting
the memory state. Such a robust fault model is based on
CPU’s speculation feature and feasibility of control flow sig-
nature, but are likely to be absent in accelerators.

To summarize, the existing checkpoint-restart schemes do
not simultaneously satisfy the two fundamental requirements
for accelerator recovery, i.e., generality and efficiency. On
the one hand, the epoch-based approach overlooks accelera-
tor systems’ unique opportunity and incurs significant over-
head. On the other hand, the idempotency-based approach
relies on CPU-specific architectural characteristics and a ro-
bust fault model regarding memory state corruption. These
limitations motivate a dedicated study for better solutions.

3

3 Asymmetric Resilience
To overcome the challenges of generality and efficiency for
recovering from transient errors in accelerators, we intro-
duce a system-level design called asymmetric resilience. At
the system level the architecture is comprised of two key
abstractions – i.e., resilient domains and task-level idempo-
tency (as shown in Fig. 2). We explain these concepts and
describe how we leverage them to provide a general and ef-
ficient error recovery mechanism for transient errors in ac-
celerator systems. The key benefit of our design is that it
abstracts away the low-level microarchitecture details for er-
ror recovery at the isolated level of individual accelerators.
Instead, it alleviates the issue to the global system level.

3.1 System-level Abstractions

Resilient Domains To provide a general solution, we pro-
pose to hide the implementation details of accelerators and
introduce resilient domains as their system-level abstractions.
Our design centers around the communication channel be-
tween different domains, which is the memory subsystem as
Fig. 2 shows, without touching the internal microarchitec-
ture of the accelerator. For example, with the proper mem-
ory access permission management for each domain, errors
in a resilient domain are contained within the domain and
cannot corrupt the states in the other resilient domain.

To further minimize any possible modification to the ac-
celerator, we also separate its error detection and recovery
capability. We propose to augment the accelerator only with
error detection capability and move the error recovery capa-
bility into the CPU. As a result, the system can have asym-
metric resilient domains, i.e. the strong resilient domain and
a weak resilient domain in Fig. 2. The strong resilient do-
main requires both error detection and recovery, while the
weak resilient domain requires only error detection. It is nat-
ural to deploy the accelerators in the weak resilient domain
and the CPU in the strong resilient domain. In this sense, the
resilient domain differs from prior containment domain [35]
that requires error detection and recovery within a domain.

Since our design relies on the CPU to handle the tran-
sient accelerator error, the accelerator error recovery now
becomes a system-level reliability issue. We explain later
on that it allows for more holistic, system-level optimiza-
tions, rather than siloed individual accelerator optimizations.
Again these optimizations only assume a generic inter-domain
interface to handle transient accelerator errors, without touch-
ing the accelerator’s internal structure.

Task-level Idempotency We extend the fundamental con-
cept of instruction-level idempotency [26] to the task, call-
ing it task-level idempotency, which (as we show later) pro-
vides efficient accelerator error recovery. As Fig. 2 shows,
there are two conditions for an accelerator task to qualify as
having the task-level idempotency property. First, the task
must not have any write after read (WAR) dependency for
any memory regions. This condition guarantees multiple ex-
ecutions of the task have the same result. Second, the task
does not have partial write for any memory region. We ex-
plain later that our design enforces access control for mem-
ory regions and assumes the weak (general) fault model: an
error can corrupt the entire memory address space. In this

Input Memory Output Memory

Full Output

Partial
Output

Input/Output Memory Other Memory
Write after read

Read after write

Read Permission Write Permission R & W Permission No Access

Mixed RAW & WAR

Input Other

Fig. 3: Accelerator memory address space categorization.

case, the second condition guarantees the accelerator’s out-
put memory region can be restored via re-execution.

Task-level resiliency is not restricted to the von Neumann
architecture model and therefore provides another general
abstraction for accelerators. It is only determined by the in-
formation of memory regions that the task reads from (input
memory region) and writes to (output memory region). E.g.,
a convolutional layer accelerator [36] takes two input mem-
ory regions (for weight and input feature map) and stores the
output feature map in another memory region.

3.2 Cross-layer Design
We propose a novel cross-layer design to exploit resilient
domains and task-level idempotency. At the hardware-level,
the memory subsystem provides underlying mechanisms for
enforcing resilient domains. The runtime system leverages
the task-level idempotency and tracks the task dependency
to handle transient accelerator errors efficiently.

To maximize the generality and hide the accelerator de-
tails, we propose a general memory address space catego-
rization method. As Fig. 3 shows, we divide the memory
regions for an accelerator task into input, output, and in-
put/output memory. The output memory can have full out-
put and partial output memory. The latter means the task
only modifies a subset of the memory, such as the histogram
calculation where the bin updates are data-dependent. In-
put/output memory refers to the memory region used as both
input and output by the task. Since a memory region has
multiple bytes, there are three dependency types for input/out-
put memory: read after write (RAW) for all bytes, write after
read (WAR) for all bytes, and mixed RAW & WAR.

Our cross-layer design leverages the information of the
accelerator’s memory address space to perform checkpoint
overhead optimizations. From hereon, for brevity, we abbre-
viate task-level idempotency simply as idempotency. The
task is idempotent if it has only input memory, full output,
and WAR output memory. In Fig. 4a, if the tasks are idem-
potent, the runtime does not need to take a checkpoint of any
data. It leverages the augmented memory subsystem to pro-
tect input memory in the read-only mode and recovers the
full output and WAR output memory through re-execution.

In contrast, only the non-idempotent accelerator task re-
quires checkpoint, specifically the partial output, the WAR
memory, and mixed RAW & WAR memory region as they
violate the idempotency property. In the partial memory
case, since we assume the weak fault model, an error may
corrupt one byte that a correct re-execution does not write,
which makes the re-execution cannot overwrite the error.

Our runtime system further leverages re-computation to
mitigate the checkpointing overhead for those memory re-
gions. As Fig. 4b shows, multiple accelerator tasks can form

4

CPU

AcceleratorTask 1 Task 2
Sync

CPU Computation

(a) Idempotent task.

CPU

Accelerator
Idempotent

CPU Computation

1 2 3

Dependency

Error
1 3

Sync

Non-idempotent

Accelerator Task

(b) Non-idempotent task.

Fig. 4: Accelerator error recovery in asymmetric resilience. (a) Idempotent task does not require checkpoint. (b) Non-
idempotent task requires checkpoint, which can be removed if there exists re-computation opportunity.

a dependency chain, where the first task has an output region
used by the third task as the WAR output memory. Instead
of taking the checkpoint, we can recover it by re-executing
the first task. We will detail this optimization and how the
runtime tracks dependencies among different tasks.

4 Architectural Support
We explain the architectural support in our cross-layer sys-
tem. To demonstrate and evaluate the effectiveness of the
hardware and software co-designed asymmetric resilience,
we use the GPU as the exemplary accelerator. We choose
the GPU kernel as the error detection and recovery unit as
it is the smallest control unit by the CPU. As described in
the previous section, our system ignores the kernel’s internal
computation and only cares about its memory access char-
acteristics. In our design, we rely on a compiler analysis to
extract and annotate that information for GPU kernels. It is
straightforward to derive them for accelerators, and therefore
extending this GPU-centric protection work to the broader
scope of accelerator-rich systems would only incur minimal
efforts. We present a detailed discussion and quantitive esti-
mation on the required extensions in Sec. 7.4. Since the soft-
ware layer provides all the necessary support for the CPU,
our description focuses primarily on the architectural com-
ponents, including the memory subsystem and the GPU.

4.1 Augmented Memory Subsystem
As we explained previously, the runtime system performs
active read/write permission control to improve the efficiency
of error recovery. As such, the memory subsystem needs
to provide the permission management mechanisms for the
runtime. We categorize today’s memory subsystem in the
heterogeneous processors into two types and discuss how to
augment each memory type for providing such mechanisms.

