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Abstract—The research interest in specialized hardware accel-
erators for deep neural networks (DNN) spikes recently owing to
their superior performance and efficiency. However, today’s DNN
accelerators primarily focus on accelerating specific “kernels”
such as convolution and matrix multiplication, which are vital but
only part of an end-to-end DNN-enabled application. Meaningful
speedups over the entire application often require supporting
computations that are, while massively parallel, ill-suited to DNN
accelerators. Integrating a general-purpose processor such as a
CPU or a GPU incurs significant data movement overhead and
leads to resource under-utilization on the DNN accelerators.

We propose Simultaneous Multi-mode Architecture (SMA),
a novel architecture design and execution model that offers
general-purpose programmability on DNN accelerators in order
to accelerate end-to-end applications. The key to SMA is the
temporal integration of the systolic execution model with the
GPU-like SIMD execution model. The SMA exploits the common
components shared between the systolic-array accelerator and
the GPU, and provides lightweight reconfiguration capability to
switch between the two modes in-situ. The SMA achieves up
to 63% performance improvement while consuming 23% less
energy than the baseline Volta architecture with TensorCore.

I. INTRODUCTION

Deep learning has revolutionized the key domains such
as natural-language processing and computer vision [9], for
which the GPU is the enabler. Although still widely used
for training and inference, GPU’s performance and energy
efficiency start to plateau. As such, computer architects start
to build specialized hardware accelerators for deep neural
network models, which have high computation intensity and
regular dataflow patterns. Prime examples include Eyeriss [5],
Diannao Family [4], TPU [8], and TensorCore (TC) [17].

However, existing accelerators are insufficient to provide
meaningful speedup for DNN-enabled applications. This is
because they focus only on specific “kernels” such as convolu-
tion, but ignore the end-to-end application characteristics. As
a result, accelerating those fixed kernels leads to insignificant
speedup, sometimes even slowdown, at the application-level.
In specific, emerging “hybrid” neural network models have
started to combine the convolution kernels with irregular
kernels that are, although massively parallel, ill-suited for
specialized accelerators. Besides, applications like autonomous
driving [13] adopt both the neural network models and algo-
rithms from other domains with different characteristics.

To support the end-to-end applications, specialized accel-
erators must be coupled with flexibilities for unsupported
computations. The mainstream solutions fall into three cat-
egories, neither being efficient. The first approach integrates
the accelerator with a general-purpose host processor, which
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incurs significant data movement overhead and accelerator
resource under-utilization during the unsupported computa-
tions. Second, systems like TPU could convert the unsupported
operations to compatible operations for the native execution,
but with the severe efficiency loss. Finally, the GPU-based
systems provide general-purpose programmability for different
types of operations, but are less efficient than the specialized
accelerators when executing those regular kernels.

We propose simultaneous multi-mode architecture (SMA),
which provides flexibility in accelerating the irregular opera-
tions while maintaining efficiency in regular convolution op-
erations. It leads to significant end-to-end application speedup
compared to state-of-the-art systems. Our design philosophy
starts with the SIMD execution in the GPUs, and judiciously
apply lightweight architectural augmentations to support the
systolic execution model, which is proven efficient for regular
operations like convolutions and matrix multiplication [10].

Our integration of a specialized accelerator on a general
purpose substrate shares the similarity in the recent tensor
core (TC) in the NVIDIA Volta GPU [20]. However, our
architecture is different from the tensor core in the two fol-
lowing key aspects. First, we temporally integrate the systolic
array and SIMD architecture while TC does so spatially which
leads to area wastage. Second, we employ a SIMD-friendly
systolic array dataflow, which achieves high data reuse while
maximizing the GPU memory access efficiency. In contrast,
the dataflow in tensor core suffers from the low data reuse.

