
GPUVolt: Modeling and Characterizing

Voltage Noise in GPU Architectures

Jingwen Leng

1
, Yazhou Zu

1
, Minsoo Rhu

1
, Meeta S. Gupta

2
, Vijay Janapa Reddi

1

1
The University of Texas at Austin,

2
IBM T.J. Watson

ABSTRACT
Voltage noise is a major obstacle in improving processor en-
ergy e�ciency because it necessitates large operating volt-
age guardbands that increase overall power consumption and
limit peak performance. Identifying the leading root causes
of voltage noise is essential to minimize the unnecessary
guardband and maximize the overall energy e�ciency. We
provide the first-ever modeling and characterization of volt-
age noise in GPUs based on a new simulation infrastructure
called GPUVolt . Using it, we identify the key intracore mi-
croarchitectural components (e.g., the register file and spe-
cial functional units) that significantly impact the GPU’s
voltage noise. We also demonstrate that intercore-aligned
microarchitectural activity detrimentally impacts the chip-
wide worst-case voltage droops. On the basis of these find-
ings, we propose a combined register-file and execution-unit
throttling mechanism that smooths GPU voltage noise and
reduces the guardband requirement by as much as 29%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Re-
liability, availability, and serviceability

Keywords
di/dt, inductive noise, GPU architecture, GPU reliability

1. INTRODUCTION
Voltage guardbands [1–3] have been a long-standing and

established mechanism to ensure robust execution. By rais-
ing the voltage regulator’s output from its nominal operat-
ing voltage (e.g., 20% in IBM POWER6 [4]), the processor
can meet its frequency target under the worst-case operating
conditions such as process, temperature and voltage varia-
tions, and aging. However, an over-provisioned guardband
consumes additional power and limits peak performance [5].

Prior measurement results show that throttling the pro-
cessor’s frequency and voltage according to its runtime activ-
ity can reduce power consumption by 24% on average with-
out violating program correctness [3], simply because worst-
case conditions occur rarely in the real world [6]. On the
basis of such insightful characterization, several throttling
mechanisms have been proposed that intelligently mitigate

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ISLPED’14, August 11–13, 2014, La Jolla, CA, USA

Copyright 2014 ACM 978-1-4503-2975-0/14/08$15.00.

http://dx.doi.org/10.1145/2627369.2627605.

the worst-case voltage guardband requirement [1–3,6–8]. A
majority of these studies concluded that current resonance
and surge (e.g., the L

di
dt e↵ect caused by quick increases

in microarchitectural activities after pipeline stalls) are the
major causes of voltage noise in CPUs [6, 8].

No such prior work exists for GPUs, even though measure-
ments of GPU’s voltage guardband in prior work indicate
that they can be as large as the CPUs’ [9]. A fundamental
reason is the lack of infrastructure support along with crit-
ical insights. Thus, the goals of this paper are to provide
a platform to support new work and to demonstrate criti-
cal insights that uniquely pertain to the GPU. Architectural
di↵erences between CPUs and GPUs motivate us to conduct
such a study. For instance, a GPU has a much larger register
file, supports thousands of threads, and has a large number
of cores. Such di↵erences alter the root causes of voltage
noise in a GPU architecture versus a CPU architecture.

We provide the first detailed modeling of GPU voltage
noise, and a quantitative characterization of voltage droops’
leading causes. First, we propose GPUVolt, a new GPU-
specific voltage simulation framework that models the GPU
on-die voltage noise behavior accurately. It is based on prior
work [10], and has 0.9 correlation with hardware measure-
ments. GPUVolt is integrated with GPGPU-Sim [11] and
GPUWattch [12], which are robustly validated GPU perfor-
mance and power simulators, respectively. GPUVolt adds a
new dimension that allows researchers to perform di↵erent
types of trade-o↵ studies between the GPU’s performance,
power, and reliability (i.e., the voltage guardband).

Second, we perform an in-depth analysis of voltage droops
for both single-core and chip-wide GPU-specific microarchi-
tectural activities. We demonstrate that the root causes of
large voltage droops in the GPU architecture are global syn-
chronous activity across multiple cores at the second-order
droop frequency, and core-level register file activity at the
first-order droop frequency. The global synchronous activity
is caused by activity occurring in specific microarchitectural
units, such as special functions and floating-point units.

