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ABSTRACT
General-purpose GPUs (GPGPUs) are becoming prevalent
in mainstream computing, and performance per watt has
emerged as a more crucial evaluation metric than peak per-
formance. As such, GPU architects require robust tools that
will enable them to quickly explore new ways to optimize
GPGPUs for energy efficiency. We propose a new GPGPU
power model that is configurable, capable of cycle-level cal-
culations, and carefully validated against real hardware mea-
surements. To achieve configurability, we use a bottom-up
methodology and abstract parameters from the microarchi-
tectural components as the model’s inputs. We developed a
rigorous suite of 80 microbenchmarks that we use to bound
any modeling uncertainties and inaccuracies. The power
model is comprehensively validated against measurements of
two commercially available GPUs, and the measured error is
within 9.9% and 13.4% for the two target GPUs (GTX 480
and Quadro FX5600). The model also accurately tracks
the power consumption trend over time. We integrated the
power model with the cycle-level simulator GPGPU-Sim and
demonstrate the energy savings by utilizing dynamic voltage
and frequency scaling (DVFS) and clock gating. Traditional
DVFS reduces GPU energy consumption by 14.4% by lever-
aging within-kernel runtime variations. More finer-grained
SM cluster-level DVFS improves the energy savings from
6.6% to 13.6% for those benchmarks that show clustered ex-
ecution behavior. We also show that clock gating inactive
lanes during divergence reduces dynamic power by 11.2%.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
C.4 [Performance of Systems]: Modeling techniques

General Terms
Experimentation, Measurement, Power, Performance
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†GPUWattch is named after the original CPU power modeling framework,
Wattch [6], which enabled widespread architecture-level power analysis and
optimizations. However, our approach is independent of Wattch.
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1. INTRODUCTION
From datacenters to power-constrained mobile devices,

performance per watt has emerged as an indispensable met-
ric for evaluating the efficiency of a GPU architecture [9,
18]. Although GPU performance models, such as GPGPU-
Sim [4], Multi2Sim [34] and MacSim [1], have enabled per-
formance oriented research on branch divergence [11,12,27],
memory bandwidth pressure [5, 32], and so forth, similar
efforts to investigate and optimize GPU energy-efficiency
problems have been difficult owing to the lack of a suit-
able power modeling infrastructure. Researchers using these
tools may inadvertently be optimizing for performance while
penalizing performance per watt. To avoid such pitfalls and
develop energy-efficient GPU architectures, we require a ro-
bust power model.

A robust power model must satisfy three requirements
to be useful for computer architecture research. It must
be (1) configurable, (2) cycle level, and (3) strongly vali-
dated against existing processor architectures using a rigor-
ous methodology. As shown in Table 1, Wattch [6] and Mc-
PAT [22] are robust CPU power models that satisfy all three
requirements, and as such have enabled new research areas
in energy-efficient CPU design. No such power model exists
for GPU architecture research. Hong and Kim [13] were the
first to propose an integrated power and performance model
for GPUs. However, their power model is not configurable
to different architectural parameters. Moreover, it is inca-
pable of providing cycle-level power estimates to evaluate
fine-grained power saving techniques such as clock gating.

In this paper, we introduce GPUWattch, a new power
model that addresses all of the aforementioned requirements.
We follow the rigorous process shown in Figure 1(a) to de-
velop the robust power model. We use a bottom-up method-
ology to build the initial model. Then we compare our sim-
ulated power with the measured hardware power to identify
any modeling inaccuracies. We resolve these inaccuracies us-
ing a special suite of 80 microbenchmarks that are designed
to create a system of linear equations that correspond to the
total power consumption. By solving for the unknowns in
the system, we progressively eliminate the inaccuracies. We

Work GPU Configurable? Cycle-level? Validated?

Wattch/McPAT [6,22] No Yes Yes Yes

Hong and Kim [13] Yes No No Yes

GPUWattch Yes Yes Yes Yes

Table 1: Robust power modeling requirements for a GPU.
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Figure 1: (a) Steps to build a robust power model. The various stages indicate our systematic and rigorous methodology to
iteratively identify and refine inaccuracies in the model. (b) Our integrated power and performance modeling framework.

validated the simulated power model’s average and runtime
estimates against measured results using a comprehensive
set of 25 real-world kernels that were not used to originally
develop the power model. The power model achieves an av-
erage accuracy that is within 9.9% error of the measured
results for the GTX 480 and 13.4% for the Quadro FX5600.
Moreover, it accurately tracks the trace of relative power
consumption over time.

A salient feature of our power model is its longevity. Power
consumption is often sensitive to the details of the spe-
cific architecture, implementation choices, and technology
parameters, all of which continuously evolve from one gen-
eration to another. Therefore, the power model must be con-
tinuously adapted, refined, and validated for evolving GPU
architectures and their manufacturing technology. A key
distinguishing feature of our power model, as compared to
other architecture-level power models, is that it is equipped
with the suite of microbenchmarks and a refinement and
validation methodology that can support future GPUs.

We integrate the power model with GPGPU-Sim [4] for
cycle-level power calculation, as shown in Figure 1(b), to es-
tablish a complete framework for exploring energy-efficient
GPU architectures and power-management techniques. On
the basis of this framework, we demonstrate that tradi-
tional processor-level dynamic voltage and frequency scaling
(DVFS) achieves 14.4% energy savings in GPUs by leverag-
ing the phase behavior within kernels. Average performance
loss is within 3%. Furthermore, we identify new opportuni-
ties for cluster-level DVFS (i.e., grouping streaming multi-
processors [SMs] in the GPU to perform DVFS separately).
Cluster-level DVFS can achieve an additional 7% energy
savings over conventional DVFS for benchmarks that ex-
hibit such grouped behavior. We also evaluate fine-grained
lane-level clock-gating in order to reduce processor power
consumption when SIMD lanes go inactive due to branch
divergence. On average, lane gating reduces dynamic power
consumption by approximately 11.2%.

In summary, our work makes the following contributions:

1. We propose a power model based on the bottom-up
methodology for GPU architecture research that can
enable performance per watt energy-efficiency studies.

2. We describe a systematic and rigorous methodology

to develop and validate the power model using a large
variety of microbenchmarks that stress test the mi-
croarchitecture.

3. We demonstrate the opportunities for improving the
energy efficiency of GPUs using both traditional tech-
niques (DVFS) and new techniques (lane gating).

