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Asymmetric Resilience for Accelerator-Rich Systems
Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, Vijay Janapa Reddi

Abstract—Accelerators are becoming popular owing to their exceptional performance and power-efficiency. However, researchers are
yet to pay close attention to their reliability—a key challenge as technology scaling makes building reliable systems challenging. A
straightforward solution to make accelerators reliable is to design the accelerator from the ground-up to be reliable by itself. However,
such a myopic view of the system, where each accelerator is designed in isolation, is unsustainable as the number of integrated
accelerators continues to rise in SoCs. To address this challenge, we propose a paradigm called “asymmetric resilience” that avoids
accelerator-specific reliability design. Instead, its core principle is to develop the reliable heterogeneous system around the CPU
architecture. We explain the implications of architecting such a system and the modifications needed in a heterogeneous system to
adopt such an approach. As an example, we demonstrate how to use asymmetric resilience to handle GPU execution errors using the
CPU with minimal overhead. The general principles can be extended to include other accelerators.

Index Terms—Reliability, error recovery, soft errors, voltage noise, accelerator architecture, heterogenous system.
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1 INTRODUCTION

CPU scaling can no longer sustain the demand for
performance and power efficiency owing to the end

of Dennard scaling and the diminishing returns from mi-
croarchitecture enhancements. Therefore, heterogeneous ar-
chitectures, represented by widely adopted GPUs and cus-
tom hardware accelerators are deemed to be the solution.
They provide continued performance and power efficiency
improvements beyond the general purpose CPU.

Although heterogeneous architectures provide perfor-
mance and power efficiency benefits, we must first and fore-
most address their reliability before integrating them into
our system. Taking the GPU as an example, prior work [1]
has shown that the its MTBF (mean time between failures)
is almost eight times lower than the CPU’s in a large-scale
system. So it is of crucial importance that we devise novel
techniques to maintain system reliability in the new era of
heterogeneous systems. Hence, simultaneously optimizing
the performance, efficiency, and reliability is important.

It is difficult to directly extend prior error recovery work
to accelerators because they either incur large overhead or
rely on CPU-specific features. Meanwhile, accelerator archi-
tectures are often distinctive, which makes their reliability
optimization even more difficult. Facing those challenges,
we propose a paradigm called asymmetric resilience shown
in Fig. 1 to ensure the reliability of heterogeneous systems
in the presence of transient accelerator execution errors.
Asymmetric resilience treats the accelerator task as a whole
for reliability assurance. It extends the previously exploited
idempotency property of a code region [2] to an accelerator
task to maximize the efficiency. The extended property only
uses the CPU-accelerator interface information and there-
fore generalizes well to different accelerators.
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Figure 1: Asymmetric resilience overview. It ensures the sys-
tem’s reliability using the most resilient component.

In this work, we demonstrate the efficiency of asymmet-
ric resilience on the GPU as an accelerator example. Specif-
ically, we leverage hardware/software co-design to imple-
ment the principles of asymmetric resilience. Through our
study, we observe that most kernels have simple transaction-
like control interface with well-defined input/output. As
such, asymmetric resilience can eliminate the checkpoint
overhead for the input and output memory by using mem-
ory protection mechanism and re-executing the kernel, re-
spectively. We design a runtime system prototype that uses
the CPU to recover from GPU voltage noise error and soft
error, and demonstrate its negligible overhead.

Finally, we extend the scope of the work to discuss how
asymmetric resilience can be applied to different types of
accelerators. We demosntrate that asymmetric resilience can
relax the resiliency requirement of accelerators as it ensures
the system reliability centering around the CPU architec-
ture, which allows designers to focus on the accelerators’
performance or power efficiency optimizations.

2 ASYMMETRIC RESILIENCE

We start by explaining asymmetric resilience. In a traditional
system, all components, i.e., the CPU and the accelerators,
are expected to have the same resiliency level. They are all
expected to detect and recover from an error, by themselves.
The shortcoming of this approach is that it burdens both the
CPU and accelerators to deal with reliability in isolation, not
understanding the context of the system as a whole.

In contrast, the asymmetric resilience design paradigm
introduces the notion of resiliency domains to separate error
detection from error recovery. Resilient domains in our work
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Figure 2: Accelerator error recovery using CPU. (a) Error-free execution and CPU checkpointing. (b) CPU performs error recovery
when an error occurs inside an accelerator task, considering dependencies between the tasks.

also adopt the similar semantics as in prior containment
domain [3]. Specifically, failures in a resilient domain are
contained within the domain and cannot corrupt the states
in the other resilient domain.