Third, we propose a throttling mechanism to reduce the
GPU’s worst-case voltage guardband. Our mechanism, which
throttles the register-file and functional units, reduces the
guardband by up to 29%. The key contribution, however, is
the identification of voltage noise root causes and the ability
to throttle them e↵ectively with minimal performance loss.

The paper is organized as follows: Sec. 2 describes the
GPUVolt modeling methodology. Sec. 3 focuses on the in-
depth characterization of GPU voltage noise root causes,
both at the individual core level and chip-wide activity.
Sec. 4 demonstrates a use case of GPUVolt, discussing the
register-file and functional-unit throttling mechanism that
targets GPU-specific voltage droops root causes. Sec. 5 dis-
cusses the related work. We conclude the paper in Sec. 6.

GPGPU-Sim

Microarchitecture
Parameters

GPUWattchuArch Activities

Per-core
Power trace

PCB & Package
Characteristics

PDN-to-Layout
Mapping

Per-Core
Grid points

Circuit Simulator

On-die Voltage
Variation Profile

GPUVolt

Feedback Directed Optimization
(Register File & Functional Unit Throttling)

GPU
Program

Microarchitecture
Parameters

Circuit Implementation &
 Technology Parameters

Fig. 1: An integrated and configurable voltage-noise simu-
lation framework for the GPU many-core architecture.

2. GPU VOLTAGE-NOISE MODELING
In this section, we describe the voltage noise modeling

methodology of GPUVolt. We start by providing an overview
of the necessary co-simulation infrastructure, with which
GPUVolt is tightly integrated to create a robust and flexible
voltage noise simulation framework. Next, we provide the
description of the voltage noise modeling methodology, with
the details of important components. Finally, we validate
GPUVolt against hardware measurements, showing that it
has a strong 0.9 correlation across a range of applications.

2.1 Simulation Framework Overview
GPUVolt simulates the voltage noise behavior by calculat-

ing the time domain response of the power (voltage) delivery
model under current input profiles of each core (Fig. 1). We
use GPUWattch [12], a cycle-level GPU power simulator, to
approximate the current variation profile of each GPU core
under a certain supply voltage level. GPUWattch takes the
microarchitectural activity statistics from GPGPU-Sim [11],
a cycle-level performance simulator, and calculates the power
consumption of each microarchitectural component.

We assume the widely established GTX 480 architecture
for our study. We tested and evaluated the accuracy of both
GPGPU-Sim and GPUWattch for this architecture. Both
tools simulate the architecture with high accuracy. GPGPU-
Sim has a strong 97% correlation with the hardware, whereas
GPUWattch has a modest 10% modeling error.

We omit a table listing all the simulated architecture de-
tails because of space constraints, and also because we do not
modify the architecture’s default configuration. But, briefly,
the GTX 480 architecture consists of many cores that are
called streaming multiprocessors (SMs) in NVIDIA terms.
The GTX 480 has 15 such SMs. Each SM contains a 64 KB
L1 cache/scratchpad, and all SMs share a large 768 KB L2
cache that is backed by six high-bandwidth memory chan-
nels. In addition, each SM has a large 131 KB register file
and a set of SIMD pipelines to support the execution of a
large number of logically independent scalar threads.

2.2 Modeling Methodology
GPUVolt’s power delivery model consists of three parts

(Fig. 3a): the printed circuit board (PCB), the package, and

the on-die power delivery network (PDN). We abstract the
PCB and package circuit characteristics into a lumped model
for simplicity; whereas for the most important component,
on-die PDN, we use a distributed model that can capture
the on-die voltage fluctuations accurately across the chip. A
distributed model can reflect both intra-SM voltage noise as
well as inter-SM voltage noise interference [10].

Accurately modeling the GTX 480’s PDN characteris-
tics is challenging because there is no public information
on its actual PDN design. Therefore, we derive our ini-
tial model from the original Pentium 4 model developed by
Gupta et al. [10]. However, we scale its PDN parameters in
accordance to the GPU’s peak thermal design power (TDP),
because designers must design the PDN to match the tar-
get processor architecture’s peak current draw [1, 2]. The
GTX 480 has a high TDP of over 200 W, whereas the Pen-
tium 4 model has a TDP of only 60-70 W [10]. Because
high-performance processor package impedance is no longer
scaling linearly [2], we only scale GPUVolt’s grid parameters
by 2⇥ (compared to the 4⇥ TDP ratio between two proces-
sors). The parameters and their values are shown in Fig. 3a.
Other scaling values (e.g., 1.5⇥ and 3⇥) are also possible,
which simply result in di↵erent PDN characteristics. Thus,
they are in fact valid configurations in GPUVolt (Sec. 2.3).

