
Nesting Forward Automatic Differentiation for
Memory-Efficient Deep Neural Network Training

Cong Guo1,2, Yuxian Qiu1,2, Jingwen Leng1,2,∗, Chen Zhang3

Ying Cao4, Quanlu Zhang4, Yunxin Liu5, Fan Yang4, Minyi Guo1,2,∗
1Shanghai Jiao Tong University, 2Shanghai Qi Zhi Institute, 3Alibaba Group

4Microsoft Research, 5Institute for AI Industry Research (AIR), Tsinghua University

Abstract—An activation function is an element-wise mathe-
matical function and plays a crucial role in deep neural net-
works (DNN). Many novel and sophisticated activation functions
have been proposed to improve the DNN accuracy but also
consume massive memory in the training process with back-
propagation. In this study, we propose the nested forward auto-
matic differentiation (Forward-AD), specifically for the element-
wise activation function for the memory-efficient DNN training.
We deploy nested Forward-AD in two widely-used deep learning
frameworks, TensorFlow and PyTorch, which support the static
and dynamic computation graph, respectively. Our evaluation
shows that nested Forward-AD reduces the memory footprint
by up to 1.97× than the baseline model and outperforms the
recomputation by 20% under the same memory reduction ratio.

I. INTRODUCTION

Deep neural network (DNN) models have gained tremen-
dous success in many important domains. For example,
ResNet [1] and BERT [2] (based on pre-trained Transformer
network [3]) have shown impressive accuracy in the chal-
lenging area of image classification [4] and natural language
processing [5] (NLP) tasks. Researchers have shown that
activation functions are important elements in DNN models,
and proposed many novel activation functions for the better
accuracy. For most vision tasks, Mish [6], Swish [7] and
GELU [8] surpass ReLU, specifically, about 1% accuracy
improvement on ResNet [6], [7]. On the other hand, GELU [8]
is the most widely used activation function in the NLP models
and achieves the best accuracy among other candidates.

The activation functions mentioned above are character-
ized by their sophisticated architectures and massive memory
consumption, especially when combined with straightforward
implementations. In some cases, they become the top memory
consumers, surpassing the intermediate variables of convolu-
tion or fully connected layers saved in the forward pass for
gradient computation. The employment of novel activation
functions exacerbates the model applicability when training
with modern commodity accelerators, such as GPUs, with
limited global memory capacity. For example, the activation-
related variables of BERT-base and ResNet-50 occupy 22%
and 52% memory footprint, respectively, as shown in Fig. 1.

Many memory optimization approaches [9]–[12] have been
proposed, but none of them is appropriate for activation
functions without introducing extra computing overhead. To
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reduce activation functions’ footprint usage during model
training, recomputation [9], [12] reproduces the intermediate
variables in the backward pass without saving them in memory.
However, the recomputation inserts new operators breaking
the original computation graph and brings extra computing
overhead, dropping the speed of training.

We introduce forward mode automatic differentiation
(Forward-AD, FAD) for gradient computation of activation
functions to avoid the recomputation overhead and reduce
the memory footprint. Automatic differentiation [13] (autodiff,
AD) is a family of mathematics tools to automatically and ac-
curately evaluate numeric function derivatives using computer
programs. There are two modes of autodiff: backward mode
(i.e., back-propagation, BP) and forward mode (FAD).

Back-propagation is the mainstay approach for DNN train-
ing. Today’s mainstream machine learning frameworks, such
as PyTorch [14] and TensorFlow [15], implement BP using
dynamic/static computational graphs and significantly improve
model deployment efficiency. Compared to back-propagation
AD, forward AD can reduce the stored intermediate variables
and execute efficiently and straightforward in the specific
numeric function f : RN → RM , (N ≤ M). The activa-
tion functions are the typical element-wise functions with f :
R1 → R1, whose computation graphs can be optimized by
FAD to reduce the DNN training’s memory consumption.

We propose an element-wise specific computation graph op-
timization, which substitutes the original BP execution of sub-
graphs with nested FAD by recognizing the original graph’s
specific function pattern (R1 → RM ) without influencing on
the remaining graph. This approach can automatically optimize
both static and dynamic computation graphs in the popular
deep learning frameworks, especially in the imperative mode
in PyTorch, and achieves memory reduction for DNN training.

