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Abstract—Network pruning can reduce the high computation
cost of deep neural network (DNN) models. However, to maintain
their accuracies, sparse models often carry randomly-distributed
weights, leading to irregular computations. Consequently, sparse
models cannot achieve meaningful speedup on commodity hard-
ware (e.g., GPU) built for dense matrix computations. As such,
prior works usually modify or design completely new sparsity-
optimized architectures for exploiting sparsity. We propose an
algorithm-software co-designed pruning method that achieves
latency speedups on existing dense architectures. Our work builds
upon the insight that the matrix multiplication generally breaks
the large matrix into multiple smaller tiles for parallel execution.
We propose a tiling-friendly “tile-wise” sparsity pattern, which
maintains a regular pattern at the tile level for efficient execution
but allows for irregular, arbitrary pruning at the global scale
to maintain the high accuracy. We implement and evaluate the
sparsity pattern on GPU tensor core, achieving a 1.95⇥ speedup
over the dense model.

I. INTRODUCTION

Deep neural network (DNN) models have achieved and even
surpassed human-level accuracy in important domains [51].
For instance, transformer-based models [56] in natural lan-
guage processing (NLP) such as BERT [12] have dominated
the accuracy in various NLP tasks and have been used in
the Google’s new search algorithm [15]. Despite their high
accuracies, DNN models also have significant computational
cost, both in training and inference. The large NLP model
GPT-2 [46] has 1.5 billion parameters, and takes roughly a
week to train on 32 TPUv3 chips and costs over $40,000 on
Google’s cloud TPU platform [54]. The inference latency of
modern DNN models could also be excessively high due to
the enormous computation cost and memory usage [37].

⇤Contribution during his internship at NVIDIA.
§Jingwen Leng and Minyi Guo are corresponding authors of this paper.

One particularly effective and promising approach to reduce
the DNN latency is pruning [19], [28], which exploits the
inherent redundancy in the DNN models to transform the
original, dense model to a sparse model by iteratively removing
“unimportant” weight elements and retraining the model to
recover its accuracy loss. In the end, the sparse model has
fewer parameters and, theoretically, less computation costs.

The primary challenge in network pruning is how to balance
the model accuracy and execution efficiency. Such a balance is
fundamentally affected by the sparsity pattern that a pruning
approach enforces. Intuitively, a stronger constraint on the
sparsity pattern forces certain weights to be pruned and, thus,
leads to lower accuracy, and vice-versa. The most fine-grained
pruning approach leads to the so-called element-wise (EW)
sparsity pattern, which prunes weight elements individually
and independently, solely by their importance scores [19]. In
other words, EW imposes no constraints on the sparsity pattern
and can remove any weight element, leading to the minimal
model accuracy degradation. However, the pruned sparse model
also introduces irregular memory accesses that are unfriendly
on commodity architectures, e.g., GPUs [29], [50]. As a result,
EW-based sparse DNN models usually runs slower than the
unpruned dense models on these architectures [21].

To realize the acceleration potential of sparse DNN models,
researchers have proposed to co-design the sparsity pattern with
hardware support. For instance, many architects have proposed
various specialized accelerator designs [18], [43] to exploit the
zeros in the aforementioned EW pattern for latency reduction.
Similarly, prior work proposes the vector-wise pattern [66]
that divides a weight column to groups and prunes the same
number of elements in a group. This sparsity pattern requires
the new hardware or the modification of existing hardware [26],
[70]. In summary, these approaches lead to sparse memory

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 c�2020 IEEE



accesses and computation patterns that require hardware support
to be effective, and thus cannot leverage commodity DNN
accelerators such TPU [24] and Volta tensor core [39], [47].

In this work, we propose a novel algorithm that is able
accelerate sparse DNN models on commodity DNN accel-
erators without hardware modification. Our key observation
is that virtually all of today’s DNN accelerators implement
dense general matrix multiplication (GEMM) [5] operations.
GEMM-based accelerators [16], [24], [39], [44] are dominant
owing to their wide applicability: convolution operations that
dominate computer vision models are lowered to the GEMM
operation, and NLP models are naturally equivalent to the
GEMM operation. Examples include NVIDIA’s tensor core [39]
and Google’s TPU [24] mentioned above. We propose a
new pruning algorithm, which enforces a particular sparsity
pattern on pruned models to directly leverage existing GEMM
accelerators without modifying the microarchitectures.

In particular, our work exploits the key insight that the matrix
multiplication on existing dense GEMM accelerators adopts
the tiling approach, which breaks the large matrix into multiple
smaller tiles for parallel execution. We propose a tiling-friendly
sparsity pattern called tile sparsity (or TW), which maintains a
regular sparsity pattern at the tile level for efficient execution but
allows for irregular, arbitrary pruning at a global scale through
non-uniform tile sizes to maintain high model accuracies.

To exploit the TW sparsity, we first divide the entire matrix
into multiple tiles as in conventional tiled GEMM. We then
prune the entire rows or columns of each tile according to
the collective importance scores of each row and column. In
our sparsity pattern, the tile size dictates the trade-off between
model accuracy and execution efficiency. At one extreme where
the tile size equals one, our TW sparsity is equivalent to the
EW sparsity. At the other extreme where the tile size is the
same as the matrix size, TW pruning is equivalent to the global
structural pruning that prunes the entire row or column [21].

Building on top of TW, we further propose a hybrid sparsity
pattern that overlays the most fine-grained EW sparsity pattern
on top of the TW sparsity. With a small fraction of EW (e.g.,
1.5%), the hybrid pattern greatly improves the accuracies of
the TW-only sparse models. We propose a pruning algorithm
that iteratively shapes the weight matrix to meet our hybrid
sparsity pattern constraint. Critically, our pruning algorithm
dynamically allocates the sparsity budget to each layer to
exploit the inherently uneven sparsity distribution across layers.

To maximize the algorithmic benefits of TW, we provide
an efficient software implementation on commodity GPU
hardware. Two key roadblocks arise as a result of the TW
sparsity. First, TW naturally introduces frequently uncoalesced
memory accesses due to the pruning pattern. Second, different
tiles in TW could have different compute demands due to the
different pruning degrees across tiles, which leads to load
imbalance and GPU resource under-utilization. We address
these challenges through a combination of intelligent data
layout and concurrency/batching optimizations. TW achieves an
average of 1.95⇥ (2.86⇥) latency speedup on the tensor core

(CUDA core) with only negligible accuracy loss (1%-3%).