We lay out the SMs, L2 caches, network on chip (NoC),
and memory controllers into the PDN grid based on publicly
available die photos of GTX 480 (Fig. 3b); the die photos
show an aspect ratio of each SM not being 1, so we use 2⇥3
grid points to model each SM (Fig. 3c) and 4⇥6 grid points
to model the L2 cache, NoC, and memory controllers.

We do not model the intra-SM floorplan in detail, for two
main reasons. First, the goal of GPUVolt is to focus on
inter-SM voltage variations and to study such variations’
impact on other SMs in the many-core GPU architecture
with a shared-PDN; the intra-SM variations are relatively
small, and therefore adding more detail does not necessarily
provide additional insights at the chip level. Second, there
is no publicly available intra-SM floorplan information for
any of the contemporary GPU architectures. However, it is
entirely feasible to extend GPUVolt with intra-SM floorplan
details. We leave this as future work.

Fig. 2 justifies our grid point allocation scheme (i.e., 2⇥3
grid points for each SM and 4⇥6 grid points for the rest). It
captures the trade-o↵ between simulation accuracy and sim-
ulation speed as the number of total on-chip PDN grid points
varies. We inspect the peak intra-die voltage variation under
maximum SM current variation, which reflects the highest

100

50

0

Pe
ak

 In
tra

-d
ie

 V
ol

ta
ge

 V
ar

ia
tio

n
(m

V)

1x
1

2x
2

3x
3

4x
4

6x
6

12
x1

2
24

x2
4

 Grid Points

Used for GTX 480:
2x3 points per SM

 15 SM
 8 SM
 4 SM

(a) Simulation accuracy.

100

101

102

103

104

105

Si
m

ul
at

io
n

Ti
m

e
(S

)

1x
1

2x
2

3x
3

4x
4

6x
6

12
x1

2
24

x2
4

Grid Points

 15 SM
 8 SM
 4 SM

(b) Simulation speed.

Fig. 2: GPUVolt’s simulation accuracy versus speed trade-
o↵ (without GPGPU-Sim and GPUWattch overheads).

·

`

R pcb,s
0.1mΩ

R pcb,s L pcb,s
21pH

R pkg,s
0.55mΩ

L pkg,s

R pkg,s L pkg,s
60pH

C pcb
240µF

R pkg,p

L pkg,p
2.8 pH
C pkg
52µF

R pcb,p
0.27mΩ

L bumP
0.36pH

R bump
20mΩ

PCB Package

On-Chip GridsL pcb,s

(a) Overview of the power delivery model.

L2 $, NoC, Memory Controller

SM1 SM2 SM3 SM4
SM5 SM6 SM7 SM8

SM9 SM11 SM12
SM14 SM15SM13

SM10

(b) On-chip model to GPU mapping.

SM

C bulk
1.3µF

R grid
25mΩ

L grid
2.91 fH

(c) PDN mapping at the SM level.

Fig. 3: Simulated voltage model in GPUVolt. (a) Global view of the power delivery model, including PCB, package, and
on-chip PDN. (b) Mapping between the on-chip model and the GPU layout. (c) The on-chip PDN model for each SM.

voltage minus the lowest voltage on the die at the same cy-
cle. In e↵ect, it lets us quantify the impact of voltage noise
on one core in response to another core’s activity, which may
be adjacent or located elsewhere on the chip. If we assume a
lumped model with a single grid point, the intra-die voltage
variation in Fig. 2a is nonobservable, which can lead to in-
correct conclusions. However, the model begins to capture
peak intra-die voltage variation as the grid size increases.
With a total of 12⇥12 (144) grid points, we can achieve a
reasonable balance between simulation accuracy and simu-
lation time. The peak intra-die variation starts saturating
as the grid size exceeds our choice while the simulation time
continues to increase (Fig. 2b).

Fig. 2 also shows how the intra-die variation magnitude
varies with the number of GPU SMs. We show this primarily
to emphasize configurability of our modeling methodology.
GPUVolt can readily support a varying number of SMs, de-
pending on the assumption of the target architecture.