The contribution of our work is as follows:
• We propose a memory optimization approach with the

nested FAD inside BP in the deep learning framework.
• The nested FAD can automatically be executed in the

popular frameworks with the two execution modes: dy-
namic and static computation graphs.

• We evaluate FAD in the state-of-the-art models achieving
a higher memory reduction ratio (as high as 1.97× and
1.34× on average) than the original end-to-end model
and an average of 1.78× speedup than recomputation for
the activation function on BERT.
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Fig. 1: Memory breakdown for DNN model training on Py-
Torch. IM-ACT is the intermediate variable footprint of activa-
tion function, and IM-Other is the rest intermediate variable
footprint. Other includes the weights and workspaces for the
temporary variables, such as gradients. The batch size of all
these experiments is set to 16.

We organize the paper as follows. Sec. II introduces the
background of the automatic differentiation and the overview
of the nested FAD algorithm. We explain nested FAD im-
plementation with static and dynamic computation graph in
Sec. III and Sec. IV, respectively. We evaluate the nested FAD
with DNN models in Sec. V, introduce the related work in
Sec. VI, and conclude in Sec. VII.

II. ACTIVATION AND AUTODIFF

This section first introduces the relevant background on
the activation function and analyzes the memory efficiency
of the activation function in DNN models. Then, we compare
the differences among BP, recomputation, and FAD with a
specific example. Finally, we define the nested FAD in the BP
algorithm of the DNN models.

A. Activation functions

DNN models have recently achieved state-of-the-art re-
sults in many important domains, e.g., convolution neural
network [16] (CNN) in the computer vision domain, and
BERT [2] in the natural language processing domain. Recently,
many activation functions, e.g., Mish [6], Swish [7], and
GELU [8], have been proposed to optimize ResNet-50 [1]
and BERT [3], showing higher accuracy than ReLU. Their
formulas are shown in Tbl. I.

B. Footprint of activation

BP algorithm needs to save intermediate variables in the for-
ward pass for computing gradients in the backward pass. The
amount of weight is fixed, and the gradients can be released
immediately after computation. Only the saved intermediate
variables would persist in the memory for a long time and
increase with the batch size.

GELU 0.5 · x · {1 + tanh[
√

2/π · (x+ 0.044715 · x3)]}

Mish x · tanh[ln(1 + ex)] = x · tanh[softplus(x)]

Swish x/(1 + e−x) = x · sigmoid(x)

TABLE I: Activation functions.

We collect the memory footprint usage in ResNet-50 and
BERT with activation functions GELU and Swish in PyTorch.
The two activations have different intermediate variables us-
age due to their different derivative functions. The memory
breakdown results in Fig. 1 show great potential for memory
optimization utilizing FAD, which, without the burden of
saving intermediate variables, has much less memory footprint
than back-propagation. It is noteworthy that the proportion
of IM-ACT (and IM-Other) will increase as the batch size
increase. That will strengthen the performance of Forward-AD.

C. Forward-AD, BP and recomputation

We explain the difference between recomputation and FAD
using the Swish activation function as an example. The for-
mula of Swish is shown in Tbl. II. Swish function is a simple
activation that has two operations: Mul and Sigmoid. Fig. 2
depicts the three approaches: BP, recomputation, and FAD
with an input value x.

Original BP ( 1 ) algorithm first executes the forward pass
with three nodes:

v1 = σ(x), v2 = x, v3 = v1 · v2.

In backward pass, Node v′3 receives its gradient g from up-
stream and calculates gradient for v′1 and v′2. Obviously, back-
propagation needs to save intermediate variables v1 and v2 for
computing Swish gradient. Node v′3 will deliver downstream
gradients g · v1 to Node v′2, and g · v2 to Node v′1. Then, BP
continues to traverse v′1 and v′2 recursively. Node v′1 calculates
the gradient by

v′1 = g · v2 · [σ(x)(1− σ(x))] = g · v2 · [v1(1− v1)], (1)

based on the σ(x) derivative, σ(x)′ = σ(x) · (1−σ(x)). Node
v′2 calculates the gradient v′2 = g · v1 · 1 for x′. Finally, Node
x′ has the gradient

x′ =v′1 + v′2 = g · v2 · [v1(1− v1)] + g · v1 (2)

from the two branches v′1 and v′2.