The contribution of our work is as follows:
• We propose a tiling-based sparsity pattern to balance the

model accuracy and execution efficiency on the existing
dense accelerator. The tile sparsity can be combined with
existing fine-grained pattern to minimize the accuracy loss.

• We propose a multi-stage pruning algorithm that gradually
shapes the weight matrix to our proposed pattern and
dynamically allocates the sparsity budget at the layer level
to overcome the uneven distribution of sparsity.

• We provide an efficient implementation of tile sparsity on
commodity GPUs equipped with tenor core, and demonstrate
significant speedups on state-of-the-art DNN models.
We organize the paper as follows. Sec. II describes the

background and Sec. III provides the motivation. Sec. IV
describes the overview of TW. We explain its pruning algorithm
and tensor core implementation in Sec. V and Sec. VI,
respectively. We evaluate TW against other patterns in Sec. VII,
discuss the related work in Sec. VIII, and conclude in Sec. IX.

II. BACKGROUND

This section provides the relevant background on the different
deep neural networks that we evaluate in this paper. We then
summarize the recent efforts for reducing the execution latency
of those models, which include building specialized hardware
accelerators and applying algorithmic pruning optimization to
reduce the size and computation cost of DNN models.

A. Deep Neural Network Model
DNN models have recently achieved state-of-the-art results

in many important domains, such as convolution neural
network [27] (CNN) in the computer vision domain, and long
short term memory [22] (LSTM, most popular RNN) and
BERT [12] in the natural language processing domain. The
CNN and LSTM are relatively well studied models whose
details are shown in Fig. 1. We refer the readers to the prior
literatures [3], [6] for more explanations of those models.

BERT is a representative Transformer [57]-based model
and has outperformed LSTM in NLP domains. Fig. 1 shows
the structure of a Transformer layer constructing the BERT
model. The Transformer applies multi-head attention (MHA)
mechanisms, which stands for several groups of independent
attentions enabling them to deal with different aspects of
information [10]. The BERT model is extremely large and
computational expensive. With adjustable depth and width,
there are two popular BERT versions: BERT-large with 24
layers and 16 heads, BERT-base with 12 layers and 12 heads.
Without loss of generality, the explore of this work is built on
BERT-base and we refer BERT-base as BERT in the following.

B. Hardware Acceleration
We explain the computation characteristics of these models

and common optimizations to reduce their execution latency.

Dense Model. General matrix multiplication (GEMM) is a key
computation in the original dense DNN models, as indicated
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Fig. 1: The Transformer layer of BERT, convolution layer, and
LSTM layer with different kinds of computations.

by the light green blocks in Fig. 1. The fully connected
layer and LSTM layer are native GEMM operations while
the convolutional layer can be converted to GEMM through
the img2col transformation. The attention heads in BERT can
also be computed with GEMM operations and the computation
of multiple heads could be combined to one large GEMM.
GEMM Accelerator. To reduce the model execution latency,
NVIDIA adds tensor core on the GPU in Volta architecture,
which runs a fixed size (16⇥16⇥16) matrix multiplication.
tensor core is essentially an accelerator for the GEMM. Other
examples for GEMM accelerator is TPU [24] which is based on
a 128⇥128 systolic array. The cuDNN [7] library implements
different DNN layers for efficient execution on GPU, where
the GEMM computation can use the closed-sourced cuBLAS
library [40] or open-sourced CUTLASS library [41].

Sparse Model. Recently, researchers start to apply prun-
ing [19], [28] to DNN models, which exploits the inherent
redundancy in the model to transform the original, dense
model to a sparse model. In the end, the sparse model has
fewer parameters and, theoretically, less computation costs.
Executing sparse models relies on sparse matrix representation
such as compressed sparse row (CSR) and sparse GEMM
operations, which are supported on GPU by cuSparse [40]
library. However, as the GPU is originally designed for dense
operations, the speedup of sparse model over the dense model
is usually negative unless the sparsity ratio is very large (over
95% reported by prior work [59]). As such, researchers begin
to put various shape constraints on the pruning pattern and
also propose to transform the existing architecture to execute
those sparse models. For example, the recent work propose
new sparsity patterns that need to modify the existing dense
GEMM accelerator like tensor core [70] and TPU [26].

Different from the prior microarchitecture-centric work, we
propose a software-only acceleration of sparse DNN models
on the dense GEMM accelerator like tensor core. We exploit

Element-Wise (EW) Vector-Wise (VW) Block-Wise (BW)

block=(2×2)N=8

K 
= 
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Pruned Unpruned

Fig. 2: Comparison of three patterns with 50% sparsity: element-
wise (EW) pattern prunes individual elements, vector-wise (VW)
pattern prunes half elements in a 4-element vector, and block-
wise (BW) pattern prunes an entire 2⇥2 block.

the tile execution of GEMM computation and propose a tiling-
friendly, Tile-Wise sparsity pattern to balance the model
accuracy and compatibility for the dense GEMM accelerator.

III. PRUNING EFFICIENCY ANALYSIS

In this section, we study the impact of different DNN
pruning algorithms on the model execution efficiency. Network
pruning can remove the excessive weights in DNN models
and therefore the resulted sparse model has less weight size
and computation cost. However, our analysis shows that the
sparse models generated by existing pruning algorithms cannot
achieve meaningful speedup on the dense architectures.

A. Sparsity Pattern

There are two major components in the algorithms for
pruning deep neural networks. The first component is how
to evaluate the importance of individual weight element (i.e.,
importance score). And the second component is the sparsity
pattern that is removed altogether. In this part, we mainly focus
on the study of different sparsity patterns and we explain the
details of importance score calculation in Sec. V.

Fig. 2 illustrates different sparsity patterns. The first sparsity
pattern, called element-wise (EW), removes the individ-
ual weight element solely by its importance score rank. For
instance, prior work [19] proposes to remove weight elements
with small magnitude. This approach imposes no constraints
on the sparsity pattern and could remove most of weights
among all pruning methods. Thus, it is also called unstructured
pruning. However, the randomly distributed non-zero weights
lead to substantial irregular memory accesses, which imposes
great challenges for efficient hardware execution. As such,
researchers propose other two more structured pruning methods.

The second sparsity pattern shown in the middle of Fig. 2,
called vector-wise (VW) [66], [70], divides a column
in the weight matrix to multiple vectors. Within each vector,
it prunes a fixed portion of elements by the rank of their
importance scores. This approach preserves the randomness
within each vector for model accuracy. Meanwhile, it also
maintains the regular structure for efficient execution, where



(a) VGG. (b) BERT.