In addition, resilient domains can have a strong or weak
resiliency level, which leads to a strong resilient domain
and a weak resilient domain in Fig. 1. The strong resilient
domain requires both error correction and recovery, while
the weak resilient domain requires only error detection. It
is natural to deploy the accelerators in the weak resilient
domain and the CPU in the strong resilient domain. The
resiliency separation and error containment allow for more
holistic, big picture level optimizations, rather than siloed
optimizations at the individual hardware accelerator level.

A method to recover from errors in the strong domain
is to checkpoint and restart. So, we consider the commonly
adopted checkpoint and restart scheme for implementing
asymmetric resilience. The most straightforward implemen-
tation is to periodically create checkpoint for accelerator
data [4], [5]. In the context of accelerator errors, it requires
checkpointing for tasks even when no error occurs as shown
in Fig. 2a. However, the resulting checkpoint overhead can
be enormous (see Sec. 5), which defeats the purpose of
adopting accelerators. Tbl. 1 summarizes why checkpoint
and restart is not a good fit for accelerator-rich systems.

Prior work [2] has leveraged the idempotency to remove
the checkpoint overhead. A code region is idempotent if its
multiple executions lead to the same effect. As such, recov-
ering from a transient error in an idempotent region simply
requires re-execution. However, it is difficult to extend this
line of work for accelerators. First, prior work assumed a
strong fault model where a transient error is detected before
corrupting the memory state. Such a strong fault model is
based on CPU’s speculation feature and feasibility of control
flow signature, but are likely to be absent in accelerators.
Second, most prior CPU-centric work relied on the dataflow
or pointer analysis where programs are expressed in the
form of sequential instructions. Applying them to non-Von
Neumann architecture based accelerators is challenging.

Facing these obstacles, we extend the idempotency prop-
erty to the entire task for overhead reduction. This property
of a task, dubbed as task-level idempotency, is only deter-
mined by the information of memory region that it reads
from (input memory region) and writes to (output memory
region). We consider the example of a convolutional layer
accelerator, which takes two input memory regions (for
weight and input feature map) and stores the output feature

Category Fault Model CPU-specific?
Epoch-based checkpoint [4], [5] Weak No
Instruction sequence idempotency [2] Strong Yes
Task-level idempotency (asymmetric resilience) Weak No

Table 1: Checkpoint and restart (CPR) work comparison.

map in another memory region. Recovering from transient
error in the task requires no checkpoint as we can protect the
input memory regions in the read-only mode and reissue
the task to restore the output memory region. The extended
property is not restricted to Von Neumann execution model
and assumes a more general fault model: an error can
corrupt the entire memory address space.

To facilitate the analysis process, we categorize the mem-
ory regions that are used by a task into input, full output, par-
tial output, and input/output memory. Tbl. 2 gives the detailed
description. For instance, a memory region for accumula-
tion belongs to the input/output memory, which violates
the task-level idempotency. The partial output means that
the task only modifies a subset in the memory region. In
this case, an error may corrupt one byte that a correct re-
execution does not write (e.g., the histogram calculation
where not all bins will be written). Both the input/output
and partial output memory require checkpoint.

Further more, we leverage recomputation to reduce the
extent of checkpoint requirement in asymmetric resilience,
specifically for the input/output and partial output mem-
ory. We observe that accelerator tasks usually form a de-
pendency chain. Consider an example of the three tasks in
Fig. 2b. The first task has an output region used by the third
task as the input/output memory. We can skip the check-
point for the third task as we can recover it by re-executing
the first task. In order to perform such optimizations, the
CPU needs to track the dependency among different tasks.

In the following sections, we introduce a set of
architecture-runtime co-designed mechanisms to implement
asymmetric resilience. At the architecture layer, the mem-
ory subsystem provides isolation and memory protection
features. The runtime system running on the CPU uses
the task-level idempotency with the proposed interface-
level categorization framework for checkpoint manage-
ment. In addition, the runtime can also track the depen-
dency between kernels to optimize the checkpoint process.
We demonstrate that those co-designed mechanisms can
achieve reliability assurance with minimum overhead.

3 ARCHITECTURAL SUPPORT

Our work uses the GPU as the exemplary accelerator to
implement and explore asymmetric resilience. We discuss
other accelerators in Sec. 6. In this context, the architectural

Memory Type Description Permission
Input Memory region used as input to the kernel Read
Full output Memory region that the kernel fully writes to Read
Partial output Memory region that the kernel partially writes to &
Input/output Used as input and output to the kernel Write
Other legal Allocated but unused by the kernel Read
Illegal Unallocated and unaccessible memory region X

Table 2: Categorization of the memory address space.
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Figure 3: Taxonomy of the different memory subsystems.

components to implement asymmetric resilience include
CPU, GPU, and memory subsystem. We focus on the last
two components since all the required supports from the
CPU are provided by the runtime software.