2.3 Model Validation
We validate GPUVolt by first showing the impedance ver-

sus frequency profile of our PDN, which establishes consis-
tency with prior modeling work. Fig. 4 shows the impedance
profile, extracted using GPUVolt’s modeled PDN. As ex-
pected, the impedance profile shows two peak values due to
the RLC e↵ects of the PDN. Among the two peak values,
the higher peak corresponds to voltage droops that occur at
the order of tens of cycles, which is commonly referred to
as the first-order droop (around 100 MHz). The lower peak
impedance corresponds to voltage droops that occur at the
order of hundreds of cycles, known as second-order droop
(around 1 MHz). Our results are in line with previous stud-
ies [10, 13] and validate GPUVolt’s PDN modeling method-
ology. We include other scaling factor results to demonstrate
the ability to correctly model cheaper (i.e., high impedance)
or costlier (i.e., low impedance) PDNs.

To further validate the PDN, we compare it against mea-
surement results. Ideally, one would measure and compare
the hardware’s impedance-frequency profile with that of the
simulator. Unfortunately, we do not have access to the re-
quired hardware V sense pins [14]. Therefore, we perform a
best-e↵ort validation of GPUVolt by comparing the simu-
lated worst-case voltage droops against the critical voltage
measured on real hardware, using a variety of GPU applica-
tions. We measure an application’s critical voltage by pro-
gressively reducing the GTX 480’s supply voltage until the
application crashes (i.e., produces a segmentation fault or
wrong output compared to the reference run at nominal volt-

age). We decrement the processor’s supply voltage from its
default value (1.063 V, 700 MHz) in 10 mV steps, checking
the program’s correctness after each step. The first volt-
age at which the application produces an incorrect result is
recorded as its critical voltage.

For robust validation, we use applications from a diverse
set of benchmark suites, with a large range of worst-case
voltage droops. The application set includes five large pro-
grams from the CUDA SDK: BlackScholes (BLS), convo-
lutionSeparable (CVLS), convolutionTexture (CVLS), dct8x8
(DCT), and binomialOptions (BO); seven from Rodinia [15]:
BACKP, KMN, SSSP, NNC, CFD, MGST, and NDL; and the
DMR program from LoneStarGPU [16]. The worst-case droop
ranges from 5% to 12%. Because of measurement limita-
tions, we can only validate the whole program’s worst-case
droop, although kernel-level droops can be analyzed (Sec. 3).

Fig. 5 shows the correlation between the measured critical
voltage and simulated worst-case voltage droop. GPUVolt
faithfully captures the expected critical voltage behavior.
As explained previously, programs with a high measured
critical voltage would show a large simulated voltage droop,
and vice versa. The Pearson’s correlation between the two
parameters is 0.9 assuming the default 2⇥ scaling factor for
the GTX 480 architecture for the 13 applications minus the
four outliers. Thus, we conclude the GPUVolt’s modeling
methodology achieves reasonable modeling accuracy.

3. GPU VOLTAGE-NOISE ANALYSIS
We use GPUVolt to characterize GPU voltage noise at

the kernel, SM component, and global inter-SM interference
level. Our analysis reveals that large voltage droops occur
rarely in the GPU, and as such the GPU voltage guardband

4

3

2

1

0

Im
pe

da
nc

e
(m

O
hm

)

1
2 4 6

10
2 4 6

100
2 4 6

1000
Frequency (MHz)

 Scale 1.5x
 2x (Default for GTX 480)
 3x

First
order
droop

Second
order
droop

Fig. 4: Our PDN model’s
impedance-frequency profile.

20

10

0

Si
m

ul
at

ed
 D

ro
op

 (%
)

1.00.90.8
Measured Critical Voltage (V)

Studied
 Benchmarks

Fig. 5: Simulated droop ver-
sus measured critical voltage.

Fig. 6: Cumulative distribution of voltage droops: each line
represents the CDF of a kernel. The typical droop is about
6%. The inset plot zooms into the tail portion.

is overprovisioned. Although this insight has been observed
in CPUs, we are the first to report such analysis on GPUs.