Fig. 5a depicts the discrete memory, in which the CPU
and the GPU have separate physical memory. In such a sys-
tem, permission control requirements can be avoided thanks
to the memory system’s unique characteristics. We explain
this using the example of a discrete GPU system. First, the
system does not allow the GPU to directly access the CPU
memory, which guarantees no CPU memory corruption even
in the presence of GPU errors. Second, in its programming
model, the CPU also needs to allocate and copy the input
data to the GPU explicitly. It leads to the duplicated data on
the CPU and the GPU, which can be used as a checkpoint
and eliminates the need for access permission control.

Fig. 5b shows the integrated memory subsystem, which
will become more widely adopted due to its performance
and programmability advantages. We identify a usable prior
work Border Control [37] that allows read/write permission

control for every GPU memory access that misses at the
cache. We add the access control unit shown in Fig. 5b
using the Border Control logic, whose majority part is a
cache structure that stores the permission table. The added
logic should reside in the strong resilient domain through
the strong ECC protection for soft errors, or a higher voltage
margin or separate voltage rail for voltage noise. Since GPU
programs typically operate on the data size of several to a
few hundred MBs, we set the access control granularity to
be 8 KB, the same used by the original work. We show that
this unit adds near-zero storage and performance overhead in
our later evaluation. It is worth noting that our work focuses
first and foremost on the cross-layer design principals, i.e.,
how to leverage the access control knobs. Our solution is in-
dependent of the microarchitecture level details, which is an
important and intentional feature of asymmetric resilience.

4.2 Error Detection
In asymmetric resilience, accelerators only need to detect er-
rors and delegate the recovery to the CPU. The accelerator
error detection and recovery are two orthogonal problems.
Hence, our work focuses on recovery because it is more
complex and architecture-dependent. In contrast, accelera-
tor error detection is relatively architecture-independent be-
cause of the same underlying physical causes for errors across
architectures. Our cross-layer design also relaxes the detec-
tion requirement, allowing for simpler error detectors.

Circuit-level error detectors for CPUs are generally appli-
cable for accelerators. For instance, current high-end GPUs
already use error correction codes (ECC) for the soft er-
ror protection of register files and caches [9]. When un-
correctable errors are detected, the GPU deems the current
context as corrupted and requires a full restart [38]. Regard-
ing the voltage noise, voltage droop sensors or canary cir-
cuits [39, 40, 41, 42] are available. Besides the circuit-level
solution, accelerators can also deploy microarchitecture-level
error detection techniques, including modular redundancy [43,
44] and anomaly/exception detection [45, 46], which makes
the solution slightly more architecture-dependent.

The detection latency is a critical metric for choosing the
appropriate solution. Prior CPU-centric work [26] requires
fast error detection such as before the error starts to cor-

CPU

Memory

AcceleratorAcceleratorGPU

Memory

(a) Discrete memory.

CPU

Memory

AcceleratorAcceleratorGPU

Cache Cache
Access Control

(b) Integrated memory.

Fig. 5: Taxonomy of the different memory subsystems.

5

Kernel-1Checkpoint

I: {mem1}
O: {mem2}
I/O: ø

Kernel-1

I: {mem1}
O: ø
I/O: {mem2}

Kernel-1

I: {mem1}
O: {mem2}
I/O: ø

Kernel-2

I: ø
O: ø
I/O: {mem2}

Kernel-1

I: {mem1}
O: {mem2}
I/O: ø

Kernel-2……

I: ø
O: ø
I/O: {mem2}

Relaunch set:
{kernel-1}

Relaunch set:
{restore-mem2, kernel-1}

Relaunch set:
{kernel-1, kernel-2}

Relaunch set:
{ kernel-1, kernel-2 x N }

Repeat
Kernel-2
N times

E.g. 1 E.g. 2 E.g. 3 E.g. 4

Error Error Error Error
Checkpoint Checkpoint Checkpoint

ø {mem2} ø ø

Fig. 6: Examples for illustrating error recovery process. The input, output, and input/output memory are noted as I, O,
and I/O, respectively. The last three examples involve non-idempotent kernels that rely on kernel cohesion.

rupt the memory state. In contrast, our cross-layer design
relaxes the latency requirement, where the error only needs
to be caught before the CPU accesses the data. In asymmet-
ric resilience, even if an error is detected late, it can only
corrupt the kernel’s memory region (with write permission).
This matches our fault model assumption and is handled by
the upper-level runtime. In summary, we can borrow the
CPU’s mature error detection techniques and apply them to
the GPU/accelerator, and leave the more challenging error
recovery tasks to the system-level.

5 Compiler and Runtime Support
We describe how the compiler and runtime system cooperate
to support asymmetric resilience efficiently. We first propose
an approximate but safe compiler analysis for identifying the
task-level idempotency property of a kernel. Based on the
compiler annotation pass, the runtime manages the check-
point and performs optimizations to reduce the checkpoint
overhead during error-free execution, which is the typical
operation mode of the system as error events happen rarely.
We also present how to handle discrete versus integrated ac-
celerator systems, showing that the software component for
asymmetric resilience is extensible.

5.1 Compiler Analysis and Annotation
As explained in Sec. 3, asymmetric resilience relies on the
task-level idempotency property to achieve efficiency. Task-
level idempotency is solely determined by the relationship
between the memory regions that the task reads and writes.
In our work, we use a compiler static analysis to automat-
ically derive those characteristics for each kernel. Alterna-
tively, the system could use more advanced tools such as a
dynamic instrumentation tool [47] for deriving those infor-
mation. However, the compiler analysis is optional in our so-
lution as accelerator architects can manually determine and
provide those characteristics as we discuss in Sec. 7.4.

We start off with a conservative (safe) compiler analysis
pass because it is impossible to derive the exact memory in-
formation in Fig. 3 using only the static data flow analysis.
The analysis is approximate because it does not distinguish
the different types of input/output memory and treats them
the same, assuming they violate idempotency. Therefore, the
system may consider an idempotent task as non-idempotent.
Of course, even with this inaccurate information, the system
can recover from the task’s error by taking the checkpoint,
albeit of unnecessary data. Similarly, the compiler may treat
a full output memory as partial output, i.e., a false alarm of
idempotency violation. But such “mistakes” only cost per-
formance overhead, not the reliability of the system.

Owing to the conservative approach, our LLVM [48] com-
piler only needs to determine each kernel’s input, full output,

partial output, and input/output memory. For each kernel, it
extracts all the memory regions shared between CPU and
GPU through its argument list. The compiler then performs
use-def analysis [49] for each memory region. The region
is used solely as the kernel’s input (output) if it has only use
(def) information. On the other hand, the region is used as
input/output if it contains both use and def information.

To distinguish between the kernel’s full or partial output,
the compiler combines static symbolic execution with dy-
namic runtime checking. It first uses statically known vari-
ables (i.e., thread ID and thread block ID) to derive the size
of the output region, and annotates this information for the
runtime. The runtime compares the compiler-derived mem-
ory size with the allocated memory size (by tracking cud-
aMalloc). If the two match, it concludes the memory region
is the kernel’s full output. If the derived size and tracked
size do not match, or if symbolic execution fails to derive
the size of an output region, we attribute the output region as
a partial output. As we explained previously, this analysis is
safe for the system’s reliability because it does not mistak-
enly identify a partial output region as a full output region.
In our study, we find that our compiler analysis is simple but
effective as it identifies all regions correctly.