We begin with an overview of our power modeling approach
in Section 2. We explain how we model the various impor-
tant microarchitectural structures. To assess and fix any
discrepancies in the initial model, we describe our exten-
sive microbenchmarking methodology in Section 3. Next,
we validate the power model comprehensively using hard-
ware measurements in Section 4. We then demonstrate the
benefits of two hardware optimizations to save GPU power
in Section 5. We compare our results with related work and
conclude the paper in Section 6 and Section 7, respectively.

2. GPU POWER MODELING
We model GPU architectures similar to NVIDIA’s GPUs.

The main components shown in Table 2 include streaming
multiprocessors (SMs), memory controllers, the interconnec-
tion network, and DRAM. Figure 2 shows the architecture
of an SM in a GPU. The SM’s major difference from a tra-
ditional CPU core is that it has a SIMD execution unit and
also contains a texture cache, constant cache, and shared
memory. GPUs also adopt GDDR instead of DDR memory
for higher bandwidth [28]. Note that our initial modeling
may differ from the real hardware’s implementation. There-
fore, during the refinement stage of the modeling methodol-
ogy we update the initial model estimates to be more precise,
as shown in Figure 1(a).

Equation (1) captures at a very high level all aspects of
GPU power that we model, which consists of the leakage,
idle SM, and all components’ (N in total) dynamic power.
Each component’s dynamic power is calculated as the ac-
tivity factor (αi) multiplied by the component’s peak power
(Pmaxi).

Power =
∑N

1 (αi ∗ Pmaxi)

+ Idle SM power + Leakage (1)
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Figure 2: Streaming multiprocessor (SM) overview.

2.1 Infrastructure
We use publicly available resources that describe the GPU

microarchitecture and rely on McPAT [22] to model most mi-
croarchitectural blocks (refer to Table 2). Throughout, we
stay consistent with the process of abstracting the microar-
chitectural parameters of each component and using them
to model each component’s circuit implementation in order
to ensure configurability.

Although McPAT includes detailed models for several mi-
croarchitectural blocks, many components are either not
present or are considerably different for GPUs as compared
to general-purpose CPUs. Therefore, we added or adapted
several important blocks in McPAT to more accurately rep-
resent the underlying GPU microarchitecture. We model
SRAM array structures using CACTI [33].

2.2 Register File
Owing to the lack of resources for the NVIDIA GPU reg-

ister file architecture, we adopt the architecture used in
GPGPU-Sim version 3.2.1 (see Figure 3), which is inspired
by NVIDIA patents [24,25]. Each SM has a large and unified
register file that is shared across warps executing in the same
SM. GPUs adopt a multibanked register file architecture to
avoid the area and power overhead of a multiported register
file. Crossbar networks and operand collectors are used to
transport operands from different banks to the appropriate
SIMD execution lane.

The register file’s bandwidth and size determines the num-
ber and size of banks. Fermi GPUs can perform a fused

Description
Microarchitectural

Components
Basic Structures

SM Pipeline Pipeline
In-order multithreaded pipeline

with SIMD datapath

Register Files

Register-file banks 1024-bit wide, 64-entry SRAM

Operand collectors 1024-bit wide SRAM

Collection network 1024-bit wide 16 x 16 crossbar

Shared Memory
Shared memory banks Architecture dependent size

Shared memory network 32 x 32 crossbar network

Caches

L1, L2, texture,
Architecture dependent size

and constant caches

Memory-coalescing logic Synthesis-based power model

Execution Unit

Integer ALUs

Synthesis-based power modelFloating-point units

Special-function units

Main Memory

GDDR5/GDDR3 Empirical model

Memory Controller
McPAT model

Network-on-chip

Table 2: Main GPU components in the Fermi that we model
as best we can due to limited public information.
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Figure 3: Register file structure in the Fermi architecture.

multiply-add (FMA) operation per cycle [28], which needs
three input operands and one output operand from the regis-
ter file. Each SM contains 32,768 32-bit registers, which are
shared by all threads executed on the same SM. We model
the register file as 16 dual-ported (one read and one write
port) banks, each of which provides 2,048 logical 32-bit reg-
isters. Physically, these registers are accessed as 64 1,024-bit
registers. Thus, each operand read from a register file bank
provides operands for 32 SIMT threads. We estimate the
power consumption for these memory arrays using CACTI.

A crossbar interconnection network is used to transfer
operands from register file banks to operand collectors. Fur-
thermore, in the case of bank conflicts, the arbiter shown
in Figure 3 is responsible for serializing the register file ac-
cess, and the operand collectors are used to buffer the data
already read from the register file.

We include the crossbar interconnect model in our register-
file power model. The crossbar network’s parameters are
determined by the number of register-file banks, as well as
the number of operand collector units. For the Fermi archi-
tecture, we model a 16-input × 16-output crossbar network,
as shown in Figure 3. Each input and output of the crossbar
is 1,024 bits wide. Consequently, the operands read from a
register file bank are routed to the proper operand collector.
We model each operand collector as an SRAM array bank.

2.3 Shared Memory
NVIDIA GPUs contain shared memory per SM. It can be

used for interthread communication for threads in a thread
block. Because SIMD lanes can access any address concur-
rently, shared memory is multibanked and contains a cross-
bar interconnect to improve performance. That is, shared
memory has a very similar structure to the register files (Sec-
tion 2.2). In the case of the Fermi architecture, the number
of banks is 32 and the crossbar is 32-input×32-output.

2.4 Execution Units
We model the FP pipeline in the Fermi architecture us-

ing floating-point FMA units. Two lanes of FMA units can
combine to execute a double-precision (DP) operation. The
SFU units are also modeled as DP FMA units. Because most
instructions executed on the SFU units are transcendental
operations that employ iterative algorithms to compute the
result, these units’ power consumption depends on the la-
tency and throughput of instructions.

Area and power modeling of execution units are initially
estimated based upon synthesis of their Verilog descriptions.
The execution units are synthesized using a 45-nm standard
cell library. The synthesized netlists are annotated with
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switching activity for random inputs. We use the Synopsys
Power CompilerR© [3] to estimate the power consumption of
the designs after the annotation of switching activity. All
designs assume an operating nominal VDD of 1 V. We per-
form technology and voltage scaling according to ITRS pro-
jections to estimate the dynamic power consumption at the
given voltage and technology node.