The di↵erences between the typical- and worst-case droop
motivate us to understand the GPU’s voltage-noise root
causes. It is important to understand the root causes in
order to mitigate them successfully. We focus mainly on
characterizing the worst-case voltage droop of the architec-
ture components and their power consumption levels, be-
cause the first step is to uncover the key microarchitectural
components that are responsible for the large voltage droops.

We show that key microarchitecture components, such as
the large register file and SIMD functional units, are the
main contributors of voltage droops in the GPU architec-
ture. Furthermore, we show that functional units’ activity
at the intra-SM level when in synchronization with other
SMs’ functional units’ activity can lead to global current
surge, causing large chip-wide voltage droops.

3.1 Kernel-Level Voltage Droop
To understand the typical voltage noise profile on GPUs,

we gathered the voltage traces of all the programs mentioned
in Sec. 2.3. Fig. 6 shows a cumulative distribution profile
of the voltage droops for the di↵erent GPU programs. Each
GPU program consists of one or more kernels, where a kernel
is defined as a single unit of execution. Di↵erent kernels
in the same program may have di↵erent droop behaviors.
Thus, we plot each distinct program kernel execution as a
line in Fig. 6. We analyze the data from over 200 kernels
executed across all the programs.

We observe that the vast majority of the voltage samples
(over 99.9% of the time) are greater than 0.94 V. We refer to
these droops as the typical voltage droops, which are half the
magnitude of the worst-case droop (i.e., 0.88 V) indicated by
the zoomed-in tail portion. The large voltage droops rarely
occur, with a cumulative frequency that is less than 0.02%.

It is also important to note that both typical- and worst-
case voltage droop behaviors are strongly program or kernel
dependent. On one hand, the lines in Fig. 6 are not overlap-
ping, which indicates that the typical droop behavior varies
across the programs and their kernels. On the other hand,
as the inset plot shows, the worst-case droop of some kernels
is as small as 5% (i.e, 0.95 V), whereas the worst-case droop
of other kernels is as large as 12% (i.e, 0.88 V).

Understanding the di↵erences between the typical- and
worst-case droop requires us to understand how runtime pro-
gram behavior impacts component current variation, as well
as the intra- and inter-SM voltage droop. To draw general
and broad conclusions, from here on in this section we only
focus on aggregate kernel behavior across all the programs.

8

6

4

2

0Po
w

er
 V

ar
ia

tio
n

(W
)

2 4 8 16 32

 Instruction
 Fecth & Decode

 Instruction $

8

6

4

2

0Po
w

er
 V

ar
ia

tio
n

(W
)

2 4 8 16 32
Interval Size

FPU
ALU

8

6

4

2

0Po
w

er
 V

ar
ia

tio
n

(W
)

2 4 8 16 32
Interval Size

SFU
8

6

4

2

0Po
w

er
 V

ar
ia

tio
n

(W
)

2 4 8 16 32
Interval Size

Register
Files

8

6

4

2

0Po
w

er
 V

ar
ia

tio
n

(W
)

2 4 8 16 32

 Texture $
 Constant $

8

6

4

2

0Po
w

er
 V

ar
ia

tio
n

(W
)

2 4 8 16 32

Data $
Shared

 Memory

Fig. 7: The power variation for all the major GPU com-
ponents over several di↵erent interval sizes, ranging from 2
cycles to 32 cycles (only consider power increase).

3.2 Component Current Variation
We want to identify the voltage noise root causes in GPU

architectures. The first step is to characterize each com-
ponent’s contribution to the total L di

dt e↵ect. We approxi-
mate each microarchitectural component’s per-cycle current
draw using the per-cycle power consumption results from
GPUWattch [12]. A large power variation in a short time
period would lead to a large voltage droop.

We quantify the power varying “speed” of each compo-
nent by recording its peak power variation within a timing
interval. Using various interval lengths of size N , we capture
the peak current draw characteristics of the di↵erent compo-
nents accurately. We sweep N over 2, 4, 8, 16, and 32 cycles,
enough to cover the first-order droop impedance (Fig. 4).
We find that power variation plateaus for all components
with a time scope larger than 32 cycles; therefore, we do not
increase N beyond 32. The microarchitecture components
include front-end (i.e., fetch and decode); various on-chip
caches (i.e., texture, constant, and data); shared memory;
register file; and integer, floating-point, and special-function
units (ALU/FPU/SFU). The list is comprehensive and in-
cludes all the major components.