The critical challenge in our architecture is to achieve a
high execution efficiency in the systolic mode and a low
runtime reconfigurability overhead between the systolic mode
and SIMD mode. We leverage the GPU’s massive parallelism
and a fine-grained synchronization scheme, which is able to
control the execution of systolic array with little overhead.
The systolic mode eliminates most of the expensive accesses to
register file and shared memory, and significantly improves the
matrix multiplication efficiency than the SIMD-only mode. On
the other hand, the SIMD mode enables efficient acceleration
of hybrid DNN workloads as it preserves the programmability.

The contribution of our work is as follows:
• We quantify the execution inefficiencies of running DNNs

with irregular operations on a variety of existing hardware
platforms and identify their execution bottlenecks.

• We consider various systolic array dataflows and identify a
SIMD-friendly one that balances memory access efficiency
and data reuse to facilitate its integration on GPUs.

• We propose SMA, an architecture that temporally integrates
SIMD and systolic execution model with little reconfigura-
tion overhead by exploiting the architectural similarity.
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Fig. 1: Tensor Core and TPU Efficiency.

II. ANALYSIS OF EXISTING DNN ACCELERATORS

We analyze the performance of executing the emerging
hybrid DNN models on existing hardware accelerators, i.e.,
TPU [8] and TensorCore (TC) [17]. They are the two com-
mercially available DNN accelerators with highly optimized
software stacks. However, our experimental results identify
that the GEMM-incompatible computation in the hybrid mod-
els is too computational-demanding to run on the hardware
accelerators even coupled with a general-purpose CPU.

A. DNN Hardware Accelerators

Both TPU and TC accelerate the GEMM operation, which is
the dominant operation in the commonly used models, such as
convolution neural network [9] (CNN), multi-layer perceptron
(MLP), and RNN/LSTM [14].

The TPU uses a weight stationary systolic array [10], whose
size is 256×256 in TPU-v1. The systolic array has a significant
degree of data reuse, which leads to high-performance and
energy-efficient execution of GEMM. In contrast, TC is still
SIMD architecture and has a limited degree of data reuse.
According to the reverse-engineered work [20], it executes
the GEMM operation in the dot-product fashion and supports
a 4× 4× 4 GEMM operation, much smaller than the TPU.

We compare the GEMM performance between TPU and TC
in Fig. 1. We use a cloud TPU-v2, which has a total of eight
cores. We only use one core that has a 128×128 systolic array
with peak 22.5 TFLOPS. The GPU is a Tesla V100, which
has 15.7 FP32 and 125 TC peak TFLOPS [17]. Owing to their
different peak FLOPS, we use the FLOPS efficiency (achieved
FLOPS divided by the peak FLOPS) as the metric for a fair
comparison. With a large enough matrix, the TPU achieves
almost 100% FLOPS efficiency, while the TC achieves less
than 60% efficiency. As previously explained, the TC calcu-
lates the GEMM with multiple parallel dot-product operations
while the TPU does it in the systolic fashion. As a result,
a tensor core only supports a small GEMM operation with
limited data reuse and high register bandwidth consumption,
which leads to its low FLOPS efficiency.

B. Hybrid Models

We now compare the performance of the two accelerators
on hybrid models. Those models, which are the results of fast-
evolving DL algorithms, can have operations that cannot be
executed through the GEMM, and therefore present significant
challenges for the existing fixed-function accelerators.

Fig. 2 shows two such hybrid DNN models, i.e., Mask R-
CNN [6] and DeepLab [3]. Both models target the semantic
segmentation task, which aims to classify all the pixels in the
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Fig. 2: Mask R-CNN (top) and DeepLab (bottom) details.
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Fig. 3: TPU vs GPU for Mask R-CNN and DeepLab.

input image and is more complicated than the image clas-
sification. As such, the state-of-the-art models rely on CNN
models for feature extraction, but also introduce additional
operations to improve the segmentation accuracy. Both models
in Fig. 2 have GEMM-compatible CONV and FC layers. But
Mask R-CNN has RoIAlign, a bi-linear interpolation that
requires many reshape operations, and RegionProposal, a
control-flow intensive non-max suppression (NMS) algorithm.
Those operations are challenging to support with only GEMM
operation. Similarly, DeepLab has the ArgMax and CRF
(conditional random field [11]) that are GEMM-incompatible.