2.5 Memory Coalescing Logic (MCL)
GPUs’ load/store units are responsible for coalescing mem-

ory accesses to reduce the bandwidth usage. Figure 4 depicts
MCL’s main structures. Each MCL contains a pending re-
quest table (PRT) with multiple entries. Each PRT entry
stores the thread index, the base and offset addresses for the
memory access, and the request sizes for all of the concur-
rently issued memory requests by a warp. These entries are
written to the PRT whenever a memory request is issued.

To determine the number of coalesced memory requests
that a warp must issue, MCL compares the base address of
the first thread’s request with the base addresses of all the
remaining requests in the PRT entry. The memory request
mask of all the SIMT threads with the same base address is
set to zero. The process is repeated until masks have been
generated for all requests in the PRT entry. These masks are
stored in a separate thread mask array. Memory requests are
generated for all addresses whose mask bit are set. For each
PRT entry, a pending request count (PRC) is maintained,
and is incremented when a request is sent to memory and
decremented when a response is received. When the PRC
becomes zero, requests for the warp are satisfied. We model
the PRT as an SRAM array structure using CACTI.

2.6 Idle SMs
Due to load imbalance, it is possible to have SMs that are

idling during execution. In our experiments, we observe that
an idle SM still consumes a noticeable amount of power that
affects the accuracy of the power model. Some benchmarks,
such as HRTWL and MGST, suffer from this load imbalance
issue, where nearly a quarter of their SMs becomes idle after
finishing their work. For the idle SM, activity factor αi in
(1) is zero but the SM still consumes power. Therefore,
it is important and necessary to model the idle power of
individual SMs correctly.

We determine the dynamic power consumption of an idle
SM using a microbenchmarking methodology. First, we use
a microbenchmark in which each SM can run at most one
thread block concurrently. Then we vary the number of
active SMs to perform a linear regression fit to estimate

the power used when all SMs are idle. We subtract this
power from the constant power component of our GPU card
(discussed in Section 4.2) to determine the dynamic power
component of an idle SM.

2.7 Main Memory
Our paper focuses on modeling GPU chip power. We

found no public information on GDDR3/5 power modeling
and while flexible DRAM power models [35] could be in-
corporated into our effort, they require additional reverse
engineering of the GDDR implementation, which is beyond
the scope of our processor microarchitecture-centric work.
Hence, we use an empirical approach based on prior work [13]
to compute the effect of DRAM on our studies. The ap-
proach considers only DRAM dynamic power modeling.

Equation (2) states the empirical DRAM dynamic power
model we used. We consider its dynamic power to be com-
posed of precharge power, row buffer activation power, read
power, and write power. The precharge power is calcu-
lated as the per-operation energy (Epre) times the number
of precharge operations (cpre) divided by the execution time.
Read, write, and activation powers are calculated similarly.

PDRAM =
Epre ∗ cpre + Eact ∗ cact + Ewr ∗ cwr + Erd ∗ crd

Execution T ime
(2)

The above DRAM power model can be lumped into Equa-
tion (1), resulting in a complete linear system with all GPU
components’ access rates. We treat the access energy for
each DRAM operation as an unknown variable. In the next
section, we explain the process of solving for the unknowns.

3. MICROBENCHMARKING THE UNCER-
TAINITIES

Microbenchmarking plays a critical role in the refinement
and validation of our initial power model. We rely on mi-
crobenchmarks to address the power modeling uncertainties
that arise for various reasons, such as misguided assumptions
about undocumented features. The microbenchmarks also
help us isolate the power consumption of key components
in the GPU so that we can validate and refine the power
model’s component-level power breakdown. They also help
us achieve good test coverage of the various components in
the processor. Real benchmarks do not stress all aspects of
the processor microarchitecture as the microbenchmarks.

3.1 LSE Problem Formation
A major source of inaccuracies in the initial power model

arises from uncertainties due to undocumented design de-
cisions in the target architecture. Undocumented aspects
of the GPUs we model include unknown sizes or configu-
rations of components. Our first step is to ascertain these
inaccuracies.

We use an iterative process to continuously refine the
power model based on inaccuracies that we observe between
the power model and the actual hardware power measure-
ments. As Equation (3) shows, we model the dynamic power
consumption as a linear combination of access rate αi (ac-
cess counts divided by time) of each microarchitectural com-
ponent multiplied by its peak power Pmaxi . We consider
the modeling inaccuracy for a particular microarchitectural
component i as an unknown variable xi in Equation (4).



void kernel (unsigned *A, unsigned *C){
unsigned tid , offset , sum=0;
tid = get_tid (); // thread id
offset = (tid%M + tid/K)*OFFSET;
sum += A[offset ]; // manually unroll
sum += A[offset ];
...// operator (+=) creates dependency

}

Figure 5: A generic microbenchmark stressing the L1 cache.

Thus, if there are N access rates for the different microar-
chitectural components, each microbenchmark will yield a
microarchitectural component access-rate vector that con-
stitutes one linear equation. With an arbitrary number of
microbenchmarks, say M , this will result in a M ×N linear
estimation problem, as shown in Equation (5). With a suf-
ficiently large number of equations (i.e., microbenchmarks)
and hardware power measurements (PM ), we can effectively
solve the modeling inaccuracies using the least-squares esti-
mation (LSE).

Pdynamic =
∑N

1 (αi ∗ Pmaxi) (3)

Pmaxi = Pmodeled maxi ∗ xi (4)

AM×N × xN×1 = PM×1 (5)

We iteratively refine the power model on the basis of the
sources of the various inaccuracies that LSE identifies. For
instance, in our infrastructure (i.e., McPAT) the power esti-
mation for certain components is biased toward CPU imple-
mentations. We narrow the resulting inaccuracy gap for the
GPU power model by fixing our initial assumptions about
the implementation and then applying the scaling factors
that are obtained from LSE.

3.2 Microbenchmarking Design Methodology
To aid the LSE solving process, we use a systematic mi-

crobenchmarking methodology. We describe the three im-
portant microbenchmark characteristics that we identified
as requirements. Then we show that our microbenchmarks
satisfy these requirements.