Fig. 3: Sparsity and execution time comparison between dense
and various sparse models (VGG and BERT). The accuracy of
various sparse models is 1% lower than the dense model.

different vectors have the same number of non-zero weight
elements. The third pattern, called block-wise (BW) [35],
divides the weight matrix to small blocks, and treats a block as
the basic pruning unit. In other words, the EW sparsity pattern
is a special case of the BW sparsity pattern, which expands a
1⇥1 block to an n⇥n block. The structural sparsity pattern
EW leads to the efficient execution of sparse models.

B. Execution Efficiency Analysis
We first use two popular deep neural network models to

evaluate the execution efficiency of sparse models generated by
the aforementioned three sparsity patterns. Our experimental
results show that although these pruning approaches can lead to
sparse models with a large volume of sparsity (i.e., zero weight
elements), they fail to achieve a meaningful speedup compared
to the unmodified dense model on the existing GPUs. Moreover,
the emergence of dense matrix multiplication accelerator such
as tensor core further widens their performance gap.

We first study a CNN model VGG-16 [53] with 13 convo-
lutional layers and 3 fully connected layers. We evaluate it on
the image classification task using the ImageNet dataset [25].
The second studied model is BERT (base) in Sec. II-A, which
is a Transformer-based model with 12 encoding layers. We
evaluate the BERT model with the sentence classification task
on the MNLI dataset [58]. We use the vector size of 16 for
VW and the block size of 32⇥32 for BW as suggested in their
original papers [35], [70]. We prune both models with the three
different sparsity patterns and keep the accuracy drop of each
model within 1% of its unmodified dense version.

We perform the efficiency analysis on a V100 GPU [39] with
CUDA 10.1 [40]. Besides the CUDA cores, the V100 GPU also
integrates the specialized tensor core for the acceleration of
dense matrix multiplication. This GPU has a peak throughput
of 15.7 TFLOPS (floating point operation per second) and 125
TFLOPS, for the CUDA cores and tensor cores, respectively.
We evaluate the performance of dense model with the cuDNN
library on the CUDA core and tensor core separately. We
execute the sparse model of EW and VW with the cuSparse [40]
library, which executes only on the CUDA cores. We execute
the sparse model of BW with the BlockSparse [55] library,
which leverages the tensor cores owing to its regularity.

Fig. 3 compares the sparsity and performance between the
dense and sparse models with various patterns. All patterns

achieve over 50% sparsity with the greatest by EW. The
performance of EW and VW is slower than their dense version
on the CUDA core (Dense-C). In addition, the performance gap
between the dense model and sparse model exacerbates when
the dense matrix accelerator tensor core is used (Dense-T).
Prior work [70] reports a 1.5⇥ speedup using the VW pattern,
which requires non-negligible modifications of the tensor core.
BW achieves the best performance among all sparse models as
it runs on the tensor core. However, its performance is still
3⇥ slower than the dense model on tensor core.

In summary, the existing pruning approaches generate sparse
models that are inefficient on the existing hardware. As such,
we need a sparsity pattern that can match the existing hardware
features while maintaining the fine granularity, which is critical
for achieving the high model accuracy.

IV. TILE SPARSITY

In this section, we present the details of our proposed tile
sparsity pattern. Our approach leverages the tiled execution
of matrix multiplication, which is originally designed for
exploiting the parallel computation resources. The proposed
tile sparsity pattern introduces irregularity at the global matrix
level, but maintains the regularity of individual matrix tile. As
such, it can balance the DNN model accuracy and compatibility
for dense matrix accelerator, e.g., tensor core. We also show
that the tile sparsity pattern can be overlaid with the most
fine-grained element-wise pattern to increase the sparsity of
pruned models and reduce their accuracy loss.

A. Tiling and Pruning Co-design
As Sec. II explains, the dominant computation in deep

neural network models is the general matrix multiplication
(GEMM). In this subsection, we first present the details of
tiled matrix multiplication. We then propose to co-design the
matrix tiling and deep neural network pruning, which leads to
the tile-wise (TW) sparsity pattern. We explain how TW
maintains the compatibility on the dense GEMM accelerator
and the composability with the fine-grained sparsity pattern.

Fig. 4 1 shows one level tiling of matrix multiplication
on the GPU. The GEMM computes C = A⇥B with input
matrix A (M⇥K), weight matrix B (K⇥N), and output matrix
C (M ⇥N). Since modern high-performant microprocessors
mostly adopt the manycore architecture, the tiled execution of
output matrix C breaks the entire GEMM computation into
multiple ones such that they can run on multiple cores for
the parallel execution. Specifically, each core (or streaming
multi-processor, SM in NVIDIA GPU) computes one tile with
size of Ty ⇥G. Consequently, the core only loads Ty rows of
input matrix A and G columns of weight matrix B (called Btile).

With the output matrix tile size of Ty ⇥ G, the K ⇥ N
weight matrix B is divided to dN

Ge Btile. The key idea of our
tile-wise pattern is to prune each Btile with the regular
row pruning and column pruning. As shown in Fig. 4 2 , the
row pruning treats an entire row of each weight tile Btile as the
basic pruning unit, which leads to the reduced K-dimension size
(i.e., height) of each Btile. We prune each Btile with different
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number of rows determined by the pruning algorithm that we
describe later. The difference across different tiles maintains the
irregularity of sparsity that is required by model accuracy. E.g.,
the heights of four weight matrix tiles in Fig. 4 2 are K �2,
K �4, K �8, and K �1 respectively after the row pruning.

Besides the row pruning, we also perform the column pruning
for the weight matrix tile Btile, which reduces its N-dimension
size. Our approach prunes different number of columns (C) in
each weight matrix tile for better irregularity. The combined
row and column pruning alleviate the constraint on the sparsity
pattern and therefore allow more weight elements to be pruned.
In specific, we perform column pruning before row pruning for
maximizing the execution efficiency, which we explain later.

Pattern Overlay. Since the TW still enforces a particular
pruning pattern, important weight elements could be removed,
which may lead to accuracy loss. We propose to overlay TW
and EW to mitigate the accuracy loss. Fig. 4 3 illustrates the
resulted hybrid pattern tile-element-wise (TEW). In
order to prune a percent of weights, the TEW first prunes a+d
percent of weights with only TW, and then restores d percent
of the weight elements with the highest importance scores.