Fig. 3 shows the performance comparison and breakdown
on TPU and GPU. The TPU executes Mask R-CNN about
75% slower than the GPU. A closer observation reveals that
the GPU is slower than the TPU on the GEMM-compatible
kernels (i.e., CONV and FC), but far out-performs the TPU
on RoIAlign and RegionProposal. We examine the
TPU-version source code for performance debugging and find
that it converts the control-flow intensive NMS operation in
RegionProposal to multiple dataflow-based GEMM oper-
ations, and converts RoIAlign operation to multiple average
pooling operations for which TPU has hardware support. As
such, the TPU can execute Mask R-CNN without relying on
the CPU, i.e., with no data transferring overhead. However, the
improper mapping causes severe performance degradation.

The DeepLab runs much slower on the TPU than the
GPU owing to its infeasibility to support the important CRF
operation. As such, the TPU transfers the data to the CPU for
executing CRF, and we separate the CRF time from the overall
execution time. The TPU has higher performance (> 1.6×)
than the GPU for the GEMM-compatible kernels, but the data
transferring overhead is 1.2× of its GEMM operation, leading
to an overall 2× slowdown compared to the GPU. Also, the
performance of CRF is 10× worse on the CPU (with one core).

The results show that over-specialization can severely de-
grade the performance for incompatible operations so that
it is crucial to provide general-purpose programmability for
emerging hybrid DNN models. However, the approach of
relying on general-purpose cores can cause significant data
movement overhead and also fails to exploit the computation



resources inside the accelerator.

III. SIMULTANEOUS MULTI-MODE ARCHITECTURE

To balance the efficiency and flexibility, we propose the
simultaneous multi-mode architecture. SMA integrates a GPU-
like SIMD execution mode and a systolic execution mode, and
temporally switches between the two modes. The SIMD mode
efficiently executes GEMM-incompatible operations, and the
specialized mode accelerates GEMM operations. We describe
the design principles behind SMA and highlight its key
novelty over TC, another architecture instance that can switch
between generic SIMD execution and DNN acceleration.

A. Temporal Integration

The first design principle in SMA is the temporal integration
between the general-purpose mode and specialized mode. In
contrast, the TC adopts the spatial integration methodology,
which leads to the overhead in both the area and performance.

As explained previously, each TC has multiple dot-product
units for executing matrix multiplication, and each dot-product
unit has 4 MAC units [20]. The SIMD units in GPU have
the same computation ability but are not used when TC
is active, which is essentially area wastage. Meanwhile, the
TC also requires an adder tree for result reduction, which
incurs additional area overhead. Spatial integration of the two
architectures leads to area inefficiency and resource wastage
because the computation of DNN models is usually layer-by-
layer where only one architecture is used when performing the
computation for one layer. In contrast, SMA is built on top of
the existing SIMD execution units and aims for the maximal
sharing of hardware structures (i.e., improved area efficiency).

The spatial integration of TC also leads to its highly
decoupled execution model [1]: the SIMD units load data to
register file and the TC relies on an explicit synchronization
to receive the data. In addition, the TC only supports a fixed
shape (i.e., 4 × 4 × 4) of matrix multiplication and does not
expose the opportunity of SIMD-accelerator collaboration to
more aggressively hiding the data loading latency. This decou-
pled execution model has inherent performance inefficiency.
In contrast, the temporal integration in SMA enables such
collaboration by imposing zero switching overhead between
SIMD and accelerator mode.

B. Choice of Dataflow

SMA starts with a SIMD substrate and adds another systolic
mode for DNN acceleration because systolic array exploits
data reuse and outperforms the dot-product-based TC (Fig. 1).
However, the SIMD and systolic array favor distinct memory
access patterns, which in turn expose a fundamental trade-off
between memory access efficiency and data-reuse that we must
reconcile when integrating the two modes.