Component Stress To solve the LSE problem formed
by all microbenchmarks effectively, the performance counter
vector of each microbenchmark should have as low a correla-
tion as possible with the others [16]. We achieve this by de-
signing some microbenchmarks to stress individual microar-
chitectural components. For example, we limit the number
of variables in the execution unit stressing microbenchmark
so that all necessary values reside in the register files with
minimal access to caches or DRAM. Similarly, when design-
ing L2 cache microbenchmarks, we disable the L1 cache both
in the simulator and hardware for power isolation. We fol-
low a similarly strict design methodology for all of the other
microbenchmarks. This step is also important for enabling
component-level model validation (discussed in Section 4).

Access Patterns It is important to design microbench-
marks to exercise the same microarchitectural component
in different ways, because switching activity impacts dy-
namic power consumption. Thus, we created additional
microbenchmarks with different access patterns to create
more equations for LSE estimation. For example, cache mi-
crobenchmarks exercise different memory spaces, hit ratios,
and coalescing patterns, using reads or writes. The kernel
shown in Figure 5 is a parametrized microbenchmark de-
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Figure 6: Correlation heat map of all 80 microbenchmarks.

signed for the L1 cache that can be configured to achieve
different hit ratios, with different coalescing patterns. The
cross-thread instruction locality within each thread is highly
amortized by massive multithreading; hence, the hit ratio is
mostly determined by the interthread locality, which can be
engineered based on the K, M and OFFSET parameters.

Test Coverage Real benchmarks only exercise a small
portion of the processor. For example, few benchmarks use
the texture or constant caches. To ensure that our refine-
ment and validation tests all components of the processor,
we rely on our microbenchmarks to achieve good test cov-
erage. As shown in Table 3, we designed four sets of mi-
crobenchmarks. Functional microbenchmarks are designed
to exercise executional units such as integer and floating
point. Memory microbenchmarks access the various caches
and shared memory intensively. DRAM exercises the main
memory. In addition, we also create the MIX microbench-
marks that have more complex access patterns such as ac-
cessing multiple components simultaneously. These efforts
result in 80 unique microbenchmarks.

Name
Exercised

Components
Counts Name

Exercised
Components

Counts

Func.
Integer, floating

11 Mem.
L1 & L2 & texture

25point and special & constant caches,
function unit and shared memory

DRAM DRAM 22 Mix
Mix of functional,

DRAM and memory
22

Table 3: 80 refinement and validation microbenchmarks.

Microbenchmark Correlation Figure 6a shows a ma-
trix for the correlation between any two microbenchmarks’
performance counter vectors for our 80 microbenchmark.
Figure 6b shows its color key (the hotter the color is, the
higher correlation two microbenchmarks have), and the his-
togram for correlation among all microbenchmarks. Fig-
ure 6b indicates that most microbenchmarks have a low cor-
relation around ±0.1, which is good because it shows that
these microbenchmarks are independent and stress compo-
nents differently. The only microbenchmarks that have a
high correlation are the DRAM microbenchmarks that are
used to develop DRAM power model. We expect this high
correlation because the activity differences among these mi-
crobenchmarks are limited to DRAM reads and writes.

4. POWER MODEL VALIDATION
We begin this section with a detailed description of our

power measurement setup for real GPU cards. We select two
NVIDIA GPU cards with different architectures to show our



power model’s configurability for validation. Table 4 sum-
marizes the differences between the architectures. We focus
on comprehensive validation of the leakage power, average
dynamic power, and dynamic power trace of kernels against
measurement results for both the GPU card configurations.

Category GTX 480 Quadro FX5600

Architecture Fermi G80
CUDA cores 480 120
Frequency 1.4 GHz 1.2 GHz
Register file size 131 KB 32 KB
Shared memory 48 KB 16 KB
L1 cache 16 KB N/A
L2 cache 768 KB 192 KB
Texture cache 12 KB 5 KB
Constant cache 8 KB 8 KB
Technology node 40 nm 65 nm
Memory type GDDR5 GDDR3
Memory bandwidth 177.4 GB/s 76.8 GB/s
Memory controllers 6 6

Modeled Leakage Power 41.9W 21.3W

Table 4: Used two GPU cards configurations.

4.1 Experimental Setup
We validate our power model with a reference hardware

platform containing both the cards. We provide details here.

4.1.1 Power Measurement Setup
We use both NVIDIA GTX 480 and Quadro FX5600 for

validation. Both the cards are connected to the PCIe slot
through a PCIe riser card and an ATX power supply. The
PCIe riser card and the ATX power supply have power
pins that deliver power to the GPU. For each power supply
source, we measure the instantaneous current and voltage
to compute power. We sense the current draw by measuring
the voltage drop across a current sensing resistor. We use a
NI DAQ to sample the voltage drop at a rate of 2 MS/s.

Figure 7 shows a detailed schematic of our setup. The
diagram illustrates the peripheral components that we are
measuring as part of the total GPU power. These periph-
erals include the GPU processor, DRAM modules, voltage
regulator module (VRM), and other auxiliary support cir-
cuitry, as shown in Equation (6). Our power model is built
to model both static leakage and dynamic power, and there-
fore in our experiments we separate these two parts and
validate them individually.

Pmeasured = Pproc leak + Pmem leak + PV RM + Pperipherals︸ ︷︷ ︸
Pconst − independent of frequency

+ Pproc dynamic + Pmem dynamic︸ ︷︷ ︸
Pdyn − scales with frequency

(6)

4.1.2 Simulator Setup
The software power model builds on McPAT 0.8. It is

integrated with GPGPU-Sim version 3.2.1. We configure
the simulator to match the two GPU cards separately. We
use GPGPU-Sim’s PTXPlus mode to simulate the native
instruction set (ISA) on the Quadro GPU (SASS). We also
use the NVIDIA compute profiler [29] to ensure that the mi-
crobenchmarks’ performance matches the target hardware.

4.2 Constant Power Component
The measurement setup captures both dynamic and con-

stant power. Equation (6) shows that each power source
(Pconst and Pdyn) consists of different components. The
first part, Pconst, includes processor leakage power, main
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Figure 7: GPU power measurement schematic.

memory leakage power, VRM power, and all peripheral cir-
cuits’ power. Pconst is independent of processor/memory
frequency. The other part, Pdyn, comprises the dynamic
power of both the processor and the main memory. Pdyn

scales linearly with processor/memory frequency. Therefore,
if memory frequency scales the same as the processor’s fre-
quency, we can rewrite the measured power in Equation (6)
as a linear function of only the processor frequency f . This
is shown below in Equation (7):

Pmeasured = k ∗ f + Pconst k – constant

f – processor frequency (7)

Using Equation (7) with varying frequencies f , we can
determine the constant power component. With the aid of
overclocking tools for the NVIDIA GPU card, we scale the
processor and DRAM frequencies separately and measure
power. With the simplified linear model in the equation, we
performed a linear fit to get the constant power component.