5.2 Runtime Management and Optimization
In asymmetric resilience, the runtime system is responsible
for managing the checkpoint and recovering from any de-
tected errors. We explain how the runtime leverages the ar-
chitectural support and compiler annotated information for
eliminating most of the system overhead. We also present
a dynamic optimization called kernel cohesion to handle the
checkpoint process for the non-idempotent kernels.
Idempotent Kernel Based on the compiler-annotated mem-
ory region information, the runtime identifies the kernel as
idempotent if it only has input memory and full output mem-
ory. The runtime uses augmented memory subsystem to en-
force the read-only access permission for the input memory,
which eliminates its checkpoint requirement. It is also un-
necessary to checkpoint the output memory, which can be
recovered by re-executing the kernel after a transient error
occurs. In other words, an idempotent kernel does not re-
quire any checkpoint. Tbl. 2 shows that only 12 out of 81
kernels in our studied programs are non-idempotent, which

Kernel Type Reason Count
Idempotent - 69

Non-idempotent
With input/output memory 9

With partial-output memory 3

Tbl. 2: Idempotent and non-idempotent kernels count.

6

Kernel k
(annotated)

I/O(k)
Empty?

[Input] I(k), O(k), I/O(k): input, output, input/ouput memory
[Output] R(k): kernel k’s relaunch set

 Record I(k)
 & Out(k))
 R(k) = {k}

Yes

No

Find the last launched kernel k’ such that I/
O(k’) or O(k’) equals I/O(k)

k’ exist and
input

available?

if (O(k’) == I/O(k))
 R(k) = {k’, k}
elif (I/O(k’) ==
 I/O(k))
 R(k) = R(k’) U {k}

Checkpoint I/O(k)
R(k) = {I/O(k), k}

Record I(k), Out(k), &
I/O(k)

No

Yes

Fig. 7: The runtime flowchart for creating checkpoint and
deciding relaunch set before executing a kernel.

lays the foundation of high efficiency of our system.
Kernel Cohesion In contrast, a non-idempotent kernel re-
quires to take the checkpoint of relevant data. However, it
is also unnecessary to take the checkpoint of all its mem-
ory regions. Instead, only the input/output (denoted as I/O
from now on) and partial output memory require checkpoint-
ing as the runtime can handle other memory regions (input
and full output) in the same way of idempotent kernels. Our
system also performs another software optimization called
kernel cohesion to eliminate the checkpoint requirement for
those memory regions. Instead of taking the checkpoint,
the runtime actively looks for opportunity to restore them
through re-computation, which is often cheaper than taking
and restoring checkpoint [50, 51]. Performing kernel co-
hesion requires the runtime to track the dependency among
kernels. We use examples in Fig. 6 to explain the process
and then summarize the full operational flow.
Running Examples The erroneous kernel in the first exam-
ple is idempotent because it has no I/O memory. Note that
we omitted the partial memory throughout the examples as
it is treated the same as I/O memory. The runtime does not
take any checkpoint and simply relaunches it for error recov-
ery. In contrast, the erroneous kernel in the second example
is non-idempotent, and the runtime needs to checkpoint the
I/O memory before the execution. It needs to restore the
checkpoint and relaunch the kernel for recovering its error.

The last two examples involve the kernel cohesion for
the checkpoint elimination. In the third example, kernel-2
has I/O memory mem2, which is the output from kernel-
1. There is no need to take checkpoint of mem2 as we can
group the two kernels for error recovery. As a result, to
recover from the kernel-2’s error, the runtime needs to re-
launch the kernel-2 and additional kernel-1. In the fourth
example, the program invokes kernel-2 multiple times, and
only the last invocation experiences an error. Similarly, ker-
nel cohesion eliminates all checkpoint requirements for the
non-idempotent kernel kernel-2. In the recovery process, the
runtime relaunches kernel-1 and N instances of kernel-2.
Operational Flow For the kernel cohesion implementation,
we maintain a relaunch set for each kernel, which is the set
of kernels the runtime needs to relaunch for recovering the
erroneous kernel. In its essence, the kernel cohesion opti-
mization simply keeps track of the kernel dependency and
does not actually fuse kernels as it requires re-compilation.
Fig. 7 shows the full operational flow, including the check-

Kernel k
(Error

detected)

for each
operation
op in R(k)

Is op
check-
point

Restore
checkpoint

Relaunch
op kernel

Yes

No

Fig. 8: Flowchart of the runtime handling GPU errors.

point and relaunch set management. The relaunch set for an
idempotent kernel is just itself. If input/output memory in
the non-idempotent kernel k can be restored by re-executing
kernel k’, the runtime adds k’ to the relaunch set of k. In ad-
dition, if kernel k’ is non-idempotent, the runtime also needs
to add the relaunch set of k’ to the relaunch set of k. If the
runtime does not find the kernel cohesion opportunity, it cre-
ates a checkpoint, which is very rare in our system.

Fig. 8 illustrates the runtime’s operation flow when recov-
ering from an error in kernel k. The runtime directly goes
through the relaunch set of kernel k, which may contain the
operation of restoring the relevant checkpoint and relaunch-
ing a series of kernels. The runtime reissues these operations
following their recorded order to recover from the error.

6 Experimental Methodology
We describe our methodology for prototyping an efficient
asymmetric resilient CPU-GPU system. Later on, we gen-
eralize to other (non-GPU type) accelerators. We use both
discrete and integrated system and systematically inject two
transient error types: soft errors and voltage noise. Finally,
we explain the testbed design for studying GPU errors.

6.1 Hardware, Software and Benchmarks
Hardware Setup We study the discrete GPU system with a
real hardware setup in Fig. 9. All the programs execute on
only one GPU card, and we use a redundant GPU card purely
for error detection. Because we do not have access to any
error checking capability in the used GPUs, we rely on dual-
module redundancy (DMR) for GPU error detection. Note
that this apparatus is used for prototyping purposes only. If
we had access to prior work setup [9], we can skip this step
and directly use the GPU’s error detection capability. We
use a GTX 680 and 780 card [52], and an Intel Core i5 CPU.

We use the gem5-GPU simulator [53] for evaluating the
integrated CPU-GPU system. We augment it with the mem-
ory access control mechanism proposed by prior work [37]
(Sec. 4.1). Also, we use a simulator setup similar to that used
by prior work, which has one CPU core and eight GPU cores
(SMs). The setup represents the AMD Kaveri APU [54] with
increased memory throughput, and it runs CUDA programs.

Finally, we develop a simple analytical model to estimate
how well asymmetric resilience works on (non-GPU) accel-
erators. We use an analytical model, rather than do simula-
tions since there are no robust end-to-end simulation infras-
tructures that are readily available to the public for use.
Software Infrastructure For the GPU evaluations, we im-
plement our runtime system at the CUDA runtime (version
7.0) level as Fig. 9 shows. The runtime API is the control
interface between CPU and GPU [55]. We use the CUPTI li-
brary [56] to overcome the closed sourced CUDA APIs. This
tool provides instrumentation features [57] for implementing

7

DMR for
Error Detection

(Illustrative Purpose
Only)

MemoryMemory

Runtime API
(Checkpoint & Recovery)

CUPTI API

Program

CPU

Active Undervolting
(Voltage Noise Error)

&
Error Injection
(Soft Error)

Memory

Primary GPUShadow GPU

Fig. 9: The dual-GPU system experimental setup. Note that
our overhead does not include the shadow GPU based DMR.

asymmetric resilience runtime. First, it allows user-defined
callbacks at the entry and exit point of each CUDA runtime
function, which we use to monitor and control the original
program’s execution flow. Second, each callback also pro-
vides the original arguments of the CUDA functions, which
are required for checkpointing and error recovery.
CUDA Benchmarks On the discrete GPU setup, we use
32 programs. These programs have diverse characteristics,
which lets us make insightful observations and comprehen-
sive evaluation. On the integrated setup, we use all the seven
programs supported by the infrastruture [37]. We find that
seven programs have similar characteristics of the other 32
programs used in the real hardware, and therefore, the sim-
ulation result is also representative. For all programs, we
choose the largest possible dataset, which ranges from sev-
eral to hundreds of MBs, to fully exercise our system.