The SIMD architecture of GPU favors a coalesced memory
access, which is supported by the cache system [12]. However,
systolic array incurs memory accesses that could not be
coalesced. Fig. 4 (left) shows the weight-stationary dataflow
in the TPU. Loading matrix A and writing output matrix C
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Fig. 4: Comparison of TPU and SMA dataflow.

requires accessing different rows of the respective matrix as the
same cycle. Thus, directly implementing the systolic execution
model on the SIMD hardware would lead to unsupported
memory behaviors. While shared memory (scratchpad) in
GPUs supports uncoalesced memory accesses via banking, it
has a limited number of banks and thus does not scale well
to large (or multiple) systolic arrays.

The TC chooses to address the problem by favoring co-
alesced memory accesses to maximally utilize its GPU’s
memory subsystems. More specifically, TC uses a set of dot-
product units to implement GEMM [20]. In that way, all the
memory accesses (matrix A, B, and C) are coalesced in TC.
However, this approach leads to low data reuse and therefore
poor GEMM performance as evident in Fig. 1.

To strike a balance of memory access efficiency and data
reuse, we analyze different systolic array dataflow proposed in
prior work and identify a SIMD-friendly dataflow called semi-
broadcasted weight-stationary [10]. The dataflow, shown in
Fig. 4 (right), is similar to the TPU’s data. However, instead of
passing a matrix A element from top to bottom in the original
design, each A element now is broadcasted to all the PEs in the
same column. Every cycle, all the PEs in the same column get
the same element from matrix A, perform a MAC operation,
and send the data to the corresponding PEs on the right.

This dataflow is more SIMD-friendly and enables the
seamless integration on a SIMD substrate. Specifically, each
element in the matrix A and C is reused N times in the
N × N array, which is the same as the weight-stationary
systolic execution model and is better than the TC. Meanwhile,
accesses to matrix B and C are coalesced, and only accesses
to matrix A are uncoalesced.

IV. SMA IMPLEMENTATION

This section describes the architectural modification to the
baseline GPU to implement the SMA. The architectural design
challenge is that SMA temporally integrates the SIMD mode
and the systolic mode, and temporally reconfigures itself at
runtime. Thus, we must minimize the reconfiguration over-
head with minimal hardware augmentation. We then explain
the instruction control and SIMD-systolic interaction. The
temporal integration is feasible owing to our SIMD-friendly
systolic dataflow that has high enough architectural similarity
compared to the baseline GPU. As such, our design can reuse
as many existing resources (i.e., computation, memory, and
control) and architectural features as possible.
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Fig. 5: The details of SMA: A. systolic controller; B. shared
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A. SMA Unit Design

The heart of our design is a set of SMA units, with each
being a systolic array in the specialized mode and reconfigured
to conventional SIMD lanes in the general-purpose mode.

We use the latest Volta architecture [17] in Tbl. I as our
baseline GPU architecture, which has 80 cores (or streaming
multiprocessor, SM). Each SM has 64 CUDA cores (i.e., 64
FP32 unit) and 4 TCs (i.e., 256 FP16 units in total). It also
has up to 96 KB shared memory that has 32 banks and each
bank provides a 32-bit value. The register file can provide
vector-like access and its size is 256 KB in an SM.

SMA reuses the same computation resources in each SM (64
CUDA cores and 4 TCs, equivalent to 128 FP32 units in total),
and provides three SMA units per SM. Each SMA unit is a
8× 8 FP32 systolic array. Fig. 5 shows the microarchitecture
of one 8 × 8 SMA unit. The SMA unit is implemented on
top of the baseline SM architecture in the GPU with two key
architectural augmentations to support the semi-broadcasted
weight-stationary data-flow (Sec. III-B).

First, we repurpose the existing operand collector as a local
buffer for storing the stationary weights of each PE. Second,
we add additional wires to support broadcasting elements in
matrix A and communicating partial sums within the array.
Overall, the layout of the 8 × 8 systolic array could be done
with minimal routing changes to the physical layout of existing
SIMD units as the bottom of Fig. 5(C) shows.