Subtracting the constant power numbers from the mea-
sured total power gives us the dynamic power component of
the GPU processor and its main memory. We perform the
above procedure on both the test cards. Figure 8 shows the
experiment results for GTX 480. We use two different work-
loads. The first workload exercises the integer unit heav-
ily, while the second workload exercises the floating-point
unit. We choose these two computation-intensive workloads
to minimize interaction with the DRAM memory subsys-
tem. Figure 8 shows the constant power component for the
GTX 480 card, which is approximately 59 W. The constant
power component for the Quadro FX5600 card is 38 W.

Another reason for determining the constant power com-
ponent is to get the static leakage power of both GPU cards.
Our model reports 41.9 W and 21.3 W leakage power for the
GTX 480 and Quadro FX5600, respectively. However, we
cannot validate these numbers owing to the lack of publicly
available resources on GPU leakage power numbers. Nev-
ertheless, according to Equation (6), the linearly fitted con-
stant power serves as an upper bound, which the results re-
ported by our power model do not violate. We do not have
leakage power estimates for the GDDR5 memory, because
we adopt an empirical approach to estimate its power.

4.3 Dynamic Power Validation
We validate the power model using microbenchmarks and

real programs from public benchmark suites. We compare
the average power and the dynamic power behavior of sev-
eral kernels against the measured hardware results. The
measurement process has inherent limitations that affect the
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benchmark selection and dynamic power trace comparisons,
and this is not to be confused with simulation inaccuracies.

4.3.1 Hardware Measurement Issues
In our measurements, we find that any large changes in

power draw are accompanied by an exponential increasing
or decaying curve (i.e., RLC effect), as well as an oscilla-
tion, as shown in Figure 10(a). The behavior is related to
the power-delivery network (PDN) component characteris-
tics and interactions (i.e., voltage regulator module and de-
coupling capacitance), which effectively form an RLC cir-
cuit. These effects are impossible to isolate from our power
measurements because they are board-level components. We
verified that the exponential power trace is not caused by
workload or architectural policies, such as thread scheduling,
by constructing microbenchmarks.

Figure 10(b) shows a snapshot of the measured and simu-
lated power trace for MGST K1 in which we can mimic the
RLC behavior in the measured trace by transforming our
simulated power trace with a derived RLC filter. This RLC
filter is derived based on Figure 10(a), which is effectively
the filter’s step response. Analyzing Figure 10(a), the fil-
ter can be approximated as a second-order system with rise
time 0.18 µs and maximum overshoot 15%.

In our experiment, we must filter out GPU kernels with
execution less than 500 µs because the measured power trace
of this type of kernel is always in the exponential increase
stage due to the RLC effect. This type of kernel could have
a much higher power consumption than the measured value.
Thus we only trust kernels with long enough execution times
(> 500 µs) for validation purposes. For each benchmark, we
use the largest available input sizes and modify parameters
to increase the execution time without changing functional-
ity. However, this execution time limitation still filters out
56 unique kernels in the ISPASS and RODINIA benchmarks
suites to the 21 kernels discussed in Section 4.3.3. In addi-
tion, we study another four kernels from prior work by Hong
and Kim [13]. So in all, we have 25 long-running kernels. To
avoid the RLC effect, our microbenchmarks were designed
with long enough (typically several seconds) execution time.

4.3.2 Microbenchmark based validation
Following the rigorous design methodology discussed in

Section 3, we designed 80 microbenchmarks that are used
to iteratively refine our power model. We present the final
power model accuracy for these microbenchmarks and vali-
date the component-level power isolation microbenchmarks
by showing their simulation power distribution.

Average Power Test coverage is one purpose of our mi-
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crobenchmarks. Our microbenchmark design effort results
in an even distribution of measured steady-state power. Fig-
ure 9 shows the comparison between our power model and
the hardware for microbenchmarks running on the GTX 480.
The measured results on the x-axis are spread evenly from
80 W to 210 W, and simulated power on the y-axis tracks the
corresponding power difference across different microbench-
marks. As we will show later, real benchmarks’ power has a
much smaller variation range (120 W ∼ 190 W).
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Figure 11: Simulated per-component dynamic power distri-
bution. The values represent the percentage of power con-
tributed by a given component for a microbenchmark.

The average absolute error for the microbenchmarks on
the GTX 480 card is 15%. Because we designed each mi-
crobenchmark to isolate a specific component power con-
sumption, the error in total power for the microbenchmarks
serves as a good indicator of the exercised component’s mod-
eling error. A certain amount of inaccuracies for the Mem-
ory, DRAM, and Mix microbenchmarks come from the per-
formance mismatches in the modeling of the memory hier-
archy in GPGPU-Sim versus the targeted hardware. For
example, previous work [10] indicates that the hardware
adopts a hash function for memory address mapping, whereas
the GPGPU-Sim simulation uses a linear address mapping.
Such types of modeling errors are significantly amplified in
the microbenchmarks because they are repeatedly perform-
ing a single or set of operations.

The averaged modeling error for the Quadro FX5600 card
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Figure 12: Estimated average power comparison and breakdown for real benchmarks.

under the microbenchmarking tests is 16.2%. This GPU
has a different implementation of the memory coalescing
logic [30] from the simulator, which causes our memory mi-
crobenchmarks that were designed for the Fermi to perform
poorly, thus resulting in the slightly larger modeling error.

Component-level Validation It is impossible for us
to measure the component-level power consumption. We
achieve the component-level modeling validation by isolating
the component power when designing the microbenchmarks
as explained in Section 3.2. If the targeted component con-
sumes most of the total power, the error in the total power
consumption is a good indicator of that component’s mod-
eling error. In the ideal case that the component consumes
100% of the total power, this component’s modeling error is
equivalent to the total power error.