Recomputation ( 2 ) has the same forward pass as BP but
releases v1 and v2 to reduce the memory footprint, only
save the source variable x. Therefore, Recomputation has to
recalculate the values of v1 and v2 in the backward pass with
extra computation overhead, as show in Fig. 2 middle.

Forward-AD ( 3 ) derives and accumulates the derivative v3′

of Swish in the forward pass and multiplies with g in the
backward pass. FAD simultaneously calculates Node v′1 =
v1(1 − v1) and v′2 = 1 when Node v1 and v2 are executed.
Finally, FAD continues to calculate

v′3 = v1 · v′2 + v′1 · v2 = v1 · 1 + v1(1− v1) · v2, (3)

Forward pass Backward pass (derivative)

Swish x · σ(x) σ(x) + x · σ(x) · [1− σ(x)]

TABLE II: Swish function. σ(x) = Sigmoid(x).
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Fig. 2: Comparison of forward and backward computation graphs for back-propagation AD, recomputation, and forward AD.

when the forward graph merges the Node v1 and v2 into
v3 using multiplication operation. FAD can only store the
intermediate variable v′3 for back-propagation with upstream
gradient g and achieve the final gradient

x′ = g · v′3 = g · [v1 + v1(1− v1) · v2] (4)

directly for node x′.
Obviously, FAD is much more efficient than recomputation

because of the memory locality without any extra computation.
FAD can reduce all the intermediate variables only save the
derivative v′3 for the activation function instead of the variables
x, v1, and v2 comparing to BP algorithm.

D. Forward AD Applicability

Autodiff can generalize the derivative of a function f :
RN → RM by computing the Jacobian matrix Jf with the
shape of (M × N ), where M is the length of output vector
and N is for the input vector. We can compute the Jf :

Jf =


∂y1

∂x1
· · · ∂y1

∂xN

...
. . .

...
∂yM

∂x1
· · · ∂yM

∂xN


Forward AD computes the Jacobian–vector products (JVP):
Jf v and back-propagation computes the vector-Jacobian
products (VJP): (vTJf )

T = JT
f v. For example of Swish case,

FAD compute the v′1 and v′2 with

vv′1,2
= [v′1, v

′
2]

T = Jfxvx′ =

∂v1

∂x

∂v2

∂x

 · [1],
where x′ = 1 and compute the v′3 with

vv′3
= [v′3] = Jfvvv′1,2

=
[
∂v3

∂v1

∂v3
∂v2

]∂v1

∂x

∂v2

∂x

 [1]

=
[
∂v3
∂v1

∂v1
∂x + ∂v3

∂v2

∂v2
∂x

]
.

For BP, we have v′x′ = JT
fx
v′v′1,2 = JT

fx
JT
fv
v′v′3 , where

v′v′3 = [1].

Computation efficiency Evidently, for cases f : RN → RM ,
N ≤ M , FAD is efficient for computing derivatives, and
vise-versa for BP with N > M [17]. According to our
observation, manual differentiation is widely adopted by ma-
chine learning frameworks with tremendous optimization for
high performance. TensorFlow and PyTorch utilize manual
differentiation to compute the derivatives and fuse operations
manually. For example, layer/batch normalization, convolu-
tion, and matrix multiplication are accelerated by the highly
optimized library. That optimization exploits the Jacobian
matrix sparsity due to their inner reduction (accumulation)
operations and is incompatible with automatic differentiation,
neither backward (BP) nor forward (FAD). From the automatic
differentiation perspective, the optimization is to minimize
numbers of multiplication for each subregion. It is known as
the Optimal Jacobian Accumulation (OJA) problem, which has
been proved to be an NP-complete problem [18].

To practically implement FAD in the DNN framework,
we simplify the applicability of FAD with the function f :
R1 → RM , specifically, element-wise operations with one
input variable and M ≥ 1 output variables, including most
of the activation functions.