Certain NVIDIA GPUs support the precision conversion
between FP32 and FP16 [17]. For example, two FP16 MAC
units can be grouped to one FP32 MAC unit. If the baseline
GPU supports this precision conversion, our SMA can also
exploit it, leading to an 8× 16 FP16 systolic array instead of
the current 8×8 FP32 systolic array. Similarly, our SMA unit
can also be built from other data types such as INT8.

B. Instruction Control
We present our asynchronous instruction based control

mechanism that can be seamlessly integrated into the exist-

GPGPU SMA
Baseline Volta Volta
SMs 80 80
CUDA Core/SM 64 FP32 units

3 8× 8 SMA unit
Tensor Core/SM 4 (256 FP16 units)

Shared Memory/SM 32 banks 32 banks (8 for all SMA units)
Configurable up to 96KB Configurable up to 96 KB

Register File/SM 256 KB 256 KB

TABLE I: Baseline GPU and SMA Configurations.
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ing SIMD pipeline and enable the simultaneous presence of
two distinctive modes. Under the hood, SMA uses GPU’s
rich memory resources, abundant parallelism, and fine-grained
synchronization to maximize the performance.

We propose a new instruction LSMA (Load, Store and
Multiply-accumulate) for the systolic mode. The instruction
executes the operation in Eq. 1 and requires four register
operands: the addresses of the first element in matrix A and
C, one element value in matrix B, and the height of matrix A.
The instruction executes asynchronously with respect to other
SIMD instructions, minimizing the interference to the existing
pipeline control logic. The threads need to issue an explicit
synchronization to access the systolic computation results.

LSMA B ⇒ C[out]← A[in]×B + C[in] (1)
Once LSMA instruction is issued, a dedicated systolic

controller in Fig. 5 is responsible for controlling the array with
two main roles. First, it has an active mask for controlling the
idle or active status of individual PE. Second, it has multiple
address generation units for feeding the data to the array that
has two different kinds of memory accesses (Sec. III-B). For
an SMA unit, we assign 8 shared memory banks for loading
matrix A with uncoalesced accesses and one register file (RF)
bank for storing matrix C with coalesced accesses. In the
baseline GPU, a RF bank provides 32 values (32-bit) for a
warp, which is enough for the SMA unit that reads 8 values
in a cycle. The three SMA units can be combined as an 8×24
array to coordinate their memory accesses. Fig. 5(C) shows the
register/shared memory access for the three SMA units.

TC has inherent inefficiency owing to the strictly syn-
chronous semantics and fixed matrix shape (Sec. III-B). In
contrast, our instruction design overcomes this inefficiency
by adopting the asynchronous semantics and a flexible shape
(K × 8 × 8), which enables the more fine-grained SIMD-
systolic collaboration as we describe in the next subsection.

C. Algorithm Mapping

We describe the algorithm mapping and optimization in
SMA, most of which run at the software level and leverage the
SIMD-systolic collaboration. We also present the new SMA-
specific warp synchronization primitive and scheduler.

We implement the GEMM of C = αA × B + βC and
adopt common parallelization techniques such as partition,
tiling, and double buffering as shown in Fig. 6. We divide the
computation by the output matrix C on the two-dimensional
grid of thread blocks (TBs). This partition avoids the inter-
TB communication and each TB is responsible for calculating



a sub-matrix of Csub, which is stored in the register file for
faster access. Owing to the constraints of register file capacity,
we choose the sub-matrix size of 128× 128.

