
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 7275 - 7286

May 22-27, 2022 c©2022 Association for Computational Linguistics

Transkimmer: Transformer Learns to Layer-wise Skim

Yue Guan1,2,?, Zhengyi Li1,2,?, Jingwen Leng1,2,?, Zhouhan Lin1,§ and Minyi Guo1,2,†

1Shanghai Jiao Tong University, 2Shanghai Qizhi Institute
?{bonboru,hobbit,leng-jw}@sjtu.edu.cn,

§lin.zhouhan@gmail.com, †guo-my@cs.sjtu.edu.cn

Abstract

Transformer architecture has become the de-
facto model for many machine learning tasks
from natural language processing and com-
puter vision. As such, improving its compu-
tational efficiency becomes paramount. One
of the major computational inefficiency of
Transformer-based models is that they spend
the identical amount of computation through-
out all layers. Prior works have proposed to
augment the Transformer model with the capa-
bility of skimming tokens to improve its com-
putational efficiency. However, they suffer
from not having effectual and end-to-end op-
timization of the discrete skimming predictor.
To address the above limitations, we propose
the Transkimmer architecture, which learns to
identify hidden state tokens that are not re-
quired by each layer. The skimmed tokens are
then forwarded directly to the final output, thus
reducing the computation of the successive lay-
ers. The key idea in Transkimmer is to add a
parameterized predictor before each layer that
learns to make the skimming decision. We also
propose to adopt reparameterization trick and
add skim loss for the end-to-end training of
Transkimmer. Transkimmer achieves 10.97×
average speedup on GLUE benchmark com-
pared with vanilla BERTbase baseline with less
than 1% accuracy degradation.

1 Introduction

The Transformer model (Vaswani et al., 2017) has
pushed the accuracy of various NLP applications
to a new stage by introducing the multi-head atten-
tion (MHA) mechanism (Lin et al., 2017). Further,
the BERT (Devlin et al., 2019) model advances
its performances by introducing self-supervised
pre-training, and has reached the state-of-the-art
accuracy on many NLP tasks.

Compared to the recurrent fashion models, e.g.
RNN (Rumelhart et al., 1986), LSTM (Hochreiter
and Schmidhuber, 1997), the Transformer model
leverages the above attention mechanism to process

Layer 1

Layer 2

Layer 3

Transkimmer

Transformer
Layers

[CLS] It is a good film .

Layer 1

Layer 2

Layer 3

Transformer

[CLS] It is a good film .

Dynamic
Skim

Token
Embeddings

Input
Sequence

Downstream Classifier Downstream Classifier
Downstream

Classifier

“Positive” “Positive”

Output
Embeddings

Hidden States
Embeddings

Figure 1: Overview of Transkimmer dynamic token
skimming method. Tokens are pruned during the pro-
cessing of Transformer layers. Note that actually we
don’t need all the tokens given to the downstream clas-
sifier in this sequence classification example. We show
the full length output embedding sequence to demon-
strate the forwarding design of Transkimmer.

all the input sequence. By doing so, extremely large
scale and long span models are enabled, resulting
in a huge performance leap in sequence processing
tasks. However, the computation complexity of
the attention mechanism is O(N2) with the input
length of N , which leads to the high computation
demand of the Transformer model.

Some prior works (Goyal et al., 2020; Kim and
Cho, 2021; Kim et al., 2021; Ye et al., 2021) ex-
plore the opportunity on the dynamic reduction of
input sequence length to improve the Transformer’s
computational efficiency. Its intuition is similar to
the human-being’s reading comprehension capabil-
ity that does not read all words equally. Instead,
some words are focused with more interest while
others are skimmed. For Transformer models, this
means adopting dynamic computation budget for
different input tokens according to their contents.
To excavate the efficiency from this insight, we
propose to append a skim predictor module to the
Transformer layer to conduct fine-grained dynamic
token pruning as shown in Fig. 1. When processed
by the Transformer layers, the sequence of token

7275



hidden state embeddings are pruned at each layer
with reference to its current state. Less relevant
tokens are skimmed without further computation
and forwarded to the final output directly. Only
the significant tokens are continued for successive
layers for further processing. This improves the
Transformer model inference latency by reducing
the input tensors on the sequence length dimension.

However, the optimization problem of such skim
decision prediction is non-trivial. To conduct prun-
ing of dynamic tensors, non-differentiable discrete
skim decisions are applied. Prior works have pro-
posed to use soft-masking approximation or rein-
forcement learning to resolve, which leads to ap-
proximation mismatch or nonuniform optimization.
Transkimmer propose to adopt reparameterization
technique (Jang et al., 2017) to estimate the gradi-
ent for skim prediction. As such, we can achieve
the end-to-end joint optimization obejective and
training paradigm. By jointly training the down-
stream task and skim objective, the Transformer
learns to selectively skim input contents. In our
evaluation, we show Transkimmer outperforms all
prior input reduction works on inference speedup
gain and model accuracy. Specifically, BERTbase is
accfelerated for 10.97× on GLUE benchmark and
2.81× without counting the padding tokens. More-
over, we also demonstrate the method proposed by
Transkimmer is generally applicable to pre-trained
language models and compression methods with
RoBERTa, DistillBERT and ALBERT models.

This paper contributes to the following 3 aspects.

• We propose the Transkimmer model which
accelerates the Transformer inference with dy-
namic token skimming.

• We further propose an end-to-end joint opti-
mization method that trains the skim strategy
together with the downstream objective.

• We evaluate the proposed method on various
datasets and backbone models to demonstrate
its generality.