E. Nesting FAD

We can nest FAD inside the BP algorithm for DNN models.
Without loss of generality, let v1, v2, ..., vk be k nodes in the
topological ordering for the DNN computation graph G and
vk is the loss L. The gradient of the node vi computed by
back-propagation is:

∂L

∂vi
= Jvi

T ∂L

∂vi+1

Here, the ∂L
∂vi+1

is the upstream gradient from the node vi+1.
The Jvi is the Jacobian matrix of vi. Assume that vn, ..., vm
in topological ordering are FAD primitive operations and they
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Fig. 3: Fad and nfad operations.

can compose to a R1 → RM element-wise operation. Then
we have

∂L

∂vn
= {

∏
i∈{n,...,m}

Jvi}T
∂L

∂vm+1
=
∂vm+1

∂vn
· g,

where g is the upstream gradient. Therefore, we can exploit
FAD to compute the Jacobian matrix for the element-wise
operation composed by vn, ..., vm within the forward pass.
Then, FAD updates the gradients with upstream gradient g =

∂L
∂vm+1

.

III. DEFINITIONS AND STATIC GRAPH OPTIMIZATON

We optimize and nest element-wise specific FAD in two
types of computation graph: static and dynamic with Tensor-
Flow and Pytorch respectively.

A. Definitions

We divide the operations (operator, OP) into two classes:
fad (FAD-compatible) and nfad (FAD-incompatible). The
primitive operations for FAD basically are fad element-wise
functions including:
• The unary operation (f : R1 → R1) can be the primitive

operation, e.g., Node 1 in Fig. 3. The binary operation
with one constant input variable can also be regarded as
the unary operation.

• For binary operation (f : R2 → R1), such as
addition and multiplication, their two input
elements should be originated from the same source
element converting R2 → R1 to R1 → R1, e.g., Node
2 in Fig. 3.

• Except the fad operations, others operations are nfad.
Especially, the binary operation with two tensors from
different sources is the nfad (FAD-incompatible) OP and
violates the f : R1 → R1, e.g., Node 3 in Fig. 3.

Manual differentiation [13] is widely used in frameworks.
It can greatly impact the efficiency of the element-wise oper-
ation. For example, Sigmoid is a classic activation function:
S(x) = 1

1+e−x and would produce lots of intermediate
variables with the original format. Frameworks implement its
enclosed symbolic format as a basic operator. Without loss of
practicability, we define the symbolic operators implemented
in frameworks as the primitive operation, including tanh,
sigmoid and softplus.

The operation composed of finitely many primitive oper-
ations is the FAD-compatible operation and can maintain f :
R1 → RM ,M ≥ 1, which is efficient for FAD and the subject
matter of this paper. The others are nfad OPs.

Forward

Backward

1. Sub-graph

2. FAD

Fad nodeNfad node

Fig. 4: Static computation graph optimization.

B. Static computation graph

TensorFlow is the most representative static computation
graph framework. It defines the graph statically before a
model execution and the graph can not be modified during
the run-time. That is friendly to optimize and accelerate the
computation of the DNN model without convenience and
flexibility for users. Naturally, it is easier for a static graph
to implement the nested FAD than a dynamic graph.

There are two steps with the computation graph. First of
all, TensorFlow builds a static computation graph with forward
pass and backward pass. With the definitions of fad operation,
we can divide the forward computation graph into two types of
sub-graphs: FAD and non-FAD. Second, each sub-graph can
be regarded as a node with in-degree and out-degree. We find
FAD sub-graphs with 1 in-degree and m ≥ 1 out-degree and
optimize the computation. Finally, we get FAD intermediate
derivatives, which will be saves for the backward gradient
computation mentioned in Fig. 4.

This procedure can be implemented after the gradient
computation graph built by the backward function before
the graph automatic optimization. We eliminate the original
connection between forward and backward for intermediate
variables and the extra computation nodes in FAD sub-graphs,
then attach FAD computation graph on the original forward
computation graph and save the only single tensor of FAD
derivative for the backward, finally build a new node in
backward for accumulating the derivatives and computing the
gradient.

After that, TensorFlow will automatically execute the com-
putation graph optimization, such as prune nodes that do not
affect the output, eliminate common subexpressions, and sim-
plify arithmetic statements. FAD will not impact the original
forward computation and reuse the tensor immediately and is
friendly to accelerator memory locality.

IV. DYNAMIC COMPUTATION GRAPH OPTIMIZATON

The insight of FAD optimization on dynamic computation
graph is similar to the static one. However, its complexity is
more significant because the imperative mode can not provide
enough graph information. We design a finite state machine
and an interactive approach for dynamic graph optimization
to maintain the correctness and efficiency of FAD.