For increased data-locality, Asub and Bsub are divided into
tiles of Atile and Btile with the size of 128×8. Different tiles
work in the double-buffer fashion: in each iteration, each TB
uses Atile and Btile to update the sub-matrix Csub. Since each
core has an 8×8 weight-stationary systolic array, we divide the
128×8 tile Btile into 16 sub-tiles to run on the systolic array.
As such, each systolic array operation computes Atile (128×8)
and Bsubtile (8×8). To maximize the concurrency, we use 64
warps (i.e. 2048 threads) per TB, which are divided into two
sets for double buffer. The two sets work alternatively between
loading tiles with the SIMD mode and computing the tile with
the systolic mode via the LSMA instruction. The warps in
the two sets are synchronized through CUDA’s recently added
fine-grained sync primitive cooperative groups [18].

The challenge of running the double-buffered algorithm on
the GPU lies in the architecture’s throughput-oriented design,
which leads to its greedy-then-oldest (GTO) warp scheduler.
The scheduler tries to issue the same set of warps over and
over to maximize the throughput, which may cause starvation
in the double-buffered warps. To overcome such a challenge,
we add a SMA-specific scheduler that works in the round-
robin fashion. The new scheduler works only in the systolic
mode and does not affect the original scheduler.

V. EVALUATION

In this section, we perform comprehensive performance and
energy efficiency evaluation of SMA in different scenarios.
For regular DNN models, we compare SMA with its baseline
SIMD architecture and demonstrate its efficiency and flexi-
bility for supporting both the regular and hybrid models. In
the end, we evaluate the SMA’s dynamic resource scheduling
capability in the context of autonomous driving application
that contains both DNN and traditional algorithms.

A. Simulation Methodology

For performance simulation of SMA, we modify GPGPU-
Sim 4.0 [2] and add the systolic mode in the baseline SIMD
architecture. We use GPUWattch [12] and CACTI [21] for
energy estimation. We use regular and hybrid models in Tbl. II.

For the GPU-based GEMM implementation, we use
NVIDIA’s open-sourced and highly optimized CUTLASS li-
brary [19]. In specific, we use the tiling size of 128×128 and
modify it to use the systolic mode as detailed in Sec. IV-C.
The convolution layer in CNN models is converted to GEMM
through the img2col.
Area Overhead SMA has little area overhead over the base-
line GPU architecture due to the reuse of existing structures.
The only significant extra logic is the systolic controller, which
has 256B (bytes) storage (8×8B for Ain and 24×8B for Cout)
and little extra logic. Modern GPU has 256KB register file,

Network AlexNet VGG-A GoogLeNet Mask R-CNN DeepLab
Conv Layers 5 8 57 132 108

TABLE II: CNN models used in our evaluation.

1.47 
90.71 %

68.46 %

0.8

1.0

1.2

1.4

1.6

30

50

70

90

7 8 9 10 11 12 13

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

F
L
O

P
 E

ffi
c
ie

n
c
y
 (

%
)

Matrix  Size (log2)

2-SMA 4-TC

0

0.2

0.4

0.6

0.8

1

7 8 9 10 11 12 13

N
o
rm

a
liz

e
d
 C

y
c
le

Matrix  Size (log2)

SMA with Semi-broadcast
Weight Stationary Dataflow

SMA with Weight Stationary
Dataflow (used by TPU)

Fig. 7: Iso-FLOP comparison: SMA vs TC (left) and TPU (right).

128KB shared memory, and various computations per SM.
Therefore, we estimate the overhead is less than 0.1%.