We present our microbenchmarks’ power isolation effect in
heat-map (Figure 11), which shows estimated per-component
dynamic power distribution for a representative set of the
component-level power isolation microbenchmarks (by stress-
ing a certain component). Each colored grid corresponds to
the percentage of estimated dynamic power for that partic-
ular microarchitectural component (x-axis) in the designed
microbenchmark (y-axis). For example, the execution unit
for the functional microbenchmark in Figure 11 consumes
72.6% of the total dynamic power, with significantly less
power consumed by the register file (Reg) and pipeline (Pipe).

Achieving component power isolation for the execution
units and DRAM is easier. These two components consume
72.6% and 57.4% of the total power separately in their stress
testing microbenchmarks. It is almost impossible to isolate
L2 cache (L2-$) power from NOC power because each L2

cache access involves an NOC access. We also found that
L1 caches (data, constant and texture) are hard to isolate.
For instance, the L1 data cache (D-$) consumes 29.1% of
the total power, whereas register file and execution units
still consume 23.7% and 21.8% power separately. This extra
power “overhead” is caused to some extent by the data de-
pendencies (Figure 5) that we intentionally insert to prevent
the compiler from optimizing away the microbenchmarking
code. I In summary, the functional units and DRAM mi-
crobenchmarks achieve better power isolation on targeted
components, thus total power error better indicates compo-
nent modeling error. However, this does not mean other
components have higher modeling errors. The reason is two
fold. Firstly, we designed more complex patterns to exercise
these components. Secondly, these components are majorly
SRAM based arrays, which have less modeling uncertainty
as compared to functional units and DRAM.

4.3.3 Benchmark Based Validation
We evaluate the power model on a set of benchmarks that

are not used in the refinement process. We use 25 kernels
from the 13 different benchmarks presented in Figure 12.
There are 18 kernels from the RODINIA suite [7] and 3 from
the ISPASS suite [4]. We also include four microbenchmarks
presented in prior work [13]. MGST kernels are not shown
for the Quadro FX5600 because they fail to run on the card.

Average Power Figure 12 shows the our power model
accuracy compared to measured power along with component-
level breakdown of power consumption for both the GPU
cards. The results are sorted in order of modeling accu-
racy. For GTX 480, the power model achieves an average



error within 9.9%. Memory-intensive kernels, such as the
first kernel in KMN (KMN K1) and CFD K4, show more er-
ror due to the mismatch in memory hierarchies between our
performance model and the real hardware.

For the Quadro FX5600 card, the model obtains an aver-
age error of 13.4%. The results are weaker because GPGPU-
Sim’s performance correlation, in terms of execution time,
is 90% for this card and 93% for the GTX 480. Moreover,
the number of evaluated benchmarks for Quadro FX5600 is
less than that used for GTX 480 because this card does not
support the computation ability required by MGST.

Comparing the performance per watt, we deduce that the
GTX 480 is 3× better than Quadro FX5600. GTX 480 con-
sumes 1.33× the total power of the latter, but it is ∼4×
faster in performance. The contributing factors include sev-
eral changes in the GTX 480 for energy efficiency and per-
formance, such as the presence of more functional units, in-
creased SIMD width and the introduction of data caches.
The only kernels that show a decrease in the overall perfor-
mance per watt are KMN K1, MUM K1 and LIB K1. They
do not have enough data locality to utilize the caches effec-
tively, and thus retrieve data more often from DRAM.

The pie charts in Figure 12 show the power breakdown of
the modeled dynamic power consumption in the two cards.
The chart is derived by averaging and normalizing all ker-
nels’ power breakdowns. Shared memory, texture, constant
and data caches contribute much less than other components
to the average dynamic power and are thus grouped into the
“Other” label in the pie chart. The lower power consumption
for these components are caused by few kernels using these
structures. The increased number of functional units and
SIMD width cause execution units to increase from 12.4%
in Quadro FX5600 to 20.1% in GTX 480. Pipeline power in-
creases from 8.7% to 11.4% because of the increased pipeline
depth in GTX 480. GTX 480 has added both L1/L2 data
caches, which reduces the DRAM and memory controller
(MC) power consumption from 28.8% and 8.3% to 17.8%
and 4.8% separately. Note that although GTX 480 has a
larger register file (RF) size, the percentage of RF’s power
consumption actually increases because the total power con-
sumption of GTX 480 increases more than the RF does.

Runtime Trace We also validate the dynamic behav-
ior of our power model against the hardware measurements.
This is an important step because a steady power trace can
have the same average power as a trace that is oscillating
around the steady state power. In Figure 13, we show the
trace of five kernels from benchmarks LIB, CFD, and MGST.
These kernels are run separately, and thus the time in the
horizontal axis is not continuous. Moreover, we only show
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1 ms of kernel execution time due to space constraints. The
start time for all kernels but one (MGST K1, discussed later)
is 0.4 ms because data before this time includes the expo-
nential increase due to the RLC effect (see Section 4.3.1).

The dynamic power profile in GPGPU applications can
be categorized into two types. The first type has a steady
power consumption, as seen in the first four kernels (from
LIB K1 to MGST K5) in Figure 13. The second type is more
like MGST K1, which has phases in the power trace.

The power model tracks the steady state power consump-
tion trend accurately, both across kernels from within a
benchmark, as well as across kernels from different bench-
marks. For example, the CFD K4 kernel from the CFD
benchmark has higher measured power (∼180 W) than the
CFD K3 kernel (∼160 W). LIB K1 and MGST K1 have the
lowest power consumption (both below 150 W). Another
thing to notice is that the simulator typically appears more
“noisy” compared to the measured trace because the hard-
ware RLC circuit forms a low-pass filter that smooths out
the measured power trace. The simulator is in fact effec-
tively capturing subtle variations in workload activity.

In MGST K1, the dynamic power consumption drops past
0.5 ms due to load imbalance. Cores are idling in the sec-
ond half of the kernel’s execution. As shown in Figure 12,
MGST K1 has a relatively large portion of idle SM power,
and the model accurately tracks this behavior in the tem-
poral perspective. Note that this kernel’s starting time is
not 0.4 ms, as for other kernels, because it has only 1 ms
execution, so the whole execution time is shown here. The
exponential decay pointed out by the arrow is again caused
by the RLC effect rather than any inaccuracies in our model.