Though we can run most programs, we cannot support all
programs out in the field because some applications rely on
special drivers. Our runtime only tracks runtime APIs, and
so it cannot support programs that use CUDA driver APIs
(e.g., the CUFFT [58] library uses driver APIs). Fixing it
requires engineering effort and does not affect our design.

6.2 Error Injection

Soft Errors We use the CUPTI instrumentation tool [56]
to inject errors into a kernel’s various memory regions (e.g.,
input and output in Fig. 3) in both the discrete and integrated
system. For a target error probability, we run the program
1, 000 times with randomly chosen single- and multi-bit
flip. This gives good coverage of possible soft error failures
points, thereby allowing us to test our runtime’s efficacy be-
cause the failure point impacts the system behavior.
Voltage Noise Since voltage noise does not manifest any
timing errors at the nominal voltage due to the excessive
voltage guardband, we “inject” voltage noise errors [29] by
operating the chip just below the Vmin. To determine Vmin, we
decrease the GPU’s operating voltage from its stock setting,
progressively, one step at a time, until the GPU starts failing.
The stock setting of the GTX 680 card is 1.09 V at 1.1 GHz.
We use the MSI Afterburner [59] to lower the GPU chip’s
voltage with a granularity of 12 mV at a fixed frequency.
With each 12 mV undervolting step, we run the kernel and
check the kernel correctness by validating its output against
the output from the redundant GPU that is always running
at the nominal voltage. We perform a byte-level comparison
using the utility memcmp [60]. A run passes if the two out-
puts are identical. We measure each program 1,000 times for
measuring its Vmin level, similar to prior work [29]. To inject
the voltage noise error, we run each program one step below

its measured Vmin level. We also run the voltage noise error
injection 1, 000 times for each program, which we observe
has around 10% error probability.

6.3 DMR Error Detection Testbed Design
For the real system study, our runtime system leverages DMR
for GPU error detection. We only use this solution for study-
ing error recovery; we presented more lightweight solutions
in Sec. 4.2 that are better in practice when the systems are
available for production-level implementation.

Our runtime system can i) maintain an identical state of
the first GPU in an extra shadow GPU; ii) launch an identical
shadow kernel from the original GPU in the shadow GPU;
iii) compare the results from the original kernel and shadow
kernel to detect a possible execution error.

In practice, the runtime effectively creates an identical
state in the shadow GPU (see Fig. 9). It intercepts the GPU’s
runtime functions and selectively repeats them in the shadow
GPU. We categorize those functions into three kinds: mem-
ory allocation, copy, and binding. Whenever the program
allocates memory or copies memory to the first GPU, we
perform the same operation in the shadow GPU. This allows
us to maintain an identical memory state. After the original
and shadow kernels complete their execution, we copy their
memory back to the CPU and perform a byte-level compar-
ison. Such fine-grained memory checking lets us precisely
investigate any errors during execution.

7 Evaluation
We perform a comprehensive evaluation of asymmetric re-
silience in different aspects. We first emphasize its perfor-
mance cost during the error-free execution. Such cost should
be as low as possible because it does not involve any er-
ror events. Our co-designed system can achieve almost zero
cost. We also show that it can also recover from frequent
errors with reasonable overhead in most cases, and evaluate
the effectiveness of kernel cohesion optimization for han-
dling non-idempotent kernels. Furthermore, we show the
high efficiency of our design also enables active GPU un-
dervolting for improving the GPU energy efficiency. Based
on the GPU insights, we derive an analytical model to esti-
mate the overhead for other types of accelerators. As such,
we show our design is a generic and efficient solution for
recovering from transient errors across accelerators.

7.1 Error-Free and Error-Recovery Overhead
Fig. 10 shows the information for the different programs we
study, including the number of static kernels, memory re-
gions, and their region sizes. The number of kernel defini-
tions varies from 1 to 8 and their invocations vary from 1 to
512 (not shown). The number of regions ranges from 1 to
15. The sizes range from hundreds of KBs to MBs. Most
programs do not have I/O memory and partial output mem-
ory. A possible explanation can be the well structured code
and GPU’s performance advantages over regular problems.

We first evaluate the runtime’s overhead when no error oc-
curs under four different checkpointing scenarios, as shown
in Fig. 11. The scenarios differ by which memory requires
checkpoint and where to store the checkpoint. The first two
scenarios take a checkpoint of the entire GPU memory space,
but the checkpoint is stored to the OS file system (“File”) or

8

10-3

10-1

101

103 Region Size (M

B)
20

15

10

5

0

C
ou

nt
Left Axis: Number of Memory Regions Number of Static Kernels
Right Axis: Input Memory and Full Output Memory Input/output Memory and Partial Output Memory

Fig. 10: Program characteristics. The static kernel means a kernel definition, which can be executed multiple times.

10
-2

10
0

10
2

10
4

O
ve

rh
ea

d
(%

)

Blac
kS

ch
ole

s

FD
TD

3d

Sob
elF

ilte
r

Sob
olQ

RNG

bic
ub

icT
ext

ure

bila
ter

alF
ilte

r

bin
om

ialO
pti

on
s

bo
xFi

lter

co
nvo

luti
on

Sep
ara

ble

co
nvo

luti
on

Tex
tur

e
dc

t8x
8

dw
tHaa

r1D dx
tc

eig
en

val
ue

s

fas
tW

als
hTr

an
sfo

rm

his
tog

ram

imag
eD

en
ois

ing
inte

rva
l

matr
ixM

ul

merg
eS

ort
nb

od
y

qu
asi

ran
do

mGen
era

tor

rec
urs

ive
Gau

ssi
an

red
uc

tio
n

sca
larP

rod sca
n

shfl
_sc

an

so
rtin

gN
etw

ork
s

ste
reo

Disp
arit

y

thr
ea

dF
en

ce
Red

uc
tio

n

tra
nsp

os
e

vec
tor

Add

Checkpoint Use: File System CPU Mem CPU Mem (Input Only) AR (Asymmetric Resilience)

Fig. 11: The overhead (normalized to the original unprotected system) when no accelerator errors occur. The first three bars
represent different checkpointing schemes while the last bar is our AR system with hardware memory protection support.

2.0
1.5
1.0
0.5
0.0

O
ve

rh
ea

d
(%

)

backprop bfs hotspot lud nn nw pathfinder

 Asymmetric Resilience Runtime
 Memory Access Control

Fig. 12: Error free overhead for the integrated GPU.

CPU memory (“CPU Mem”). They represent different as-
sumptions on whether the CPU and GPU memory are fully
isolated. The first case assumes no isolation, i.e., the CPU
memory is not safe when a GPU error occurs, used by prior
work [17]. The second case makes the opposite assumption
that the CPU memory is safe from GPU errors.

The “CPU Mem (Input Only)” scenario implements fine-
grained driver level fault tolerance technique proposed by
prior work [24]. Such a scenario takes the checkpoint for
a kernel’s input using CPU memory before the kernel’s ex-
ecution starts and restores that memory when a GPU error
is detected. The last scenario “AR” corresponds to asym-
metric resilience that uses co-design. The runtime uses the
hardware’s fine-grained memory access control (Sec. 4.1) to
eliminate the checkpoint requirement for memory regions
other than input/output and partial output memory. It further
performs kernel cohesion (Sec. 5.2) to remove the check-
point requirement for those two kinds of memory region.

Fig. 11 compares the different scenarios’ checkpoint over-
head, collected from our discrete GPU setup. The geomet-
ric means for the four scenarios are 162%, 38%, 30%, and
0.76%, respectively. In some cases, checkpointing the entire
memory space to the file system can result in 100× over-
head, which defeats the purpose of introducing accelerators.
The result highlights that asymmetric resilience achieves near-
zero error-free execution overhead through co-design. The
main overhead in our runtime comes from the relaunch set
calculation process illustrated in Fig. 7. Although we only

show the results on the SDK benchmark suite, asymmetric
resilience achieves similar efficiency on Rodinia [61] and IS-
PASS suite [62]. We show the latter results on the integrated
GPU and omit the former owing to the space limit.