Augmented Memory Subsystem The memory subsys-
tem provides the protection support, which allows the run-
time to set appropriate read/write permission for different
memory regions to minimize the checkpoint overhead. We
categorize the memory subsystem in today’s heterogeneous
processors into two types, discrete memory in Fig. 3a and
integrated memory in Fig. 3b. Our work focuses on the
discrete memory, which requires almost no modification.

We explain how the discrete memory naturally provides
the required support, using the example of NVIDIA’s dis-
crete CPU-GPU system. First, a GPU kernel cannot directly
access the CPU memory (unless using special programming
construct or system support) such that its errors cannot
corrupt the CPU memory. Second, in the discrete system,
the CPU allocates and manages the GPU memory. As such,
some portion of GPU memory naturally has a copy on the
CPU side. The system can use the copy as a checkpoint,
which is equivalent to leveraging memory protection.

Although most high-end GPUs are discrete, the in-
tegrated paradigm in Fig. 3b has performance and pro-
grammability advantages, which we expect to become more
widely adopted in the future. To augment it with the mem-
ory isolation and protection support, we need to enhance
the memory management unit (MMU) to check read/write
permission for every memory access from the accelerator.
The permission control can be exposed to programmer via
system call like mprotect. The access control unit sits between
the accelerator and memory subsystem in Fig. 3b. One effi-
cient design was provided by prior work Border Control [6],
which we plan to adopt in the future work.

GPU Error Detection GPUs or other accelerators can
borrow CPU-centric error detection techniques because of
the identical underlying physical causes for errors. In fact,
current high-end GPUs already deploy error correction
codes (ECC) for detecting soft errors in register files and
caches. However, current GPUs do not perform error recov-
ery for uncorrectable errors. The GPU deems its current state
as corrupted, destroys its context, and raises an exception to
the CPU [7]. In contrast, we design a more efficient CPU
based recovery solution. We choose the GPU kernel as the
error detection and recovery unit as it is the smallest control
unit by the CPU. Note that asymmetric resilience relaxes the
requirement on error detection: the error just needs to be
caught before the CPU accesses the data.

4 RUNTIME MANAGEMENT
Leveraging the architectural support, the runtime manages
the checkpoint based on the task (i.e. kernel)-level idempo-
tency property. It also tracks kernel dependency to minimize
the overhead in the error-free situation, which is the typical
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Figure 4: Checkpoint examples. The input, output, and
input/output memory are noted as I, O, and I/O.

operation mode as an error event rarely happens. Those
optimizations significantly improve the system efficiency.

Checkpoint Management The runtime system manages
the checkpoint for each kernel using its memory address in-
formation. As described in Tbl. 2, we categorize the memory
regions of each kernel into different regions. In our current
design, we manually annotate the source codes with each
kernel’s memory region. We are working on a feasible static
compiler pass to automatically determine and annotate that
information, with less complexity than prior work [2].

The runtime leverages the task-level idempotency to
minimize the checkpoint overhead. It only grants write
permission to the output memory (including full, partial,
and input/output), leaving all other memory in the read-
only mode. Since the full output memory can be restored by
re-execution, only input/output and partial output memory
require checkpoint. In our experiment, we find that kernels
typically lack such memory regions, and therefore they do
not require any checkpoint overhead.

Dependency Tracking The runtime is also capable of
tracking the dependency relationship between kernels so
that it can eliminate the checkpoint via re-computation.
Specifically, it maintains a relaunch set for each kernel, which
it needs to relaunch for the kernel’s error recovery. Examples
in Fig. 4 summarize the key points. The erroneous kernel in
the first example in Fig. 4 has no input/output memory
(noted as I/O) as such its relaunch set is itself. The second
example has I/O memory that requires checkpoint, so its
relaunch set includes checkpoint restoration and itself. The
third example activates the kernel cohesion technique that
removes the checkpoint requirement of mem2. As a result,
the runtime needs to relaunch the additional kernel-2.

5 EVALUATION
We perform a comprehensive evaluation of asymmetric
resilience in different aspects. We first emphasize its perfor-
mance during the error-free execution. We then show that
it can also recover from errors with reasonable overhead in
most cases. For some cases with high error recovery cost, we
evaluate the effectiveness of our mitigation optimizations.