Pruning Order. To improve the execution efficiency of the
proposed sparsity pattern, we first perform the column pruning
and then re-organize the weight matrix tiles for row pruning.
We use the example in Fig. 4 2 to illustrate its advantages.
With the column pruning, the four tiles are pruned with 4, 3, 2,
and 1 columns, respectively. For the row pruning inside each
tile, we re-organize the four tiles with G+4, G+3, G+2, and
G� 9 columns. After pruning (Fig. 4 4 ), the N-dimension
sizes of the four tiles are G, G, G, and G�10, respectively.
The first three tiles have the same number of columns such
that their execution can be batched for better performance. For
the hybrid TEW pattern, each tile stores the EW pattern with the
compressed sparse column (CSC) format. We leverage linear
property of matrix multiplication to execute the TW and EW
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separately. We explain the execution details in Sec. VI.

B. Comparison with Other Sparsity Patterns
In this subsection, we demonstrate that the TW is not only

friendly for the hardware execution, and also preserves the
model accuracy. In specific, we compare the irregularity, which
determines the pruned model accuracy under the same sparsity
percentage, of EW, TW, BW, and VW. We use the EW as the
baseline because it has the highest degree of irregularity and
therefore the best accuracy.

Against VW. First, we find that there exists uneven distribution
of sparsity in different weight matrices, which makes TW a more
suitable pattern than VW. We illustrate this point by showing
the sparsity distribution of 72 weight matrices in BERT, which
has 12 layers and each layer has 6 weight matrices (4 for the
self attention and 2 for FC layers). We apply the EW pattern
to prune 75% weights. In specific, the importance score of all
elements in the 72 weight matrices are calculated and globally
ranked for the element-wise pruning. As Fig. 5 shows, the
final pruned weight matrices have different degrees of sparsity



Algorithm 1: The multi-stage TW pruning algorithm.
Input: Pre-trained weight matrix, Ms, and shape, (K, N);

Target sparsity, S; Variable granularity, G;
Output: Pruned weight matrix, Md

1 m = Ms; st = 0;
2 while st < S do
3 st=GraduallyIncrease(st );
4 m = m Splited by shape(K, 1) for Column Pruning;
5 tileScore =ImportanceScore(m);
6 tileScore =AprioriTuning(tileScore, S);
7 threshold = Percentile(tileScore, st );
8 while each tilei 2 m do
9 if tileScore[i]< threshold then

10 Prune the Column tilei with shape(K, 1);
11 end
12 end
13 m = m Splited by shape(1, G) for Row Pruning;
14 tileScore =ImportanceScore(m);
15 threshold = Percentile(tileScore, st );
16 while each tilei 2 m do
17 if tileScore[i]< threshold then
18 Prune the Row tilei with shape(1, G);
19 end
20 end
21 FineTune(m);
22 end
23 Md = m; return Md ;

although the averaged sparsity for all weights is 75%. This
suggests the uneven distribution of sparsity in the DNN model.
VW splits every column to a certain number of groups and all
the groups have the same sparsity by pruning the same number
of elements. In contrast, TW can maintain the uneven sparsity
distribution by globally ranking the matrix tiles.

Against BW. Compared to the BW [35], TW can remove more
weights owing to its less constraints on the pruning shape.
To illustrate this point, we characterize the number of zero
elements in different pruning shapes on the BERT model with
75% EW sparsity. Fig. 6 compares the number of zero elements
in a block of 8⇥8, 32⇥32 for the BW, as well as in a row vector
of 64 elements for the TW with G = 64. Both with 64 elements,
TW captures more zeros elements than BW. Meanwhile, prior
work reports that BW requires a pruning unit of 32⇥ 32 for
maintaining high performance [8], which captures even less
zero elements as Fig. 6 shows. In contrast, TW with G = 64 is
sufficient for achieving significant speedups as we show later.

In summary, we conclude with the irregularity relationship
of EW > TW > VW ⇡ BW. Owing to the existence of globally
uneven sparsity distribution, TW leads to a pattern than is closer
to EW than the VW pattern. TW also removes more weights than
BW owing to its less constraints on the pruning shape.

V. TILE SPARSITY BASED PRUNING

This section explains our multi-stage pruning algorithm
for leveraging the proposed TW sparsity pattern. Algorithm 1
describes the algorithm, which we explain in details as follows.

Overview. We adopt the multi-stage pruning algorithm that
gradually prunes the pre-trained dense model to reach a target
sparsity. Each stage consists of a pruning and fine-tuning step,

Algorithm 2: Apriori tuning.
Input: EW pruned results, EW ; Top-n and Last-n, n1, n2;

Tile importance score, tileScore; Target sparsity, S;
Output: Tile importance score, tileScore;

1 tileSparsity = EW [S];
2 topNTiles =GetTopNTiles(tileScore, n1);
3 tileScore =SetZero(tileScore, topNTiles)
4 lastNTiles =GetLastNTiles(tileScore, n2);
5 tileScore =SetInf(tileScore, lastNTiles); return tileScore;

where the algorithm first prunes the model with a small sparsity
target and then fine-tunes the pruned model to restore the
model accuracy. The pruning stage is repeated until the model
reaches the target sparsity. Prior work points out that the multi-
stage pruning improves the model accuracy than the single-
stage pruning [19]. At each stage, the algorithm calculates the
importance score of each tile. It then performs the column and
row pruning according to the rank of importance score. We
also perform the apriori tuning that borrows the information of
EW pruning to reduce the accuracy loss. Each iteration from
line 3 to 21 in Algorithm 1 is a complete pruning-tuning stage,
where line 3 increments the target in the current stage.

Importance Score. How to compute the importance score
is an active research topic [19], [30], [33], [34], [45], [67],
[69]. The most intuitive approach [19] is to use the weight’s
absolute value. We use a more accurate approach [33] that uses
the incurred error by removing a parameter as its importance
score. Although not the focus of our work, we find that this
approach leads to a better accuracy under the same sparsity on
complex models like BERT, and can reduce the fine-tune time
for other models like NMT and VGG in our experiments.

Let L be the loss function, w be the targeted weight variable,
w = wi means the original value, and w = 0 means that we
prune w. The importance score for w is the difference of loss
function as Equ. (1) shows. However, the exact computation is
expensive because M parameters require evaluating M versions
of the network, one for each parameter. We avoid evaluating
M different networks by approximating DL(w) in the vicinity
of w by its first-order Taylor expansion in Equ. (2) where R1
is the remain term of first order Taylor expansion, as suggested
by the prior art [33]. The approximated importance score in
Equ. (3) is essentially the product between weight value wi
and weight gradient ∂L(wi)/∂w, both of which already exist
in the training stage and therefore are easy to derive.