Fig. 12 shows the overhead of asymmetric resilience for
the integrated GPU system. Note that here we show the re-
sults for all benchmarks currently supported by the simu-
lation platform. Although such a system requires architec-
tural modification to enforce memory access control, the in-
curred overhead is less than 0.2%. For backprop and bfs,
the runtime needs to checkpoint input/output memory, and
therefore incurs higher checkpoint overhead. But the overall
overhead is 0.6% and therefore negligible.

We now evaluate the overhead of the asymmetric resilience
runtime system to recover from errors. Recall that we have
two mechanisms to induce errors—operating the kernel be-
low its safe Vmin, which is only used in the discrete GPU
hardware setup, and directly corrupting the memory space
during execution through fault injection (i.e., soft error). We
use the same setup for the discrete and integrated GPUs.
Voltage Noise Fig. 13a shows the voltage noise recovery
overhead for the four scenarios. We only show the overhead
of checkpoint restoration (top component), and kernel(s) re-
execution (bottom). The checkpoint creation overhead is the
same in Fig. 11 and thus not shown. Comparing the two
parts, we find the checkpoint overhead dominates in all cases
except AR, which replaces the overhead of making/restoring
checkpoint with the negligible overhead of memory protec-
tion control and kernel cohesion optimization.
Soft Error We evaluate the soft error with different prob-
abilities and only show asymmetric resilience results due to
space limits. Other scenarios have similar behavior as the
voltage noise case: the checkpoint overhead dominates. We
focus on kernel relaunch overhead as the checkpoint over-
head is negligible in asymmetric resilience.

In Fig. 13b (discrete GPU), the label “P5” means running

9

1

10

100

1000

O
ve

rh
ea

d
(%

)

Restoring
Checkpoint
Overhead

Kernel
Relaunch
Overhead

 Kernel Relaunch Ovehead File System CPU Mem CPU Mem (Input Only) AR (Asymmetric Resilience)

(a) Voltage noise error recovery overhead (normalized to the error free execution). Different bars represent different checkpoint schemes.
2.0
1.8
1.6
1.4
1.2
1.0N

or
m

. E
xe

. T
im

e

Blac
kS

ch
ole

s

FD
TD

3d

Sob
elF

ilte
r

Sob
olQ

RNG

bic
ub

icT
ext

ure

bila
ter

alF
ilte

r

bin
om

ialO
pti

on
s

bo
xFi

lter

co
nvo

luti
on

Sep
ara

ble

co
nvo

luti
on

Tex
tur

e
dc

t8x
8

dw
tHaa

r1D dx
tc

eig
en

val
ue

s

fas
tW

als
hTr

an
sfo

rm

his
tog

ram

imag
eD

en
ois

ing
inte

rva
l

matr
ixM

ul

merg
eS

ort
nb

od
y

qu
asi

ran
do

mGen
era

tor

rec
urs

ive
Gau

ssi
an

red
uc

tio
n

sca
larP

rod sca
n

shfl
_sc

an

so
rtin

gN
etw

ork
s

ste
reo

Disp
arit

y

thr
ea

dF
en

ce
Red

uc
tio

n

tra
nsp

os
e

vec
tor

Add

 Relaunch Kernel Relaunch Extra Kernels5.94
2.99

10.29 3.07P5: 5% error probability
P10: 10% error probability
P20: 20% error probability P5 P10

P20

(b) Soft error recovery time (normalized to the error free execution) of different error injection probability (“P5” means 5% probability).

Fig. 13: Error recovery overhead for voltage noise error and soft error in different scenarios for the discrete GPU case.

1.4

1.3

1.2

1.1

1.0N
o
rm

.
E

xe
.
T

im
e

backprop bfs hotspot lud nn nw pathfinder

 Relaunch Kernel
 Relaunch Extra Kernel

2.58 1.76

Fig. 14: Error recovery overhead for the integrated GPU.

a program 100 times with 5% error probability. We also
evaluate the 10% and 20% probability. Those rates are much
higher than practical soft error rate, which is smaller than
10−6 but difficult to derive statistically sound results. We
break down the cost into relaunching the erroneous kernel
itself and relaunching extra kernels due to kernel cohesion.

Most programs in Fig. 13b do not need kernel cohesion,
so their recovery overhead increases linearly with the er-
ror rate. Only dct8x8, eigenvalues, and fastWalshTrans-
form activate the kernel cohesion and relaunch extra kernels.
In kernel cohesion, the extra relaunched kernels essentially
form a dependency chain (e.g. the fourth example of Fig. 6),
whose length determines the recovery cost. The overhead in
dct8x8 is small owing to its short dependency chain while
the other two programs have very high recovery overhead
because they suffer from the long dependency chain.

Fig. 14 shows a similar result in the integrated GPU sys-
tem. Due to the simulation speed constraints, we only evalu-
ate the 5% error probability case. Other than the two bench-
marks bfs and lud that requires kernel cohesion, all other
benchmarks suffer from very low error recovery overhead.

7.2 Error-Recovery Optimization
We evaluate optimizations to reduce the kernel relaunching
cost. The runtime dynamically makes a checkpoint if the
kernel dependency chain length exceeds a threshold, and
therefore, avoids re-execution of multiple kernels. We study
the optimal chain length through design space exploration.
Fig. 15 shows the results for two benchmarks with the high-
est recovery cost. The label “L3” indicates a chain length

3.0

2.5

2.0

1.5

1.0

N
or

m
. E

xe
. T

im
e

5 10 20
Error Probability

 Checkpoint
 Relaunch Extra Kernels
 Relaunch Kernel

L3
L5
L10

L15
L30

(a) eigenvalues.

7

6

5

4

3

2

1

N
or

m
. E

xe
. T

im
e

5 10 20
Error Probability

(b) fastWalshTransform.

Fig. 15: Execution time with varying dependency chain
length thresholds. “L3” indicates a threshold value of 3.

threshold of 3. We vary the threshold value from 3 to 30.
Our results unveil an interesting observation that the op-

timal chain size depends on the program characteristics. In
Fig. 15a, eigenvalues prefers short chain size because the
checkpoint time is relatively small compared to the kernel
execution time. In contrast, fastWalshTransform in Fig. 15b
prefers a larger chain size because the checkpoint overhead
is much higher. This observation suggests that the runtime
can use the ratio between kernel execution time and check-
point time to decide the optimal chain length on-the-fly.

7.3 Resilient Voltage Undervolting Benefits
We demonstrate that the extreme efficiency of asymmetric
resilience opens up a greater reliability trade-off space for
GPUs. To understand this trade-off, we perform an end-
to-end system-level evaluation using undervolting as a case
study. Undervolting is a power, performance and reliabil-
ity trade-off optimization [13]. We operate the GPU at the
measured Vmin and measure different cases’s energy savings.

We show that the extremely low overhead of our runtime
is important for energy saving schemes such as voltage guard-
band optimization. The first row (Oracle) in Tbl. 3 shows the
average measured energy savings when operating each ker-

10

Scenario % Scenario %

Oracle 21.0 File System -251.6
CPU Mem -61.2

Asymmetric Resilience 19.6 CPU Mem (Input Only) -48.7

Tbl. 3: Undervolting net energy savings (%) comparison.

nel at its Vmin on a GTX 680 card. In our case, we find that
up to 18.3% of the nominal voltage can be safely reduced,
which translates to 21% energy savings on average.

The actual realization of the oracular saving opportunity is
tightly coupled to safeguard efficiency. Tbl. 3 also compares
the net energy savings considering the performance cost of
the four safeguard schemes when operating at the Vmin. Our
runtime incurs less than 1% overhead while the others incur
30% to 160% overhead (Fig. 11). Therefore, only our co-
designed system can achieve close to the 21% energy saving.
All other schemes result in negative net savings.