A. Finite State Machine

First, we need to maintain the correctness of FAD algorithm
with the pattern: R1 → RM . This goal is easy to reach in
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the static graph from the global perspective but difficult in
the dynamic graph. We define T-O (tensor-operator) pairs as
the basic optimization unit for the dynamic graph. The T-O
pairs have two types of OPs (fad/nfad), and two types of
input tensors: fad/nfad tensor is produced by a previous
fad/nfad operator. Denote the fad by Y and nfad by N.
Then, we have 4 forward states for T-O pairs: NN, NY, YY,
and YN.

For the imperative mode, we can regard the next OP as an
input event. Therefore, we can construct a finite state machine
(FSM) for forward pass depicted in Fig. 5 1 . Naturally, the
DNN models can be represented by a finite forward pass
state sequence, where the original BP has only NN states.
According to the FSM, NY is the beginning of a FAD sequence
ended by YN. Based on the fad OP definition in Sec. III-A,
the NY forward mode has a single input source, and YN can
be referenced by multiple OPs. Therefore, we can adopt the
forward mode FSM to ensure that FAD sequence can meet the
specific pattern: R1 → RM .

Fig. 5 2 presents an example of a fad sequence execution
with R1 → RM . The first node (Node 1) has the original NN
forward mode and produce a nfad output tensor transferred to
the next fad Node 2. Assume that Node 2 has a fad operator
and will produce a fad output tensor. Then, we denote the
Node 2 with NY forward mode, which is the beginning node
of the fad sequence. Then, Node 3 and Node 4 have fad
operators and are YY forward modes. Finally, the Node 5 and
Node 6 are both end nodes with the nfad and produce nfad
output tensors.

B. Interactive Approach

We should release the intermediate variables tensor appro-
priately and accurately to reduce the memory footprint with
high memory efficiency. For example, the imperative mode has
executed the operation with tensor x. It is unknown whether
the tensor x would be used in the following program fragment.
That can impact the tensor when and where to release. Suppose
we release the tensor x immediately after FAD computation.
That may cause serious fault when x is on the critical path
and referenced by the following operators. On the contrary, the
tensor x will impact the memory efficiency if we release the
tensor too late. Therefore, how and when to release the tensor
are essential for the imperative framework. To tackle this issue,
we design an interactive approach based on the forward pass
FSM with the four modes shown in Fig. 6.

Parameters There are two groups of parameters. We denote

the original parameters for back-propagation in black. There
are four parameters.

• back_fn (BFN) is the backward function, which is
implemented by the original framework;

• saved_tensors (node) (STN) is short for the
saved intermediate tensors for computing the gradient
using BFN;

• grad_node is a BP node with BFN and STN;
• next_node (NXN) denotes the pointer of the next BP

node.

We need to add four new FAD parameters (blue) to support
the forward pass FSM and interactive approach.

• isFAD (FAD) identifies the fad tensor;
• saved_tensors (tensor) (STT) is the same as

STN but temporary. It can be recursively released when
the tensor is released;

• fad_tensors (FTR) is the fad result tensors. Particu-
larly, the FTR sets a scalar value 1 for the NY (beginning)
mode;

• src_node (SCN) is the head node of a FAD sequence.
The last YY nodes’ NXN will point it in the post-process.

Execution There are four basic execution components and
each forward mode executes the different execution compo-
nents shown in Tbl. III and Fig. 6.

A Forward computation execute the forward operation
and is the basic unit for all modes.

B Forward-AD computation can immediately calculate
the derivatives for the node with the forward differentiation
mode. It is only for modes with a fad tensor (YY and YN
modes). FAD computation exploits the original BFN with the
STT and FTR of the input tensor, such as the fad_t1 of YY
mode in Fig. 6.

C Forward-AD post-process is only for YN mode (end
state). The post-process is only for the YN mode. It will
save FAD result tensors as the STN and update BFN and
NXN for the previous node. For example, the YN mode in
Fig. 6 computes FAD result fad_t2 and saves it for the
STN of Node f2. Then, FAD post-process replaces the BFN
with a direct Multiplication with upstream gradient and
updates the NXN with the head Node f . For a binary
operator, the post-process will merge (accumulate) FAD results
from the two input tensors.

D Parameters update is also the basic unit for all modes,
which updates the node and tensor parameters. For the NN
mode, it is the original update process for the BP node. The
NY and YY modes only update the information with the tensor
and will skip the BP nodes, which will not be used in the
Forward-AD. For the YN mode, it will update the BP node
based on the Forward-AD post-process.