DL(w) =
q

(L(w = wi)�L(w = 0))2 (1)

L(w = 0) = L(wi)+
∂L(wi)

∂w
⇤wi +R1(w = 0) (2)

DL(w)⇡
r

(
∂L(wi)

∂w
⇤wi)2 (3)

Pattern Pruning. As explained in Sec. IV, the TW pattern
requires the column pruning before the row pruning. We
first break the weight matrix into column-based tiles (line
4) and then evaluate the importance score of each tile. We
then determine the threshold for column pruning based on the
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sparsity target in the current stage (line 5). Line 6 applies the
apriori tuning that we explain later, and line 8-12 remove the
column tiles. Afterwards, we reorganize the the column-pruned
matrix to tiles (line 13). Line 14-20 perform the row-pruning,
which is similar to the column pruning. After the column
and row pruning, the weight matrix becomes compatible to
TW. In our algorithm, we design the tiling granularity G as a
tunable hyper-parameter, through which we explore the trade-
off between the accuracy and performance of the sparse model.

Global Weight Pruning. As shown in Sec. IV-B, there exists
an uneven distribution of weight sparsity in different layers
of a DNN model, which we use a global weight pruning to
exploit. The codes in line 7 and line 15 sort the scores for all
tiles in the column and row pruning, respectively. The codes
in line 8-12 and line 16-20 prune the tiles from all layers in
the DNN model according to their importance rank.

Apriori Tuning. We use EW pattern with the target sparsity
as an apriori knowledge to better guide our TW-based pruning
algorithm because EW achieves the best model accuracy under
the same sparsity. In the EW sparsity results, we observe a
strong locality pattern, where more than 10% tiles (columns) are
completely pruned (i.e., 100% sparsity) when the pruning target
sparsity is 75%. We leverage this observation to augment our
pruning algorithm with apriori tuning in Line 6 of Algorithm 1.
The detailed apriori tuning algorithm is shown in Algorithm 2.
First, we get the tile-level sparsity distribution from the EW
results in the target sparsity. We set the top-n maximum sparsity
tile score 0, which means high priority to prune. In contrast,
we set the last-n tiles a large score and would not be pruned.

VI. EFFICIENT GPU IMPLEMENTATION

This section introduces our efficient GPU implementation
that unleashes the algorithmic benefits of TW. Exploiting the
unique sparsity pattern of TW, we first describes the basic tiling
design, followed by three key optimizations that combines
intelligent data layout and concurrency/batching optimizations
to maximize the efficiency of TW tiling on tensor cores.

The advantage of TW sparsity pattern is that sparse matrix
multiplication could be transformed to dense GEMM, which
can be effectively accelerated on dense GEMM accelerators
such as the tensor core on GPUs (Sec. IV). Fig. 7 shows how
we transform sparse matrix multiplication that have the TM
sparsity pattern to a dense GEMM, and how it exploits various
GPU characteristics to maximize the performance.

Tiling. We start by tiling matrices as usual. Fig. 7 1 illustrates
an example, where generating an output tile Ctile requires two
input tiles Atile and Btile. Each input matrix tile has two mask
vectors that indicate which rows and columns in the matrix tile
are pruned. In the example of 1 , the blue rows and columns
are pruned. We remove the pruned rows and columns in the
weight matrix tile Btile, which can be done offline before the
model inference starts. The input tile Atile and output tile Ctile
are stored in the dense format to avoid the preprocess overhead.
Their pruned rows/columns are skipped rather than removed.

We modify the dense GEMM kernel such that it skips
computing partial sums for pruned elements according to the
mask vectors. This reduction of computation is the source of
acceleration. Our baseline GEMM implementation is based on
the open-sourced CUTLASS [41], which is a high-performance
linear algebra CUDA library. It implements three levels of
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tiling to maximize the data reuse in the global memory (thread
block tile), shared memory (warp tile), and register file (thread
fragment). Meanwhile, it can also leverage the tensor core in
the GEMM computation, which we use to accelerate the TW.

However, a naive tiling implementation is inefficient and
even causes slowdown compared to the original dense model.
In our implementation, we exploit three optimizations that
mitigate the inefficiencies and maximize the benefits of TW.

Memory Accesses Coalesce. Naive tiling leads to frequent
uncoalesced memory accesses that are inefficient on the single-
instruction-multiple-data based GPUs. Fig. 7 1 shows the
memory access patterns in the original row-major matrix format.
The pruned blue row in Btile causes the skip of blue column in
Atile. Therefore, a continuous access to the Atile (marked by the
red row) that is originally coalesced now becomes uncoalesced,
which can cause severe performance degradation as uncoalesced
memory accesses require multiple memory transactions. The
uncoalesced accesses also exist in the matrix tile Ctile (marked
by the green row) owing to the pruned blue column in Btile.

We propose to store the matrix tiles in their transposed
format to optimize their memory access efficiency. In Fig. 7
2 where the three tiles are transposed, the column skipping

is converted to the row skipping. Thus, it eliminates the
uncoalesced accesses and improves the access efficiency.

Load Imbalance Mitigation. TW sparsity inherently intro-
duces imbalanced tiles. That is, some tiles will require
more computations since fewer rows/columns are pruned;
other tiles that have more rows/columns pruned will lead to
lower computation. Imbalanced tiles leads to resource under-
utilization, and thus affects the overall speedup.

We propose to batch tile computations to improve the
utilization. Fig. 7 3 shows an example where the weight matrix
is decomposed into dN

Ge tiles, where G is the TW granularity.
Different Btile are batched together to share the same Atile.
Batching improves resource utilization as a batched GEMM
packs multiple tiles and thus increases the computation.