7.4 Accelerator Overhead Estimation
In this work, we cannot directly study accelerators owing
to the lack of publicly available simulation infrastructure.
Based on the results and insights of the representative ker-
nels on GPUs, we derive an analytical model to quantify the
overhead of applying our design to accelerators, and demon-
strate its potential as a generic and extremely efficient so-
lution for recovering from accelerator errors. We leave the
more detailed study in the future work.
Analytical Model Eq. (1) illustrates the proposed model.
The numerator is the checkpoint time: the size of idempotency-
violating input/output memory (IOsize) divided by the check-
point bandwidth (Bwidth). The denominator is the total task
duration time with the kernel cohesion optimization: the av-
erage accelerator task duration (Ttask) multiplied by the de-
pendency chain length (Lchain, see the last example in Fig. 6).

Checkpoint Overhead =
(IOsize

Bwidth
)

(Ttask ×Lchain)
(1)

We extract the above information for accelerators accord-
ing to their high-level computation characteristics, without
knowing their implementation details. Tbl. 4 lists our stud-
ied accelerators and Fig. 16 shows their characteristics.
Idempotent Accelerators We can identify the idempotency
property of an accelerator by inspecting its targeted task. In
Tbl. 4, Conv. Engine [63] and neural network inference ac-
celerators (Diannao [5] and TPU [6]) have only input data

Domain Accelerator Idempotent?
Algebra Convolution Engine [63] Yes
Database Q100 [30] Yes

Neural network inference
Diannao [5] Yes

TPU [6] Yes
Neural network training TPU [6] No

Robotics Motion Planning [7] Yes
DNA Alignment Darwin [8] Yes
Graph Analytics Graphicionado [64] No

Tbl. 4: Different accelerators’ idempotent characteristics.

0.1

1

10

100

1000

D
ep

en
de

nc
y

C
ha

in
 L

en
gt

h

40003000200010000
Input/Output Memory Size (MB)

Estimated I/O Memory Checkpoint Overhead (By Marker Size)
 Idempotent Non-idempotent

Conv. Engine,
Q100, Diannao,
TPU (Inference),
Darwin,
Motion Planner

TPU (Training)

5.3%

1%
Graphicionado

0%

Fig. 16: Accelerator characteristics and estimated overhead.

(for input images and model weights) and output data (for
model prediction results), and do not have any I/O memory.
Similarly, Q100 [30] targets the SQL query of the database
domain, and only supports the query statement that does not
modify/update the SQL table1. As such, it has only input
data (for SQL table and query statement) and output data
(for query result). For the motion planner [7], its input is the
obstacles voxels and starting/ending point. Its output is the
collision-free path. For Darwin [8] that accelerates genome
sequence alignment, its input is a query genome sequence
and a reference genome sequence. Its output is the gap se-
quence that maximizes an alignment score. All these accel-
erators are idempotent because each output element is deter-
mined and updated by the input. As such, they do not incur
any checkpoint overhead in our system as Fig. 16 shows.

Non-idempotent Accelerators In Fig. 16, only the TPU
training and Graphicionado [64] are non-idempotent. The
TPU training accumulates the model weights, i.e., I/O mem-
ory, whose size is several hundreds of MBs. The training
usually takes thousands of iterations, which form a depen-
dency chain for kernel cohesion. Take ResNet-50 [66] with
100 MB weights as an example, the TPU-v2 executes an iter-
ation within 10 ms [67]. If we take the checkpoint every 100
iterations and assume a bandwidth of 10 GB/s, the estimated
overhead is only 1%. Graphicionado [64] targets graph an-
alytics that iteratively updates the vertex/edge data, which
is the I/O memory. Its clock frequency is 1 GHz and can
process four edges per cycle. The duration for processing a
graph with 1 G edges (4 GB data) is 0.25 s. With 10 GB/s
bandwidth and 30 iterations, the estimated overhead is 5.3%.

In summary, by inspecting the accelerator’s high-level com-
putation characteristics, we find most accelerators are idem-
potent, i.e., perfect fit for our design. For non-idempotent
accelerators, there exists a system-level opportunity for ker-
nel cohesion to minimize the checkpoint cost of our design,
similarly observed in GPU programs.

8 Related Work
In this work, we propose a generic paradigm called asym-
metric resilience for recovering accelerator errors (i.e., soft
errors and voltage noise errors). We compare with prior

1SQL consists mainly three types of languages: data query lan-
guage (DQL), data definition language (DDL), and data control
language (DCL) [65]. Q100 only accelerates the DQL.

11

work on relevant topics in the CPU and GPU/accelerator.

Soft Error There are several soft error characterization ef-
forts using the real CPU hardware. Prior work [68] per-
formed application-level fault injection experiments to study
the vulnerability of various architectural components in Blue-
Gene/Q processors. Recent work [69] characterized the soft
error impact on the DRAM in a supercomputer, while an-
other work [70] studied the soft error for both DRAM and
on-chip SRAM caches. There are similar efforts to study
the impact of soft error on the GPU architecture [9, 10, 71],
which shows that the GPU is more vulnerable than the CPU.
Mukherjee et al. introduced the architectural vulnerability
factor (AVF) based framework to reduce the error proba-
bility. There are subsequent efforts on improving the AVF
through scheduling in the heterogeneous multicore proces-
sor [72] and data placement in the heterogeneous memory
architectures [73]. Those efforts are orthogonal to our work
that focuses on efficiently recovering from errors.

Voltage Noise There are also many efforts to study the volt-
age noise in both the CPU and GPU architectures. Prior
work performed measurement-based analysis using various
real CPU hardware platforms [74, 75, 76, 77] and GPU plat-
forms [78, 29] to quantify the impact of voltage noise. Since
the excessive voltage guardband leads to energy wastage, re-
searchers propose voltage smoothing [74, 79, 80, 81, 82, 83]
that mitigates the worst-case voltage droop magnitude for
improving energy efficiency. Another line of work tries to
actively adapt to the voltage noise fluctuation for energy sav-
ing [39, 40, 84] on the CPU architecture. Our work can be
used as a safeguard solution to handle the possible voltage
noise errors in a GPU with active guardband management.

Error Detection Our work assumes the error detection ca-
pability on the accelerators. The error detection techniques
generally fall into the architecture independent and architec-
ture dependent categories. The former includes voltage sen-
sors [41, 42], error correction code [84], and modular redun-
dancy [43, 85]. The latter techniques extract signatures from
the architecture such as control flow [45], dataflow [86], and
coherence token [87]. The architecture-independent error
detection techniques are generally good candidates for ac-
celerator error detection. Another work [88] builds on the
existing hardware transactional memory. It leverages HTM’s
features for error detection and recovery, which has the po-
tential for handling the partial output that violates the task-
level idempotency in our work.

Error Recovery There are mainly two different types of
error recovery work. The first category is checkpoint and
restart with different levels of granularities [16, 24, 17, 89].
The other category leverages the idempotency property for
reducing the checkpoint overhead. However, the idempo-
tency based solutions [26, 27, 28] assume a strong fault model
and are heavily coupled with the CPU microarchitecture.
In contrast, our work extends the idempotency concept to
the accelerator task and assumes a much more general fault
model. The DeSyRe work [90] proposed a runtime sys-
tem design for reliability optimization in the shared-memory
SoCs: under the assumption of the strong fault model, it used
multi-versioned task codes for avoiding permanent faults in
an SoC component. Prior CPU-centric work [91] used compiler-

assisted eager checkpointing to relax the strong fault model
assumption. Our work also uses the compiler information
for highly efficient hardware/software co-design.
Resilient Domain Prior work proposed containment do-
main, which is responsible for detecting and recovering from
its own errors [35]. In contrast, our work introduces the
asymmetric resilient domains, where the weak domain only
detects the error, and the strong domain recovers the weak
domain’s error. Other work designed multicore architec-
ture with different reliability levels for probabilistic appli-
cations [92]. The implementation of asymmetric resilient
domains builds upon prior BorderControl [37] that prevent
errors in one domain from affecting others. Our work fo-
cuses on how the system can leverage this hardware mecha-
nism for efficient and generic error recovery.