4.4 Power Model Extensions
On the basis of the methodology in Figure 1(a), the power

model we have described thus far can adapt to newer archi-
tectures. Depending on the extent of the differences in the
target architecture from the existing power model, full or
partial iterations of the refinement and validation loop may
be required. In this process, components may need to be
added or removed from the power and performance simula-
tors. Activity counters may need to be added that capture
the behavior of the modified architecture, and additional
microbenchmarks may also be necessary to stress and refine
the new components.

Consider the example of adapting the power model from
the Quadro FX5600 to the GTX 480 architecture. This ex-
tension requires the addition of new components, such as
L1 and L2 data caches. Adding these components requires
designers to systematically go through the process of ini-
tial modeling, microbenchmarking and iteratively refining
and validating the power model. However, differences in the
implementation of the execution units between the Quadro
FX5600 and GTX 480 [23,28] can easily be captured by the
refinement and validation stages using the microbenchmarks
targeted at the functional units.

5. ENERGY OPTIMIZATIONS
We find that a number of kernels have strong phase behav-

ior. Thus, we demonstrate benefits using DVFS exploiting
runtime memory and compute boundedness. Furthermore,
we quantify the potential for fine-grained lane-level clock
gating during branch divergence. Both techniques are based
on the GTX 480 configuration in the GPGPU-Sim.
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Figure 14: Two types of phase behavior.

5.1 Exploiting Phase Behavior
We studied the opportunity for processor-level DVFS (i.e.,

single voltage and frequency value for the entire processor)
within a kernel by tracking the average stall cycles in ev-
ery SM caused by memory operations. We conducted the
analysis at the individual SM level, which indicates that in
most programs all the SMs are in global synchronous be-
havior. This is to be expected because programs suitable
for GPU architectures are inherently optimized for through-
put behavior. However, an interesting aspect of the global
synchronous behavior is that the GPU kernels exhibit phase
behavior. We also investigated the opportunity for cluster-
level DVFS optimization, in which groups of SMs that be-
have similarly are clustered together so that a few voltage
domains can allow for fine-grained control.

Figure 14(a) shows the averaged stall cycles during the
execution of STMCL. Although the stall cycles shown in
the plot are averaged across all SMs, each SM’s behavior
is almost identical due to the global synchronous behav-
ior. The benchmark repeatedly shifts between compute- and
memory-bounded phases every 150,000 cycles. Processor-
level DVFS can leverage these memory-bounded phases in
this case. However, in some GPGPU programs, SMs are not
in global synchronous behavior. For example, benchmark
HRTWL suffers from load imbalance. In this benchmark, all
the SMs are assigned thread blocks to execute at the start
of program execution. After the SMs finish executing the
assigned thread blocks, there are no more blocks for further
assignment to SMs 3, 5 and 6 (Figure 14(b)). These SMs
remain idle but they consume non-negligible power.

We implemented a DVFS algorithm by monitoring the
average stall cycles caused by memory operations, which is
used to decide whether the kernel is memory bounded. In
the case of global synchronized behavior, it is sufficient to
monitor either a single SM, or averaged metric across all
SMs. We assume that the GPGPU has 7 P-states, ranging
from a peak of 700 MHz to a minimum of 100 MHz, with step
of 100 MHz. These settings align with GTX 480’s existing
DVFS settings (see Section 4). We use the 45 nm predictive
technology models [2] to scale the voltage with frequency
(from 1 V to 0.55 V). The baseline architecture is always
running at the highest frequency. We quantify DVFS bene-
fits under two scenarios. First, we assume a fast responding
on-chip regulator that can make P-state transitions quickly
within 500 cycles, which are similar to those used by Kim
et al. in prior work for CPUs [19]. Second, we consider a
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Figure 15: Energy savings and performance loss for fine-
grained and coarse-grained processor-level DVFS.

conventional off-chip regulator with coarser granularity of
10,000 cycles transition time, or roughly 10 µs.

Figure 15 shows the results of the processor-level DVFS
algorithm for both settings. Benchmark STMCL from Fig-
ure 14a achieves 15.8% energy savings with only 0.7% loss
in performance, assuming fast on-chip regulators. Even in
the case of slow off-chip regulation, the energy savings is
15.3%, because the duration of each computation/memory
bound phase is typically long enough that the advantage of
fast-responding diminishes. The fine-grained DVFS scheme
saves about 10% more energy than coarse-grained DVFS in
benchmarks KMN, SS and SRAD. These programs have short
phases that only on-chip regulation can effectively leverage.
For benchmarks that are memory-bounded during the entire
execution, such as BFS and MUM, both the DVFS schemes
achieve more than 20% energy savings. Purely compute-
bound benchmarks, such as LUD and HOTSP, do not ben-
efit from DVFS. The worst-case performance loss is CFD in
the fine-grained DVFS scheme because it has some rapid
phase changes, which our simple prediction technique fails
to capture. Overall, the algorithm achieves 14.4% and 13.2%
savings in energy under both fine-grained and coarse-grained
DVFS, with 2.9% and 1.3% performance loss, respectively.

We also evaluate the benefit of cluster-level DVFS for
benchmark HRTWL in Figure 14(b). With the cluster-level
DVFS, we set the frequency of the idle SMs to the lowest
P-state point (i.e. 100 MHz and 0.55 V). The idle SM leak-
age power reduces to approximately 10% [2]. Cluster-level
DVFS achieves 13.6% energy savings while processor-level
DVFS achieves only 6.6%. To put the benefits of cluster-
level DVFS in context, we compare it against ideal power
gating, which achieves a 14% energy reduction. The cluster-
level DVFS scheme does nearly as well as ideal power gat-
ing. However, there are several factors that designers must
consider, such as modeling all of the additional overheads.
Careful trade-off analysis for this optimization is beyond the
scope of this paper.

5.2 Harnessing Branch Divergence
GPGPU programs suffer from branch divergence [12]. Fig-

ure 16 shows the amount of branch-divergence-related lane
inactivity. The data is constructed by calculating the frac-
tion of time when none (that is, idle), one to two, or three
to four out of 32 total SIMD lanes are active, similar to
[12]. For example, benchmark NN has only one or two lanes
active during execution. Whenever branch divergence oc-
curs, inactive execution lanes are idle but they still consume
clocking and toggling logic dynamic power.