NN NY YY YN

A D A D A B D A B C D

TABLE III: Forward pass execution
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Fig. 6: The forward pass execution. (a) Original forward mode (NN); (b) NY mode; (c) YY mode; (d) YN mode.

Resource release After 4 modes are executed sequentially, the
Tensors w, x and Node f1 have no reference on them in Fig. 6.
The Tensor y may have a reference determind by derivative
function of f3. It is known that PyTorch exploits the reference
count and garbage collector mechanism of Python. PyTorch
can make sure that all intermediate variables are released as
soon as they become unneeded [14]. When the Tensor w, x
and node f1 are released, the STT and FTR referenced by
Tensor w, x are also released automatically and recursively.

Efficiency The interactive approach utilizes information from
individual operators with high efficiency and robustness. First,
the approach does not influence the original forward mode
(NN mode). Second, the approach will skip the intermediate
nodes, such as Node f1 and original Node f2, leading to an
efficient backward gradient execution. The last updated Node
f2 can directly pass the gradient to the head Node f . Besides,
if FAD sequence only has a single fad operator, i.e., NY →
YN, FAD post-process ( C ) in YN mode will easily skip FAD
computation ( B ) to avoid the extra computation with FTR
= 1. Therefore, the approach is highly robust to the pattern
R1 → RM ,M ≥ 1 based on the FSM.

Finally, we exploit the interactive approach to optimize
the dynamic computation graph for the T-O pairs and embed
the nested FAD computation inside the forward pass without
influence on BP. The mechanism is based on FSM and original
garbage collector and maintains FAD’s correctness and high
memory efficiency.

V. EVALUATION

In this section, we perform the nested Forward-AD overhead
and memory efficiency evaluations in both static and dynamic
computation graphs.

A. Methodology

For the implementation of the static computation graph,
we modify TensorFlow and embed a hook function for FAD
optimization as detailed in Sec. III-B before execution. Then,
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Fig. 7: The batch size results with BERT-base and ResNet-50
on PyTorch (PT) and TensorFlow (TF).

TensorFlow can optimize the computation graph without sav-
ing the intermediate variables. For the implementation of the
dynamic computation graph, we use the “Autograd Function”
in PyTorch to override the specific fad operators, including
add, mul, exp, tanh, softplus, sigmoid, etc.

Owing to the space limitation, we evaluate two popular
neural networks, ResNet [1] (CNN) and BERT [2] (Trans-
former), which cover tasks from the computer vision and NLP
domain. We evaluate ResNet-50 for image classification on
the ImageNet [4] dataset. ResNet has been widely used as
the backbone in many applications, e.g., Mask R-CNN for in-
stance segmentation [19]. For the state-of-the-art Transformer
model family, we use BERT-base with 128 sequence length
on GLUE (general language understanding evaluation) [20]
dataset. We only present the results on four datasets (MRPC,
CoLA, SST-2, and MNLI). Finally, we implement the acti-
vation functions Mish [6], Swish [7], and GELU [8] on the
networks respectively. All the experiments are conducted on
the NVIDIA RTX 2080Ti GPU [21] with 11 GB of off-chip
GDDR-based global memory.

B. Memory Footprint Reduction

By injecting FAD into DNN frameworks, we can reduce
the memory footprint and allow larger batches for the DNN
training. Therefore, we first adopt the metric of maximum
supported batch size to represent the amount of memory
footprint. Fig. 7 depicts the maximum batch size results for
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Fig. 8: The end-to-end performance with training samples per
second results with baseline (Base), recomputation (Recom)
and forward AD (FAD).

the baseline and Forward-AD on TensorFlow and PyTorch.
TensorFlow adopts the static graph optimization for the self-
attention mechanism [3], which is the main component of
BERT model. As such, TensorFlow has less memory usage,
and TensorFlow results are better than PyTorch ones with
BERT. TensorFlow and PyTorch have similar ResNet imple-
mentation, except for the activation function. Thus, ResNet
evaluation has close results for both frameworks.