9 Conclusion
Asymmetric resilience relies on the CPU for error recov-
ery and exempts the accelerators from heavy resiliency op-
timizations. We show that asymmetric resilience handles
transient errors with extreme efficiency, thanks to the coor-
dinated hardware, compiler and runtime design. Our design
maintains the accelerator’s performance advantages, and also
enables more aggressive energy efficiency optimizations such
as accelerator undervolting. Asymmetric resilience can be
a blueprint for how to scale-out SoC architectures without
compromising system-level reliability.

Acknowledgement
We thank the anonymous reviewers for their constructive feedback that

helped us improve the work. This work was supported by National Key
R&D Program of China (2018YFB1305900), the National Natural Science
Foundation of China (NSFC) grant 61702328, and Alibaba Collaborative
Research Project. The corresponding author Minyi Guo is supported by
NSFC grant 61832006. This research was also developed, in part, with
funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the authors and
should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

10 References

[1] J. L. Hennessy and D. A. Patterson, “A New Golden Age for
Computer Architecture,” Commun. ACM, 2019.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The
MIT Press, 2016.

[3] Google, “Google Self-Driving Car Project,”
https://www.google.com/selfdrivingcar/.

[4] C. T. Brown, “How much compute power do you need for next-gen
sequencing?”
http://ivory.idyll.org/blog/how-much-compute-ngs.html.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[6] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA), 2017.

[7] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin,
“The microarchitecture of a real-time robot motion planning
accelerator,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2016.

[8] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics
co-processor provides up to 15,000x acceleration on long read

12

https://www.google.com/selfdrivingcar/
http://ivory.idyll.org/blog/how-much-compute-ngs.html

assembly,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2018.

[9] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding gpu errors on large-scale hpc systems and
the implications for system design and operation,” in International
Symposium on High Performance Computer Architecture (HPCA),
Feb 2015.

[10] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in 44th IEEE/IFIP International
Conference on Dependable Systems and Networks, 2014.

[11] E. Times, “Tesla’s Kitchen-Sink Approach to AVs,”
https://www.eetimes.com/teslas-kitchen-sink-approach-to-avs/.

[12] D. Kerbyson, A. Vishnu, K. Barker, and A. Hoisie, “Codesign
challenges for exascale systems: Performance, power, and
reliability,” Computer, vol. 44, Nov 2011.

[13] K. Swaminathan, N. Chandramoorthy, C. Cher, R. Bertran,
A. Buyuktosunoglu, and P. Bose, “Bravo: Balanced reliability-aware
voltage optimization,” in International Symposium on High
Performance Computer Architecture (HPCA), 2017.

[14] “International Technology Roadmap For Semiconductor 2013
Edtion,” http://www.itrs.net/Links/2013ITRS/\Summary2013.htm.

[15] M. S. B. Altaf and D. A. Wood, “Logca: A high-level performance
model for hardware accelerators,” in International Symposium on
Computer Architecture (ISCA), 2017.

[16] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Tolerating hardware
device failures in software,” in ACM SIGOPS Symposium on
Operating Systems Principles, 2009.

[17] A. J. Peña, W. Bland, and P. Balaji, “Vocl-ft: introducing techniques
for efficient soft error coprocessor recovery,” in International
Conference for High Performance Computing, Networking, Storage
and Analysis, 2015.

[18] M. de Kruijf and K. Sankaralingam, “Idempotent processor
architecture,” in International Symposium on Microarchitecture.

[19] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “Crum:
Checkpoint-restart support for cuda’s unified memory,” in
International Conference on Cluster Computing (CLUSTER), 2018.

[20] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi, “Checuda: A
checkpoint/restart tool for cuda applications,” in International
Conference on Parallel and Distributed Computing, Applications and
Technologies, 2009.

[21] A. Nukada, H. Takizawa, and S. Matsuoka, “Nvcr: A transparent
checkpoint-restart library for nvidia cuda,” in International
Symposium on Parallel and Distributed Processing, 2011.

[22] H. Takizawa, K. Koyama, K. Sato, K. Komatsu, and H. Kobayashi,
“Checl: Transparent checkpointing and process migration of opencl
applications,” in International Parallel & Distributed Processing
Symposium, 2011.

[23] S. Kannan, N. Farooqui, A. Gavrilovska, and K. Schwan,
“Heterocheckpoint: Efficient checkpointing for accelerator-based
systems,” in International Conference on Dependable Systems and
Networks, 2014.

[24] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Fine-grained fault
tolerance using device checkpoints,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2013.

[25] L. B. Gomez, A. Nukada, N. Maruyama, F. Cappello, and
S. Matsuoka, “Transparent low-overhead checkpoint for
gpu-accelerated clusters,” 2010.

[26] S. Feng, S. Gupta, A. Ansari, S. A. Mahlke, and D. I. August,
“Encore: low-cost, fine-grained transient fault recovery,” in
International Symposium on Microarchitecture, 2011.

[27] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” in ACM Sigplan Notices, 2015.

[28] J. Menon, M. De Kruijf, and K. Sankaralingam, “iGPU: Exception
support and speculative execution on gpus,” in International
Symposium on Computer Architecture, 2012.

[29] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J. Reddi,
“Safe Limits on Voltage Reduction Efficiency in GPUs: a Direct
Measurement Approach,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2015.

[30] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100:
The architecture and design of a database processing unit,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[31] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam, “Shidiannao: Shifting vision processing
closer to the sensor,” in International Symposium on Computer
Architecture, 2015.

[32] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A
Flexible Dataflow Accelerator Architecture for Convolutional Neural
Network,” in 2017 IEEE 23rd International Symposium on High
Performance Computer Architecture (HPCA), 2017.

[33] D. Kuvaiskii, O. Oleksenko, P. Bhatotia, P. Felber, and C. Fetzer,
“Elzar: Triple modular redundancy using intel avx (practical
experience report),” in International Conference on Dependable
Systems and Networks (DSN), 2016.

[34] G. A. Reis, J. Chang, and D. I. August, “Automatic instruction-level
software-only recovery,” IEEE Micro, 2007.

[35] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon,
L. Kaplan, and M. Erez, “Containment domains: A scalable,
efficient, and flexible resilience scheme for exascale systems,” in
International Conference on High Performance Computing,
Networking, Storage and Analysis, 2012.

[36] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neural networks,” IEEE Journal of Solid-State Circuits, 2017.

[37] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border control:
Sandboxing accelerators,” in International Symposium on
Microarchitecture, 2015.

[38] “CUDA Error Types,” https://bit.ly/2Hvk3DK.

[39] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner et al., “Razor: A low-power
pipeline based on circuit-level timing speculation,” in International
Symposium on Microarchitecture, 2003.

[40] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock,
J. A. Tierno, and J. B. Carter, “Active Management of Timing
Guardband to Save Energy in POWER7,” in International
Symposium on Microarchitecture (MICRO), 2011.

[41] K. Bowman, J. Tschanz, S. Lu et al., “A 45 nm Resilient
Microprocessor Core for Dynamic Variation Tolerance,” IEEE
Journal of Solid-State Circuits, 2011.

[42] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge, “A Self-tuning DVS Processor using
Delay-error Detection and Correction,” IEEE Journal of Solid-State
Circuits, 2006.

[43] A. Shye, T. Moseley, V. Reddi, J. Blomstedt, and D. A. Connors,
“Using Process-Level Redundancy to Exploit Multiple Cores for
Transient Fault Tolerance,” in Int. Conf. on Dependable Systems and
Networks, 2007.