Another practical benefit of batched-GEMM implementation
is that we can reuse existing high-performance tensor core-
based GEMM kernels and avoid implementing specialized
GEMM kernels, each customized for a particular tile size.
Fig. 8 illustrates the warp-level tiling and Listing 1 shows the
kernel implementation that uses tensor core APIs. We assume
that G = 32, Ty = 32 and Tz = 16, which is the minimum tiling

Listing 1: GEMM kernel on tensor core.
1#define G 32
2#define T_y 32
3#define T_z 16
4__global__ void StreamMaskedGEMM(int M, int Pruned_N, int

Pruned_K, half *A, half *B, half *C, half alpha, half
beta, int *mask_n, int *mask_k){

5 //Allocate C_tile in Register File.
6 half C_tile[G * T_y];
7 //Allocate A_tile and B_tile in Shared Memory.
8 __shared__ half A_tile[T_y * T_z];
9 __shared__ half B_tile[G * T_y];
10 for(int k = 0; k < K; k+=T_z){
11 //Load A_tile from Global to Shared Memory skipping

the pruned row with mask_k.
12 Load_A_Tile_with_Mask(A_tile, A, mask_k);
13 //Load B_tile from Global to Shared Memory with

Pre-Processed B.
14 Load_B_Tile(B_tile, B);
15 //Tensor core API: WMMA with fixed 16x16x16 GEMM.
16 WMMA::MMA(C_tile, A_tile, B_tile, alpha, beta);
17 }
18 //Store C_tile from Register File to Global Memory

skipping the pruned row with mask_n.
19 Store_C_Tile_with_Mask(C, C_tile, mask_n);
20}

granularity as it must be the multiple of 32 (i.e., warp size).
Atile and Btile are transposed and stored into the shared memory
and Ctile to the register file. Then a warp tile will compute
the out-product with the tensor core MMA API, which can
support the fixed size (16⇥16⇥16) matrix multiplication.

While batching mitigates resource under-utilization, we find
that it is possible that the computation of a batch still under-
utilizes the GPU resources. We leverage concurrent kernel
execution on modern GPUs [38] to further improve resource
utilization. In the studied NVIDIA GPU platform, we overlap
the computation of different tiles by assigning to different
streams, and rely on the underlying scheduler to maximize the
resource utilization. Fig. 7 4 shows an example where naively
running different batches could have a lower performance than
the original unpruned GEMM. Concurrently executing multiple
batches with different streams improves the performance.

Kernel Fusion. Complex DNN models necessarily incorporate
non-GEMM computations. For instance, the BERT model
spends about 39% time on non-GEMM kernels, such as
Add-bias and BatchNormalization, constituting the
“Amdahl’s law bottleneck.” Meanwhile, our memory coalescing
optimization also introduces additional transpose kernels, which
can incur a large performance overhead if leave unoptimized.

As such, we propose to fuse consecutive non-GEMM
kernels to improve the performance. Kernel fusion has two
advantages. First, we reduce the number of kernels to re-
duce the launch time. Second, fused kernel reduces access
to global memory and shares the register resources. For
example, the previous Add-bias operation can execute with
BatchNormalization when the data is loaded into the
register file. We also modify the memory access behavior in
those non-GEMM kernels to reduce the number of transpose
kernels. With this modification, we only need to transpose
matrix A in the first layer and transpose matrix C after the last
layer, which significantly reduces the transpose overhead. We
also apply the kernel fusion optimization to the dense model



baselines for the fair comparison, which, for example, reduces
the 39% non-GEMM execution time in BERT to 29%.

VII. EVALUATION

In this section, we demonstrate that TW is able to maintain
the accuracy of sparse DNN models and provide the significant
execution speedup over the dense model and other sparsity
patterns at the same time. We first explain our evaluation
methodology with the use of state-of-the-art DNN models
on the GPU equipped with tensor cores. We then study the
design space of TW to explore the trade-off between model
accuracy and latency. In the end, we select the representative
configurations of TW and compare it with other sparsity patterns,
which demonstrates the acceleration capability of TW.

A. Methodology

Benchmark. We evaluate three popular neural networks, VGG
(CNN), NMT (LSTM), and BERT (Transformer), which cover
tasks from the computer vision and and NLP domain.

VGG16 [53] is a popular CNN model with 13 convolutional
layers and 3 fully connected layers. We evaluate its accuracy
for image classification on the ImageNet [25] dataset with
1.2 million training images and 50,000 validation images. We
prune its weight matrix after applying the im2col method [7],
which flattens the filters in the same channel to a column
and different columns correspond to different channels (so the
flattened feature map matrix left multiplies the flattened weight
matrix in Fig. 4). This approach is similar to prior work [70].

We evaluate the accuracy of NMT model, which adopts the
attention based encoder-decoder architecture, for the machine
translation task [9]. We reproduce the model with open source
framework [31]. We evaluate the NMT model on the IWSLT
English-Vietnamese dataset [32], and use the BLEU (bilingual
evaluation understudy) score [42] as the accuracy metric.

For the state-of-art Transformer model family, we use the
BERT-base with 12 layers. The two evaluated downstream tasks
are the sentence-level classification on the widely used GLUE
(general language understanding evaluation) dataset [58] and
the more challenging question answering task on the SQuAD
dataset [48], [49]. The GLUE dataset is a composite dataset
with 10 different sub-tasks, which we evaluate 6 out of them.

In our experiments, we use the pre-trained models that can
achieve their reported reference accuracies. We then apply
EW, VW, BW, and our proposed TW sparsity patterns to prune
the dense models according to the algorithm described in
Sec. V. We use the TensorFlow [1] framework for fine-tuning.
Depending on the dataset size, we perform the fine-tuning for
4-10 epochs at each target sparsity level, which is sufficient to
saturate the model accuracy in our experiment.

Baselines. We compare the proposed TW with EW, VW, and
BW. For the latency evaluation, we execute EW and VW
using the cuSparse [40] library, and execute BW using the
BlockSparse [55] library released by the authors. Our TW
implementation (Sec. VI) is based on CUTLASS [41], an open-
source, high-performance GEMM template library. For all those
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Fig. 9: Accuracy and latency of sparse BERT model in TW
and other patterns with different granularities. All latencies are
measured on tensor cores and normalized to the dense model.

libraries including TW, we modify the original model codes to
explicitly call each library. In the rest of this section, we focus
on the GEMM execution time unless explicitly mentioned.

All the experiments are conducted on the Tesla V100
GPU [39], which has a peak throughput of 15.7 TFLOPS
and 125 TFLOPS for the CUDA cores and tensor cores,
respectively. The EW implementation runs only on the CUDA
core with the cuSparse library and the BW implementation runs
only on the tensor core with BlockSparse. The convolution
operations in the CNN workloads are converted to GEMM
by the im2col method [7]. The models are all trained using
FP32. All inferences on CUDA cores are done using FP32,
and all inferences on tensor cores are done using FP16.