Experimental Setup Because we do not have access to
any error checking capability in the used GPUs, we rely on
dual module redundancy (DMR) for GPU error detection.
We prototype our design in a dual-GPU system where we
use one GTX 780 as the primary GPU, and one GTX 680
as the shadow GPU for DMR. We use CUDA 7.0 and the
CUPTI library to overcome the closed sourced CUDA APIs,
which provides instrumentation features for implementing
asymmetric resilience runtime. We study a set of 32 pro-
grams from the CUDA SDK. These programs have diverse
performance characteristics, which help us make insightful
observations and comprehensively evaluate our system.

Error Injection We study two types of GPU transient
errors. The first type is the voltage noise errors [8] which
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Figure 5: Error free and recovery overhead comparison.

we “inject” by operating the chip just below the Vmin. The
second type is the soft error which we inject using the
instrumentation tool. We inject errors to a kernel’s input,
output, input/output, and legal & illegal addresses mem-
ory, which gives good coverage of possible failures points,
thereby allowing us to test our runtime’s efficacy because
the failure point impacts the system behavior.

Error Free We evaluate the error-free execution overhead
under three different checkpointing scenarios, as shown in
Fig. 5a. They differ by which memory requires checkpoint
and where to store the checkpoint. The first two scenarios
take a checkpoint of the entire GPU memory space, but
the checkpoint is stored in the OS file system (File) or CPU
memory (CPU Mem). The second (first) case assumes that the
CPU memory is (not) safe from GPU errors.

Fig. 5a compares different scenarios’ checkpoint over-
head, collected from our discrete GPU setup. We show the
names of programs dct8x8, eigenvalues, and fastWalshTransform
that have kernels with I/O memory. Other regular programs
with no I/O memory are grouped in the Others category. The
geometric means for the four scenarios are 162%, 38%, 30%,
and 0.76%, respectively. The significant checkpoint overhead
defeats the purpose of introducing accelerators. The result
highlights that asymmetric resilience achieves near-zero
error-free execution overhead through co-design.

Error Recovery We evaluate the runtime’s error recovery
overhead. We only show the cost of relaunching the erro-
neous kernel and extra dependent kernels in asymmetric
resilience because the checkpoint overhead dominates in all
other cases. The ‘U’ bar in Fig. 5b represents the results of
undervolting while the following three bars represent the
soft error results with different probabilities. The y-axis in
the plot indicates the overall execution that is normalized
to the error-free execution. Most programs do not rely
on kernel cohesion, and therefore their recovery overhead
increases linearly with the error rate.

Only the three labeled programs on the x-axis activate
the kernel cohesion and relaunch extra kernels. The re-
launched extra kernels form a dependency chain (e.g., the
third example of Fig. 4), whose length determines the recov-
ery cost. The overhead in dct8x8 is small owing to its short
dependency chain while the other two programs have very
high recovery overhead because of the long dependency
chain. We plan to apply further optimization, which makes
a checkpoint if the kernel dependency chain length exceeds
a threshold, to reduce the kernel relaunching cost.

6 OTHER ACCELERATORS & CONCLUSION

We discuss how asymmetric resilience is a natural reliability
optimization for emerging accelerators that extend beyond

Domain Accelerator Idempotency?

Algebra Convolution Engine [9] Yes

Neural network inference
Diannao [10] Yes
FlexFlow [11] Yes

Robotics Motion Planning [12] Yes
Neural network training PipeLayer [13] No

Graph Analytics Graphicionado [14] No

Table 3: Different accelerator’s relaunch characteristics.

the GPU. Asymmetric resilience uses the idempotency prop-
erty of the entire accelerator task to simplify the workflow.
To understand this, we surveyed new accelerators, ranging
from basic algebra to neural networks to graph analytics.
Tbl. 3 shows that the vast majority of surveyed accelerators
are idempotent, which we can naturally support. For the
non-idempotent neural network training and graph ana-
lytics accelerators, the network weights and graph edges
are used as both input and output. Thus, our insights
from optimizing non-idempotent kernels can be directly ap-
plied. In addition, the dependency among those accelerator
computations can also impact how to deploy asymmetric
resilience efficiently. We leave this study for future work.

Asymmetric resilience is a generic design for coping
with transient errors in accelerators. As the industry moves
more toward more heterogeneous architectures, we must
rethink how to achieve scalable, efficient error recovery
mechanisms. We take a step in that direction and show how
we can deliver efficient error recovery by centering around
the relaunch characteristics of an accelerator.
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