B. DNN models

We evaluate the SMA’s efficiency advantages in terms
of performance and area. In specific, we perform an iso-
FLOP comparison on various data-flows including the SMA,
TensorCore and TPU. We also perform an iso-area comparison
to demonstrate the advantage of our temporal integration.
Iso-FLOP Comparison We first perform the iso-FLOP
comparison for the SMA with broadcast weight stationary
dataflow, TensorCore with the dot-product dataflow, and TPU
with the weight stationary dataflow. Specifically, Fig. 7 left
plane shows the square GEMM performance in the case of
two SMA units (2-SMA) and four TensorCores (4-TC) per
SM, which both have the same 256 FP16 units. The 2-SMA
achieves 30% better performance improvement than 4-TC
and over 90% FLOP efficiency (i.e., the ratio of theoretical
peak performance) because it eliminates the RF bandwidth
limitations. Fig. 7 right plane shows that the TPU dataflow is
20% - 40% slower than SMA dataflow because the former has
a large amount of shared memory bank conflicts.
Iso-Area Comparison In the baseline architecture, SIMD
units and TC are spatially integrated and the DNN models
can only leverage one resource for acceleration. In contrast,
SMA is based on the temporal integration and can use all
computation resources. For the iso-area comparison, we esti-
mate three SMA units (3-SMA) have the same area with one
SIMD unit and two TC, which add up to the area of 384 FP16
units. Fig. 8 top planes compare performance in various cased
on the regular and hybrid models. The 2-SMA performance is
22% faster than 4-TC owing to the more efficient dataflow.
The temporal integration leads to 63% faster 3-SMA. We also
compare the energy consumption between SMA and TC. As
Fig. 8 (bottom) shows, 3-SMA (2-SMA) consumes 23% (12%)
less energy than 4-TC on average, where the energy reduction
mainly comes from the on-chip memory structures such as
register file and shared memory.

In summary, SMA outperforms the baseline GPU in both
the performance and energy efficiency for three reasons. First,
it reduces memory consumption by reusing input/result inside
arrays. Under the same memory/register bandwidth, it per-
forms better than the TC, also consumes less memory energy
(including shared memory, cache, and RF) and dedicates more
energy for the useful computation. Second, SMA adopts a
complex control instruction which mitigates the overhead of
instruction fetch/decode. Third, the systolic array requires
less thread/warp-level parallelism because of the co-ordinated
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Fig. 8: Iso-area comparison for regular and hybrid models.

double buffering, which reduces the cache contention. The
vanilla GPU requires many more threads/thread blocks per
SM to hide the memory access latency.

C. End-to-end DL Applications

We also evaluate SMA’s ability of dynamic resource al-
location in the autonomous driving scenario which includes
a mixed CNN and non-CNN algorithms. Prior study shows
that it has three major algorithms: detection (DET), tracking
(TRA), localization(LOC) [13]. The tracking runs after the
detection and they are both CNN-based. The localization runs
independently and is not CNN based. We choose representative
DeepLab [3], GOTURN [7], and ORB-SLAM [15] for them.

The Fig. 9 (left) shows their results in different platforms.
Three algorithms can occupy the entire GPU so the frame
latency equals the sum of each algorithm. The GPU exceeds
the 100 ms single frame latency target owing to the slow CNN
performance. The execution on SMA is similar but meets the
latency target because of the faster CNN performance. The
TC has a similar latency of SMA, but with DET and TRA
running sequentially on the TC, and LOC running on the
GPU in parallel. However, these results are based on running
object detection and tracking on every frame. Prior work has
suggested only running the detection every N (e.g. 4) frames
and relying on the tracking for every frame does not impact the
final accuracy [23]. This dynamic optimization creates uneven
demand for CNN computation which SMA can accommodate
to reduce the frame latency. Fig. 9 (right) shows with N = 4,
SMA can reduce the frame latency by almost 50%.

VI. RELATED WORK

There are many recent works on designing for deep learning
accelerators [4], [5], [8]. Prior work also tried a programmable
acceleration through FPGA and CGRA [16], [22]. Those work,
together with general-purpose architecture and ASICs, repre-
sent different points in the trade-off curve between generality
and efficiency. Our work integrates the two extreme points in
the same architecture. Recent Volta GPU spatially integrates
the TensorCore accelerator [20] while we temporally integrate
the SIMD architecture with the systolic array.
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Fig. 9: End-to-end autonomous driving application results.

VII. CONCLUSION

We develop a simultaneous multi-mode architecture (SMA)
with lightweight integration approach on GPU to achieve
high programmability and energy-efficiency. Using the systolic
array, SMA significantly improves the performance and reduce
the energy. It also has the same characteristics as GPU and
maintains the GPU’s programmability, configurability, and
generality for fast-evolving DNN workloads.
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