Fig. 7 shows the characterization results. We make three
important observations. First, power variation of the front-
end and various caches is stable and low across di↵erent in-
terval sizes. For example, power variation of the instruction
cache is constantly 2 watts with di↵erent interval sizes in
the x-axis. We expect this because instruction cache access
only takes one cycle. Other caches (data/constant/texture)
and shared memory have a similar power variation profile,
with slightly di↵erent magnitudes.

Second, the register-file has the most rapid power varia-
tion among all components. Its behavior is closely tied to
the unique characteristics of the GPU architecture. Modern
GPUs require a large register file to hold the architectural
states of thousands of threads in each SM core. In our simu-
lated GTX 480 architecture, the register file size is 131 KB,
which is much larger than the 16/48 KB L1 cache sizes. Con-
sequently, the register file access rate and power consump-
tion are much higher compared to the RF in CPUs [12,17].

Third, the functional units (ALU/FPU/SFU) also have
large power variation, because they are all SIMDized and
consume lots of power. However, compared to the RF, these
components exhibit large variation at the interval size of 32
cycles, which is due to their multicycle execution latencies.

75

50

25

0D
ro

op
 C

on
tri

bu
tio

n
(%

)

IF I$ D$ T$ C$

Sha
red RF

ALU FPU
SFU

Pipe

Max.

Min.

Median

75% percentile

25% percentile

Fig. 8: Component contribution to any voltage droop that
is greater than 3% at the intra-SM level.

3.3 Intra-SM Voltage Droop
We must quantify each component’s contribution to an

SM’s voltage-noise profile over its execution duration. This
is because even though a component may experience high
power variation, it does not necessarily imply that it will be
the leading contributor of large voltage droops in the GPU.
Its impact may vary depending on its utilization frequency.

We leverage the linear property of our voltage model to
quantify each component’s contribution to a single SM’s
voltage noise. The linear property of GPUVolt’s RLC cir-
cuit model implies that the temporal response of the PDN’s
on-chip voltage noise is the sum of the individual parts over
time. Therefore, we can establish each component’s contri-
bution to the SM’s total voltage noise by feeding the indi-
vidual component’s current profile separately into GPUVolt.

Fig. 8 shows the contribution of the major components to
voltage droops in a single SM. We perform the quantitative
analysis of each component’s contribution to the magnitude
of voltage droops that are larger than 3% of the nominal
supply voltage. We pick this value because the maximum
droop at the intra-SM level is about 5%. Therefore, a 3%
threshold filters out the typical droop behavior, letting us
isolate and focus on the large droops in the intra-SM level.

Fig. 8, shown as a box plot, captures the maximum, 75%,
and 25% quartiles, and the minimum contribution of each
component for the cycle-by-cycle voltage samples gathered
during a run. Even at the intra-SM level, the register file
remains the single most dominant source of voltage droops,
with a maximum of 70% and median of 50% contribution to
the droops. Other components, such as FPU, SFU, shared
memory, and data cache, also contribute to large droops, but
their influence is smaller as compared to the register file.

3.4 Chip-Wide Voltage Droop
We expand our analysis to chip-wide voltage droops to un-

derstand how intra-SM component activity, combined with
activity from all SMs, can lead to large voltage droops with
magnitudes larger than 8%. We find that aligned activity
and second-order droop e↵ects are the dominant root causes.

Chip-wide droops are caused by aligned component activ-
ity across di↵erent SMs because GPUVolt assumes a shared
PDN (i.e., all SMs are connected to the same power grid);
prior work demonstrates that a shared PDN is more robust
to voltage noise than a split power grid where cores are con-
nected to separate power grids [4]. An unfortunate side ef-
fect of a shared PDN is that one SM’s aggregate component
activity can impact another SM’s voltage; such behavior has
been studied in CPUs [6, 8], but its characterization and
root-cause analysis have not been unveiled in GPUs.

Unlike in the intra-SM scenario, where rapid power vari-
ation occurs at the first-order droop frequency, the aligned

75

50

25

0Po
w

er
 V

ar
ia

tio
n

(W
)

2 4 8 16 32 64 12
8

25
6

51
2

Interval Size (Cycles)

20

15

10

5

Pow
er Variation (W

) All SMs
 Single SM

Left axis

Right axis

Fig. 9: SM power variation
at di↵erent interval sizes.