[44] N. Madan and R. Balasubramonian, “Power efficient approaches to
redundant multithreading,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, Aug 2007.

[45] R. Vemu and J. A. Abraham, “Ceda: Control-flow error detection
through assertions,” in International Symposium on On-Line Testing,
2006.

[46] N. J. Wang and S. J. Patel, “ReStore: Symptom-Based Soft Error
Detection in Microprocessors,” IEEE Trans. Dependable Secur.
Comput., 2006.

[47] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit: A
dynamic binary instrumentation framework for nvidia gpus,” in
International Symposium on Microarchitecture, 2019.

[48] “The LLVM Compiler Infrastructure,” https://llvm.org.

[49] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2Nd Edition). Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

13

https://www.eetimes.com/teslas-kitchen-sink-approach-to-avs/
https://bit.ly/2Hvk3DK
https://llvm.org

[50] I. Akturk and U. R. Karpuzcu, “Trading computation for
communication: A taxonomy of data recomputation techniques,”
IEEE Transactions on Emerging Topics in Computing, 2019.

[51] K. Bergman, S. Borkar et al., “Exascale computing study:
Technology challenges in achieving exascale systems,” DARPA
Information Processing Techniques Office, Tech. Rep, 2008.

[52] NVIDIA, “GTX 680 Kepler Whitepaper - GeForce,”
http://goo.gl/fyg2z1, 2012.

[53] J. Power, J. Hestness, M. Orr, M. Hill, and D. Wood, “gem5-gpu: A
heterogeneous cpu-gpu simulator,” Computer Architecture Letters,
2014.

[54] AMD, “CMOS AMD’s most advanced APU ever,”
https://goo.gl/W3WwJQ, 2014.

[55] NVIDIA, “CUDA Runtime API,” http://goo.gl/G27upA, 2015.

[56] NVIDIA, “CUDA Profiling Tools Interface,” http://goo.gl/nbAVCf.

[57] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A
dynamic optimization framework for bulk-synchronous applications
in heterogeneous systems,” in 2010 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2010.

[58] N. Corporation, “cuFFT Library,” http://docs.nvidia.com/cuda/cufft/.

[59] “MSI Afterburner,” http://event.msi.com/vga/afterburner.

[60] “memcmp,” http://www.cplusplus.com/reference/cstring/memcmp/.

[61] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in International Symposium on Workload
Characterization, 2009.

[62] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
Int. Symp. on Performance Analysis of Systems and Software, 2009.

[63] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: Balancing efficiency and
flexibility in specialized computing,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, 2013.

[64] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient
accelerator for graph analytics,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Oct 2016.

[65] H. C. Chan, H. J. Lu, and K. K. Wei, “A survey of sql language,”
Journal of Database Management (JDM), vol. 4, 1993.

[66] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[67] Y. Wang, G. Wei, and D. Brooks, “Benchmarking tpu, gpu, and CPU
platforms for deep learning,” CoRR, vol. abs/1907.10701, 2019.

[68] C. Cher, M. S. Gupta, P. Bose, and K. P. Muller, “Understanding soft
error resiliency of blue gene/q compute chip through hardware
proton irradiation and software fault injection,” in International
Conference for High Performance Computing, Networking, Storage
and Analysis, 2014.

[69] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate
on a supercomputer,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, 2016.

[70] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and
S. Gurumurthi, “Feng shui of supercomputer memory positional
effects in dram and sram faults,” in International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013.

[71] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A
large-scale study of soft-errors on gpus in the field,” in International
Symposium on High Performance Computer Architecture, 2016.

[72] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-aware
scheduling on heterogeneous multicore processors,” in 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2017.

[73] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat,
D. Tullsen, and R. Gupta, “Reliability-aware data placement for
heterogeneous memory architecture,” in International Symposium on

High Performance Computer Architecture (HPCA), 2018.

[74] V. Reddi, S. Kanev, S. Campanoni, M. Smith, G. Wei, and D. Brooks,
“Voltage Smoothing: Characterizing and Mitigating Voltage Noise in
Production Processors Using Software-Guided Thread Scheduling,”
in International Symposium on Microarchitecture, 2010.

[75] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L. Bircher,
and M. S. S. Govindan, “Audit: Stress testing the automatic way,” in
International Symposium on Microarchitecture (MICRO), 2012.

[76] R. Bertran, A. Buyuktosunoglu, P. Bose, T. J. Slegel, G. Salem, S. M.
Carey, R. F. Rizzolo, and T. Strach, “Voltage noise in multi-core
processors: Empirical characterization and optimization
opportunities,” in International Symposium on Microarchitecture,
2014.

[77] G. Papadimitriou, M. Kaliorakis, A. Chatzidimitriou, D. Gizopoulos,
P. Lawthers, and S. Das, “Harnessing voltage margins for energy
efficiency in multicore cpus,” in International Symposium on
Microarchitecture, 2017.

[78] J. Leng, Y. Zu, and V. J. Reddi, “Energy efficiency benefits of
reducing the voltage guardband on the kepler gpu architecture,” in
Workshop on Silicon Errors in Logic - System Effects (SELSE), 2014.

[79] T. Miller et al., “VRSync: characterizing and eliminating
synchronization induced voltage emergencies in manycore
processors,” in International Symposium on Computer Architecture,
2012.

[80] J. Leng, Y. Zu, and V. J. Reddi, “GPU voltage noise:
Characterization and hierarchical smoothing of spatial and temporal
voltage noise interference in GPU architectures,” in International
Symposium on High Performance Computer Architecture, 2015.

[81] R. Thomas, K. Barber, N. Sedaghati, L. Zhou, and R. Teodorescu,
“Core tunneling: Variation-aware voltage noise mitigation in GPUs,”
in 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), March 2016.

[82] R. Thomas, N. Sedaghati, and R. Teodorescu, “EmerGPU:
Understanding and mitigating resonance-induced voltage noise in
GPU architectures,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2016.

[83] A. Zou, J. Leng, X. He, Y. Zu, C. D. Gill, V. J. Reddi, and X. Zhang,
“Voltage-stacked gpus: A control theory driven cross-layer solution
for practical voltage stacking in gpus,” in International Symposium
on Microarchitecture, 2018.

[84] A. Bacha and R. Teodorescu, “Dynamic reduction of voltage margins
by leveraging on-chip ECC in itanium II processors,” in International
Symposium on Computer Architecture, 2013.

[85] H. Jeon and M. Annavaram, “Warped-dmr: Light-weight error
detection for gpgpu,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec 2012.

[86] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost,
comprehensive error detection in simple cores,” in International
Symposium on Microarchitecture, 2007.

[87] A. Meixner and D. J. Sorin, “Error detection via online checking of
cache coherence with token coherence signatures,” in International
Symposium on High Performance Computer Architecture, 2007.

[88] S. W. S. Do and M. Dubois, “Core reliability: Leveraging hardware
transactional memory,” Computer Architecture Letters, 2018.

[89] A. Rezaei, G. Coviello, C.-H. Li, S. Chakradhar, and F. Mueller,
“Snapify: Capturing snapshots of offload applications on xeon phi
manycore processors,” in International Symposium on
High-performance Parallel and Distributed Computing, 2014.

[90] D. Pnevmatikatos, S. Tzilis, and I. Sourdis, “The DeSyRe Runtime
Support for Fault-Tolerant Embedded MPSoCs,” in 2014 IEEE
International Symposium on Parallel and Distributed Processing
with Applications, 2014.

[91] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-Directed
Lightweight Checkpointing for Fine-Grained Guaranteed Soft Error
Recovery,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016.

[92] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “ERSA: Error
Resilient System Architecture for probabilistic applications,” in
Design, Automation Test in Europe Conference Exhibition, 2010.

14

http://docs.nvidia.com/cuda/cufft/
http://event.msi.com/vga/afterburner
http://www.cplusplus.com/reference/cstring/memcmp/