B. BERT Results and Design Space Exploration

We now study the design space of TW, which is the tiling
granularity G, to explore the trade-off between model accuracy
and inference latency. In addition, we also evaluate the hybrid
TEW pattern, which extends the trade-off space in sparse models.
The analysis is case-studied on the BERT model for sentence
pair entailment task on the MNLI dataset. We report the results
of other models/tasks/datasets in the next subsection.

Impact of TW Granularity. We first explore the impact of
tiling granularity G for TW-based pruning. Fig. 9a compares
the accuracy of EW, BW, and TW. The most fine-grained EW
achieves the best model accuracy as expected. When sparsity
is less than 50%, all the granularities evaluated have similar
accuracies, suggesting that the BERT model is at least 50%
redundant. In particular, at a sparsity of 75%, our proposed TW
with G = 128 has an accuracy loss of about 0.9% and 2.4%
compared to EW and the baseline dense model, respectively.
As the sparsity increases, the accuracy drop becomes more
significantly. The most coarse-grained BW (64⇥64) experiences
the most drastic accuracy drop of 4% at 75% sparsity.

The accuracy drop of TW increases slightly with a larger G
value. This is because the larger G value puts more strict
constraint on the pruning shape, but larger G also means
greater latency reduction. We find that G of 128 is sufficient
to maintain the model accuracy while providing significant
latency reduction. Fig. 9b compares the latency of the dense
model, BW, and TW on the tensor core. With only 40% sparsity,
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Fig. 10: Accuracy and latency of TEW-based sparse BERT
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added EW elements. All latency values in (b) are normalized
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TW with G = 128 starts to outperform the dense model latency.
At a 75% sparsity, TW-128 achieves a speedup of 2.26⇥. In
contrast, BW with a block size of 64⇥ 64 is faster than the
dense model only when the sparsity is greater than 90%, which
leads to an accuracy loss as high as 10% , as shown in Fig. 9a.

Impact of d in TEW. We evaluate the impact of d in TEW,
which determines the amount of EW pattern imposed on TW
(Sec. IV). Fig. 10a compares the sparse BERT model accuracy
of different sparsity levels with EW, TW, and TEW patterns. The
accuracy of sparse model with TW is lower than EW. On the
other side, TEW can mitigate the accuracy loss in TW through
adding a small portion EW pattern, which is controlled by the
d parameter in Sec. IV-A. For instance, with d = 5%, the TEW
accuracy catches up with EW.

Fig. 10b compares the latency (left y-axis) and accuracy
(right y-axis) of the dense model and various TW and TEW
models with the fixed 75% sparsity. We show the latency
results on both the tensor cores and the CUDA cores, which
are all normalized to the dense model latency on CUDA cores.

On the tensor cores, TW achieves 2.26⇥ speedup than the
dense model. TEW achieves no speedup at d = 1% compared to
the dense model, and its performance is worse as d increases.
This is because the irregular portion of TEW (i.e., the EW
portion) could not be executed on the dense tensor cores and,
instead, has to be executed on the CUDA Cores, which is about
8⇥ slower than the tensor cores. To illustrate the point, we
show the results of running different sparse models on CUDA
cores only. Using CUDA Cores alone, TEW with d = 1% is
about 2⇥ faster than the dense model. Thus, we expect that
TEW is useful in resource-constraint scenarios such as low-end
GPUs with less or even no tensor cores, or mobile systems.

Speedup Scalability. We also study the speedup scalability
by intentionally pruning DNN models to an extreme sparsity
level. It is highly likely that the size of DNN models would
continue to grow [2]. Fig. 11 shows the latency speedup of
sparse BERT model with TW on tensor cores until 99% sparsity.
At the 99% sparsity level, TW with G = 128 achieves 11.6⇥
speedup, demonstrating its significant acceleration potential.

Performance Counters. Fig. 11 also shows the total number
of global memory load/store requests and FLOPS (floating
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Fig. 11: The scalability (up to 99% sparsity) of latency speedup
and corresponding performance counters for sparse TW-based
BERT model. TW-10 means the model with 10% TW sparsity.

operations per second) efficiency for running the sparse TW-
based BERT model, which are all normalized to the dense
BERT model. Compared to the original BERT model, our TW
implementation with zero sparsity generates twice of global
memory request owing to the masking overhead, for which
we use the int32 format. The extra load traffic leads to about
35% performance loss. With about 40% sparsity, the benefit
outperforms the overhead, leading to the net latency speedup.
The FLOPS efficiency equals the measured FLOPS divided by
all tensors’ peak FLOPS. The sparse TW model maintains a
relatively high FLOPS efficiency until 80% sparsity and quickly
drops after that owing to the reduced computation demand.

C. Comparison with Other Patterns

We compare the accuracy and latency speedup of TW
with EW, VW, BW on three different models. We perform the
comprehensive evaluation of BERT model for the sentence
classification task on the composite GLUE dataset, which
includes ten different datasets. We observe the similar results
on 6 studied datasets and therefore only report the result on
the largest dataset MNLI. We also report its result on the
question answering task with the SQuAD dataset. For the
latency speedup, we report the results on the V100 GPU using
tensor cores and CUDA cores separately.

Accuracy. Fig. 12 shows the accuracy of different models
with different pruning patterns. The granularity of TW is 128
and block size for BW is 32⇥32, which balance the accuracy
and latency speedup as our previous design space analysis
suggests. The vector size of VW is set to 16 as used in the
original paper [70]. EW reaches the best accuracy of all the
evaluated algorithms and BW has the worst accuracy under the
same sparsity. The accuracy of TW and VW are similar when
the sparsity is below 70%. With high sparsity (> 70%), TW
generally outperforms the VW with the exception of NMT.
TW achieves the better accuracy when sparsity is high because

it allows the uneven distribution sparsity in a weight matrix.
Fig. 13 shows the resulted weight sparsity distributions of layer
0 of BERT under the 75% sparsity for different patterns. The
EW result shows that there exits uneven distribution across the
matrix. And VW is unable to fit this characteristic because
it forces all prune units (vector) to have the sparsity. In
contrast, both BW and TW can adapt to this sparsity locality.
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Fig. 12: The accuracy comparison of different models on the model-specific downstream tasks with various pruning patterns
and varying sparsity levels. Plot (a) and (b) are BERT models evaluated on GLUE dataset and SQuAD dataset, respectively.
Plot (c) is VGG16 model evaluated on ImageNet. Plot (d) is LSTM model evaluated on NMT task.
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Fig. 13: Different pruning patterns under 75% sparsity on layer
0 attention matrix wQ in BERT model.