75

50

25

0

Dr
oo

p
Co

nt
rib

ut
io

n
(%

)

Othe
rs

DCac
he RF

FPU+S
FU

Fig. 10: Component impact
on chip-wide voltage droops.

chip-wide power variation occurs at the second-order droop
frequency. Fig. 9 shows the total peak power variation for a
single SM and all the 15 SMs. We study interval ranges be-
tween 2 and 512 cycles. This range captures both the first-
and second-order droop frequencies. The single SM’s power
variation begins to saturate at the 64-cycle interval with a
peak of 14 watts, which corresponds to a single SM’s max-
imum instantaneous power consumption. In contrast, the
total power variation for all SMs reaches a peak between the
256- or 512-cycle interval, which matches with the second-
order droop frequency. The peak value is about 70 watts,
which indicates that there are at least six SMs whose activ-
ities are in strong alignment to cause large droops.

To understand global component activity impact on chip-
wide voltage droops, we carry out a characterization study
as in Sec. 3.3. We feed GPUVolt with components’ currents
from all SMs to expose each component’s droop contribu-
tion to all droops that are larger than 8% of the nominal
supply voltage. Fig. 10 presents our results, and it shows
that the global aligned activities are from the execution
units across SMs. The execution units (mainly FPU and
SFU) contribute most to the chip-wide droops (maximum
75% and median 50%). Compared to the single or intra-SM
case, the register file only accounts for 25% to 45% of the
total chip-wide droops.

Our insights emphasize that it is important to understand
both intra-SM and chip-wide activity in a combined fash-
ion to comprehensively identify voltage noise root causes in
GPU architectures.

4. GPU VOLTAGE-NOISE MITIGATION
We conduct a proof-of-concept study to demonstrate that

it is possible to mitigate the GPU’s worst-case guardband
on the basis of our intra-SM and chip-wide inter-SM volt-
age droop characterization. Our goal is not to comprehen-
sively evaluate a wide variety of mechanisms and demon-
strate which is best; rather, it is to demonstrate that our
root-cause analysis is sound and that throttling the key com-
ponents (i.e., execution units and the register file) will reduce
the worst-case voltage droop.

We evaluate a solution similar to “Pipeline Damping” [7],
which limits the key components’ activity increase over an
interval of consecutive cycles. In our work, we set the inter-
val size such that it matches the components’ droop-impact
characteristics. For example, the power variation of the reg-
ister file (RF) causes large voltage droop at the first-order
droop frequency. Similarly, the execution units (Exe.) cause
large voltage droops at the second-order droop frequency.
Consequently, we set 8 and 800 cycles as the throttling in-
terval size for the RF and Exe., respectively.

15

10

5

0

W
or

st
 C

as
e

Dr
oo

p
(%

)

BLS
CVLS CFD

DCT
CVLT

BACKP
KMN

MGST BO
DMR

SSSP
NDL

NNC

1.2

0.8

0.4

0.0

Norm
alized Perf.

Baseline Droop
RF-only

Exe.
Combined

Few programs suffer performance loss

Normalized baseline performance29%
34%

Fig. 11: Worst-case voltage droop reduction caused by throt-
tling components identified to cause the most voltage droop.

Fig. 11 shows the throttling results in terms of the worst-
case droop with and without our throttling evaluation. The
key insight is that we have to perform a combination of
RF and execution unit throttling because the root cause
of a large voltage droop can be due to either component.
Combined throttling can e↵ectively mitigate the worst-case
droop, because the worst-case voltage droop in a program
may be caused by only one or both components. In BLS, the
droop reduces from 12% to 8.5%, with a 29% improvement.
However, RF-only throttling barely reduces the droop to
10.25% in CFD from its maximum droop of 10.6%. The
geometric-average performance overhead of throttling both
components is 4.1% for the evaluated programs.

5. RELATED WORK
Gupta et al. were the first to use a distributed PDN model

to model on-die voltage noise [10]. GPUVolt is a natural but
GPU-specific extension of the prior work. GPUVolt is con-
figurable and useful to study GPU voltage-noise characteris-
tics with di↵erent SMs (e.g., Fig. 2a), package characteristics
(e.g., Fig. 4), microarchitecture configurations (Fig. 1), etc.