We propose to minimize the unnecessary toggling dynamic
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power by applying clock gating to the unused, idle execution
lanes. This technique is well-suited to exploit the short du-
rations of branch divergence. We design microbenchmarks
with different numbers of active threads to verify that nei-
ther card implements clock gating. To the best of our knowl-
edge, there is no published literature that explores power re-
duction using fine-grained, lane-level clock gating for branch
divergence in GPGPU architectures.

We implemented fine-grained clock gating in the power
model to ensure that only SIMD lanes with active threads
are active. In addition, RF reads/writes and operand collec-
tors are also clock-gated at a fine-grained granularity. It is
important to note that clock gating incurs power overhead
owing to additional logic in the clock tree. We model these
overheads using the approach proposed by Li et al. [21]. We
assume an overall pipeline depth of 24 for the GPU architec-
ture. Execution units, operand collectors and the crossbar
network are clock gated in each SIMD lane level to pre-
vent unnecessary switching activity, while the register files
are gated in the register file bank level. For each of the 32
SIMD lanes and the 24 pipeline stages per lane, fine-grained
clock gating requires an additional AND gate (to gate the
clock) and an additional flip-flop to store the clock-gating
control bit. The control bit ensures that the decision to
clock gate a stage is available before the start of the cycle.
The GPU maintains active lane masks for all warps, which
can be used to determine which lanes should be clock gated.
We utilize the 45 nm TSMC technology library to estimate

the power consumption of the additional flip-flops and logic
gates. By our estimation, lane-level clock gating increases
the GPU power consumption by 0.3 W. This power is con-
sumed regardless of the lane-level activity. But as we will see
next, this overhead is negligible relative to the net benefits.

In our experiment, we found the power saving of idle lane
clock gating is proportional to the time of control divergence.
Figure 17 shows the dynamic power saving of applying this
technique. Note that we only count the dynamic proces-
sor (i.e., without leakage and DRAM power). Benchmark
NN benefits the most (60.6% savings) from the clock gating,
because it has only 1 or 2 lanes active for more than 90% ex-
ecution time, as shown in Figure 16. Although benchmarks
HOTSP and LPS both suffer severely from divergence, they
only show 14.4% and 12.6% dynamic power savings, respec-
tively, because they have more active lanes during diver-
gence. Other benchmarks such as KMN, STO and SRAD
have little or no divergence behavior, and thus show no im-
provement. Overall, the fine-grained technique achieves a
(geometric) averaged 11.2% dynamic power savings.

6. RELATED WORK
There have been prior works regarding building a GPGPU

power model [8, 13, 17, 26, 36, 38]. We compare our model
against these works from the perspective of the power mod-
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Figure 17: Dynamic power saving after clock gating.

eling methodology and the necessary validation effort.
Modeling Methodology Zhang et al. [38] showed

that GPU power consumption increases linearly with the
program’s computation intensity, and they use this to pre-
dict the power consumption, similar to [36]. Maruyama et
al. [26] use hardware performance counters to predict power.
Hong and Kim [13] propose a power and performance pre-
diction model for GPUs that predicts the GPU’s execution
time and power consumption using kernel and architecture
characteristics. These modeling methodologies are good for
program-level power prediction, but they lack our frame-
work’s configurability for modeling the power consumption
of different GPU architectures. Moreover, although these
previous works can only predict the GPU’s average power
consumption, our proposed model can provide cycle-level
power trace of GPU programs, which lets us capture differ-
ent execution phases within a kernel.

Validation Effort Hong and Kim [13] measure the
power of the whole system for validation, whereas we iso-
late and measure the power that is consumed only by the
processor. Additionally, by conducting the voltage and fre-
quency scaling experiment mentioned in Section 4, we isolate
the constant power component from our measured power to
validate the static leakage power and dynamic power sep-
arately. We validated the dynamic power with a suite of
microbenchmarks that contains 80 kernels that exercise dif-
ferent microarchitectural components. Moreover, with the
2 M/s sampling rate, we measured the power consumption
of real benchmarks. The execution time for these bench-
marks is typically around several milliseconds. We show the
measured traces of real benchmarks and use those traces to
validate the runtime power trace of our power model.

Prior work [14, 37] leveraged memory/compute phase be-
havior for CPU energy optimizations. We adopt a simi-
lar methodology to conduct phase analysis at the individ-
ual SM-level, and identify both global and clustered syn-
chronous behavior across SMs, and use that to demonstrate
the benefits of processor-level DVFS. Lee et al. [20] per-
formed the oracle study for processor-level DVFS in GPUs,
but they tried to maximize throughput given a power con-
straint, while we try to minimize the energy consumption.
Moreover, we study DVFS opportunity within kernel execu-
tion, while their study emphasizes behavior across kernels.

The impact of fine-grained clock-gating on power con-
sumption has been studied for CPUs [15] and some SIMD
processors [31]. We exploit this technique to solve a GPU-
specific problem (i.e., branch divergence).

7. CONCLUSION
The community requires a robust GPU power model. We

demonstrate a configurable, cycle-level and validated power
model for GPGPUs that can be used for architecture and
software energy-efficiency studies. The robustness of the



power model is proven against the measured power of two
commercial GPUs using a complete suite of both microbench-
marks and real benchmarks. The power model achieves the
averaged absolute error within 9.9% for GTX 480 card, with
13.4% for Quadro FX5600, respectively, for our evaluated
benchmark suite from RODINIA and ISPASS. We developed
this model on the basis of a strong power-modeling method-
ology that will enable us to extend the existing power model
systematically to support future GPU architectures.

Using GPUWattch, we show that fine-grained and coarse-
grained DVFS are useful for reducing dynamic power con-
sumption in GPGPU workloads, because they exhibit phase
behavior. On average, coarse-grained DVFS achieves 13.2%
energy savings, while fine-grained DVFS achieves 14.4% en-
ergy savings, both with less than 3% performance loss. For
kernels with short-lived phases, fine-grained DVFS achieves
7% more energy savings than coarse-grained DVFS. In addi-
tion, we explore the opportunity for SM cluster-level DVFS
to address the load imbalance problem in some GPGPU
workloads. This technique reduces energy consumption fur-
ther by 7% for benchmark HRTWL. Additionally, we eval-
uated lane gating. By clock gating individual SIMD lanes
during branch divergence, we show that in some programs
with high branch divergence, such as NN, this technique re-
duces dynamic power consumption by more than 60%.
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