Meanwhile,VW cannot adapt to the uneven sparsity distribution
across different layers as explained in Sec. IV-B while TW
can. For the NMT model, both VW and TW experiences a
rapid accuracy drop compared to EW when the sparsity is over
60%, which suggests this model prefers irregular sparsities. VW
slightly outperforms TW owing to its smaller granularity of 16.

Speedup vs Accuracy. Fig. 14 compares the trade-off of
latency speedup and model accuracy based on TW and other
patterns including BW, VW, and EW. In specific, we compare the
TW and BW running on the tensor cores, and compare the TW,
VW, and EW on the CUDA cores. The speedup is calculated
against dense models on the tensor cores and CUDA cores
separately. The experimental results demonstrate that only TW
can extend the latency-accuracy Pareto frontier on tensor cores
and CUDA cores. In contrast, other sparsity patterns lead to
both longer latency and lower accuracy than the dense model.

Finally, we compare the latency speedup of various patterns
with the same level of accuracy drop (BERT with < 3% drop,
VGG with < 1% drop and NMT with < 1 BLEU drop). On

(a) BERT

(b) VGG

(c) NMT

Fig. 14: The trade-off between latency speedup and model
accuracy. The speedup is calculated on tensor cores (left
column) and CUDA cores (right column) separately.

tensor cores, TW achieves an average speed up of 1.95⇥ while
BW is 0.41⇥. On CUDA cores, TW achieves an average speed
up of 2.86⇥ while EW and VW are 0.69⇥ and 0.47⇥. TW
achieves the meaningful latency reduction on both tensor cores
and CUDA cores owing to its compatibility with dense GEMM,



Fig. 15: The end-to-end latency breakdown for sparse TW-based
BERT and NMT with 75% sparsity (< 3% accuracy drop and
< 1 BLEU drop than the dense model respectively). We enable
the transpose and fusion optimization by default.

while all other sparsity pattern cause the actual slowdown.

D. End-to-end Latency and Impact of Optimizations

The above performance comparison between the dense model
and various sparse models only considers the GEMM-related
computation. We now study the end-to-end latency and impact
of optimizations presented in Sec. VI, which include the
transposed matrix storage and kernel fusion. Fig. 15 shows
the end-to-end latency breakdown with different optimization
combinations when running the sparse TW BERT model with
75% sparsity. We do not use the VGG in this experiment
because it only includes 5% non-GEMM computations. Without
performing the matrix transpose optimization, the GEMM com-
putation cannot benefit from the high sparsity. The transpose
kernel takes about 10% of overall latency without fusion. With
the transpose and fusion, the GEMM-only speedup for BERT
and NMT is 2.26⇥ and 2.38⇥ respectively, while the end-to-
end speedup is 1.61⇥ and 1.86⇥ on tensor core.

VIII. RELATED WORK AND DISCUSSION

Architectural Support for Sparse DNN. Recently, designing
efficient architectures for sparse DNN models has become an
active research topic. There are many prior works to dealing
with sparsity through architectural support [11], [20], [23],
[52], [65], [68]. ExTensor [20] proposes a novel approach
to accelerate tensor algebra kernels using the principle of
hierarchical computation elimination in the presence of sparsity.
Sparse ReRAM Engine [65] exploits both the weight and
activation sparsity to accelerate the DNN model. The channel
gating [23] is a fine-grained dynamic pruning technique for
CNN inference. Those work are all based on customized ASIC
or FPGA. There are also prior works [17], [70] that focus on
optimizing the tensor core for better performance or flexibility.

Software Optimization for Sparse DNN. There are also
previous works that propose software optimization for sparse
model acceleration on modern architectures without hardware
modification. Prior work proposes an efficient mixed-mode
representation called MM-CSF for sparse tensor, which parti-
tions nonzero elements into disjoint sections for performance
acceleration [36]. CFS SpMV is a new optimization strategy
for the sparse matrix-vector multiplication and shows high
performance on multicore architectures [13]. DCSR (densified

compressed sparse row) is well-suited to GPU architecture for
sparse computation using the near-memory strategy [14].

TW on Other Platforms. Although we only implement TW on
the GPU platform, it is quite possible to support our sparsity
pattern on other platforms like TPU [24]. The fundamental
requirement of supporting TW is the medium size GEMM.
Our evaluation shows that TW with G = 128 strikes a balance
between model accuracy and latency, which implies the
requirement of 128⇥N ⇥ 128 GEMM. The latest TPU [4]
adopts a relatively large systolic array (128⇥128), which meets
the aforementioned requirement. However, it only exposes high-
level programming interface like GEMM, which makes the
other optimization like streaming concurrency difficult. In other
words, supporting TW on other platforms like TPU is feasible
if their low-level programming interfaces are exposed.

Sparsity Patterns. The sparsity pattern plays an important
role in both the model accuracy and architecture design for
sparse DNNs. Zhu et al. propose the vector-wise pruning pattern
and the corresponding sparse tensor core architecture [70]. The
vector-wise pruning pattern adds constraints on the sparsity
of each pruning unit to guarantee the pruned matrices to be
acceleration-friendly. They reported accuracy results on popular
CNN and RNN models. However, this method fails to capture
the uneven sparsity distribution across different model layers,
which limits its pruning effect. Narang et al. propose block-wise
pruning pattern [35]. This pattern has the prune unit as a block,
making it execution-friendly on the dense GPU architecture.
However, their method has a strong constraint on the pruning
shape which impacts the model accuracy significantly.

Recent work also explores energy-oriented pruning, targeting
both accelerators [62], [63] and general-purpose processors [61],
[64]. Our work removes redundant computations and thus could
also reduce energy consumption. Yang et al. [60] demonstrates
quantization-pruning joint compression; we leave it to future
work to explore how to integrate tile sparsity with quantization.

IX. CONCLUSION

In this work, we propose to co-design the tiling of matrix
multiplication and DNN model pruning pattern, with the
purpose of balancing the irregularity for the model accuracy
and compatibility for dense GEMM computation. We study
an efficient software-only implement of our proposed sparsity
pattern, TW, that leverages the tensor core accelerator and
concurrency features in the GPU. We demonstrate its capability
of model accuracy preserving and high performance speedup
on the state-of-the-art DNN models.
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