At the single-core (SM) level, prior work concluded that
rapid current increases and resonant current behavior caused
by microarchitectural activities–e.g., pipeline flushing and
cache misses–are the root causes of voltage droops [1,2,7]. In
contrast, our GPU component-level characterization shows
that the GPU’s throughput-architecture design causes new
sources of L di

dt problems, such as its large register file.
Multicore CPU voltage noise studies focused on thread in-

terference and how to mitigate the e↵ect at the global level
by scheduling threads [6,8]. We took a di↵erent approach by
studying the contribution of various components and their
combined e↵ect on voltage noise across the di↵erent SMs.
We find that synchronized global activity of the SMs’ ex-
ecution units and register files can lead to large chip-wide
voltage droops. On the basis of such insights, we perform a
case study of voltage smoothing by throttling these units.

6. CONCLUSION
GPUVolt is an integrated voltage noise simulation frame-

work specifically targeted at GPU architectures. We val-
idated it against hardware measurements, and it shows a
0.9 correlation for a range of programs. Using GPUVolt,
we demonstrate that the current surge of register file at
the first-order droop frequency and aligned execution unit
(i.e., ALU/FPU/SFU) activity at the second-order droop
frequency are the main sources of voltage noise in GPU
architectures. Controlling their utilization can reduce the
worst-case voltage droop magnitude by as much as 29% with
a marginal impact on the performance.

Acknowledgments
This work is supported by the National Science Foundation
grants CCF-1218474, in addition to the support provided by
Defense Advanced Research Projects Agency, Microsystems
Technology O�ce, under contract no. HR0011-13-C-0022.
The views expressed are those of the authors and do not
reflect the o�cial policy or position of the NSF, the Depart-
ment of Defense, or the U.S. Government. This document
is: Approved for Public Release, Distribution Unlimited.

7. REFERENCES
[1] E. Grochowski et al., “Microarchitectural simulation

and control of di/dt-induced power supply voltage
variation,” in Proc. of HPCA, 2002.

[2] R. Joseph et al., “Control techniques to eliminate
voltage emergencies in high performance processors,”
in Proc. of HPCA, 2003.

[3] C. R. Lefurgy et al., “Active management of timing
guardband to save energy in power7,” in Proc. of
MICRO, 2011.

[4] N. James et al., “Comparison of Split-Versus
Connected-Core Supplies in the POWER6
Microprocessor,” in Proc. of ISSCC, 2007.

[5] D. Ernst et al., “Razor: a low-power pipeline based on
circuit-level timing speculation,” in Proc. of MICRO,
2003.

[6] V. Reddi et al., “Voltage Smoothing: Characterizing
and Mitigating Voltage Noise in Production
Processors via Software-Guided Thread Scheduling,”
in Proc. of MICRO, 2010.

[7] M. D. Powell et al., “Pipeline damping: a
microarchitectural technique to reduce inductive noise
in supply voltage,” in Proc. of ISCA, 2003.

[8] T. Miller et al., “VRSync: characterizing and
eliminating synchronization induced voltage
emergencies in manycore processors,” in ISCA, 2012.

[9] J. Leng et al., “Energy e�ciency benefits of reducing
the voltage guardband on the Kepler GPU
architecture,” in Proc. of SELSE, 2014.

[10] M. Gupta et al., “Understanding Voltage Variations in
Chip Multiprocessors Using a Distributed
Power-delivery Network,” in DATE, 2007.

[11] A. Bakhoda et al., “Analyzing CUDA Workloads Using
a Detailed GPU Simulator,” in Proc. of ISPASS, 2009.

[12] J. Leng et al., “GPUWattch: Enabling Energy
Optimizations in GPGPUs,” in Proc. of ISCA, 2013.

[13] K. Aygun et al., “Power Delivery for
High-Performance Microprocessors,” in Intel
Technology Journal, Nov. 2005.

[14] M. Laurent et al., “Impact of power-supply noise on
timing in high-frequency microprocessors,” IEEE
Tran. on Advanced Packaging, 2004.

[15] S. Che et al., “Rodinia: A benchmark suite for
heterogeneous computing,” in Proc. of IISWC, 2009.

[16] M. Burtscher, R. Nasre, and K. Pingali, “A
Quantitative Study of Irregular Programs on GPUs,”
in Proc. of IISWC, 2012.

[17] M. Gebhart et al., “Energy-e�cient mechanisms for
managing thread context in throughput processors,” in
Proc. of ISCA, 2011.