We observe that our proposed Forward-AD allows users to
take advantage of a larger batch size with the same hardware
configuration. Compared to original frameworks, FAD pro-
motes maximum batch size by up to 1.97× for ResNet-50.
Especially for BERT, FAD also achieves up to 50% memory
reduction than the baseline. Finally, FAD achieves 1.34× on
average than the original TensorFlow and PyTorch. Moreover,
we also implement BERT-large with 24 Transformer layers on
the original GELU. Unfortunately, that occurs out-of-memory
runtime error on both TensorFlow and PyTorch. However,
Forward-AD still maintains applicability for BERT-large.

C. Performance

In this section, we evaluate the performance of Nested
Forward-AD against Recomputation and original execution on
Tensorflow and PyTorch.

Overhead First, we measure the runtime overhead of
Forward-AD due to computation graph reconstruction. Be-
cause FAD only changes the computation order and has no
additional computation than the original model, FAD and the
original model have almost the same training speed with little
overhead. On the contrary, FAD can immediately exploit the
output tensor of the operator to compute the temporary deriva-
tives (gradients), which can lead to a better cache hit rate. As
such, FAD can achieve light performance improvement than
the original TensorFlow and PyTorch. This means the overhead
introduced by Forward-AD is negligible.

Performance Comparison As for the performance baseline,
we use the training speed under the maximum batch size. We
compare Forward-AD with recomputation (REC) and original
execution on PyTorch. The end-to-end model performance
(samples/second) is shown in Fig. 8.

We find that our design achieve different performances for
different activation functions. Swish has the best performance,

and GELU is the worst due to GELU having the most com-
plex element-wise computation. For the computation modes,
recomputation leads to performance degradation due to the
extra computation for regenerating the intermediate variables,
as shown in Fig. 2. The recomputation drops about 10%
performance than PyTorch baseline. FAD consistently demon-
strates the best performance across all workloads. Finally,
FAD achieves an average of 14% and 16.5% speedup than
recomputation on BERT and ResNet, respectively.

End-to-end Execution Time and Accuracy We also evaluate
the end-to-end execution time of finetuning with the pre-
trained model for BERT-base with GELU on four datasets
shown in Tbl. IV. In practice, the recomputation is usually
used for activation function, and the complex operations,
e.g., Conv and FC, will be optimized with the swapping
method [23]. For these results of BERT, it is noteworthy
that FAD surpasses recomputation by an average of 1.78×
speedup on the execution time of the activation function, which
accounts for 18.3% of end-to-end original training time.

Finally, FAD achieves 15% performance improvement than
recomputation on average. We can also observe that the
accuracy has a minor improvement because larger batches
provide more optimization space for the DNN model.

VI. REALTED WORK

Memory-efficient DNN Recomputation [9], [12], [24] and
offloading [10], [23], [24] is the favored method to reduce the
footprint in training, but with significant overhead, e.g., mem-
ory swapping and extra computation. CDMA [11], Gist [25],
JPAC-ACT [26] and buddy compression [27] compress the
data by leveraging the sparsity or character of the feature map
in particular neural network architecture to reduce the memory
burden in the training stage. For the inference stage, many
quantization [28]–[30] and sparsity [31]–[35] works have been
proposed to reduce the parameters and computation of DNN.

Automatic Differentiation Even though forward automatic
differentiation is widely studied in mathematics [36] and
some deep learning frameworks (such as TensorFlow [15]
and JAX [37]) have supported forward AD, they cannot
dynamically nest forward AD into backward AD to update
weight, users have to manually combine the separate for-
ward/backward AD sequence.

MRPC CoLA SST-2 MNLI

Acc. Time MCC Time Acc. Time Acc. Time

Base 86.02 111s 59.12 258s 91.40 0.57h 83.36 3.34h

REC 86.02 118s 60.06 277s 91.74 0.61h 83.54 3.52h

FAD 86.02 101s 60.06 235s 91.74 0.51h 83.54 2.95h

TABLE IV: The fine-tuning time and accuracy for BERT-Base
model on four datasets (MRPC, CoLA, SST-2, MNLI). MCC
is the Matthews correlation [22].



VII. CONCLUSION

In this paper, we propose the nested Forward-AD in the
DNN framework that reduces the memory footprint. The key
insight is that FAD is much more memory efficient than BP
with the specific pattern (R1 → RM ,M ≥ 1). We deploy
nested FAD in static and dynamic computation graph design
with up to 1.97× memory reduction than the baseline model
without the overhead.
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