2 Related Works

Recurrent Models with Skimming. The idea to
skip or skim irrelevant sections or tokens of input
sequence has been studied in NLP models, espe-
cially recurrent neural networks (RNN) (Rumel-
hart et al., 1986) and long short-term memory
network (LSTM) (Hochreiter and Schmidhuber,

1997). When processed recurrently, skimming the
computation of a token is simply jumping the cur-
rent step and keep the hidden states unchanged.
LSTM-Jump (Yu et al., 2017), Skim-RNN (Seo
et al., 2018), Structural-Jump-LSTM (Hansen et al.,
2019) and Skip-RNN (Campos et al., 2018) adopt
this skimming design for acceleration in recurrent
models.

Transformer with Input Reduction. Unlike the
sequential processing of the recurrent models, the
Transformer model calculates all the input se-
quence tokens in parallel. As such, skimming can
be regarded as the reduction of hidden states tensor
on sequence length dimension. Universal Trans-
former (Dehghani et al., 2019) proposes a dynamic
halting mechanism that determines the refinement
steps for each token. DeFormer (Cao et al., 2020)
proposes a dual-tower structure to process the ques-
tion and context part separately at shallow layers
specific for QA task. The context branch is pre-
processed off-line and pruned at shallow layers.
Also dedicated for QA tasks, Block-Skim (Guan
et al., 2021) proposes to predict and skim the ir-
relevant context blocks by analyzing the attention
weight patterns. Progressive Growth (Gu et al.,
2021) randomly drops a portion of input tokens
during training to achieve better pre-training effi-
ciency.

Another track of research is to perform such
input token selection dynamically during infer-
ence, which is the closest to our idea. POWER-
BERT (Goyal et al., 2020) extracts input sequence
at token level while processing. During the fine-
tuning process for downstream tasks, Goyal et al.
proposes a soft-extraction layer to train the model
jointly. Length-Adaptive Transformer (Kim and
Cho, 2021) improves it by forwarding the inflected
tokens to final downstream classifier as recovery.
Learned Token Pruning (Kim et al., 2021) improves
POWER-BERT by making its pre-defined sparsity
ratio a parameterized threshold. TR-BERT (Ye
et al., 2021) adopts reinforcement learning to in-
dependently optimize a policy network that drops
tokens. Comparison to these works are discussed
in detail in Sec. 3. Moreover, SpAttn (Wang
et al., 2021) facilitate POWER-BERT design with
a domain-specific hardware design for better accel-
eration and propose to make skimming decisions
with attention values from all layers.

7276



Early Exit Early exit (Panda et al., 2016; Teer-
apittayanon et al., 2016) is another method to exe-
cute the neural network with input-dependent com-
putational complexity. The idea is to halt the exe-
cution during model processing at some early ex-
its. Under the circumstance of processing sequen-
tial inputs, early exit can be viewed as a coarse-
grained case of input skimming. With the hard
constraint that all input tokens are skimmed at the
same time, early exit methods lead to worse ac-
curacy and performance results compared to in-
put skimming methods. However, the early exit
method is also generally applicable to other do-
mains like convolutional neural networks (CNN).
DeeBERT (Xin et al., 2020), PABEE (Zhou et al.,
2020), FastBERT (Liu et al., 2020) are some recent
works adopting early exit in Transformer models.
Magic Pyramid (He et al., 2021) proposes to com-
bine the early exit and the input skimming ideas
together. Tokens are skimmed with fine-grained
granularity following POWER-BERT design and
the whole input sequence is halted at some early
exits.

Efficient Transformer. There are also many ef-
forts for designing efficient Transformers (Zhou
et al., 2020; Wu et al., 2020; Tay et al., 2020).
For example, researchers have applied well stud-
ied compression methods to Transformers, such
as pruning (Guo et al.), quantization (Wang and
Zhang, 2020; Guo et al., 2022), distillation (Sanh
et al., 2019), and weight sharing. Other efforts
focus on dedicated efficient attention mechanism
considering its quadratic complexity of sequence
length (Kitaev et al., 2020; Beltagy et al., 2020; Za-
heer et al., 2020) or efficient feed-forward neural
network (FFN) design regarding its dominant com-
plexity in Transformer model (Dong et al., 2021).
Transkimmer is orthogonal to these techniques on
the input dimension reduction.

3 Input Skimming Search Space

In this section, we discuss the challenges of dy-
namic input skimming idea in details. Moreover,
we compare techniques and design decisions from
prior works described in Tbl. 1.

3.1 Optimization Method
The first challenge of input skimming is the op-
timization with discrete skimming decisions. In
specific, the decision for pruning the hidden state
tensors (i.e., reducing their sequence length) is

Models Optimization Input Discard Strategy

POWER-BERT
Soft-Masking Attention Discard Searched

(Goyal et al., 2020)

LAT
Soft-Masking Attention Forward Searched

(Kim and Cho, 2021)

LTP
Soft-Masking Attention Discard Learned

(Kim et al., 2021)

TR-BERT
RL Embedding Forward Searched

(Ye et al., 2021)

Transkimmer Reparameterize Embedding Forward Learned

Table 1: Summary of prior token reduction works and
their design choices including POWER-BERT, Length-
Adaptive Transformer (LAT), Learned Token Pruning
(LTP) and TR-BERT. The design details are discussed
in Sec. 3.

a binary prediction. As such, the skim predic-
tion model is non-differentiable and unable to be
directly optimized by gradient back propagation.
Prior works handle the discrete binary skimming
decision by using a set of complicated training tech-
niques, which we categorize in Tbl. 1.

Soft-Masking. Some works (Goyal et al., 2020;
Kim and Cho, 2021; Kim et al., 2021) propose to
use the soft-masking training trick which uses a
continuous value for predicting the skimming pre-
diction. During the training process, the predicted
value is multiplied to the hidden states embedding
vectors so that no actual pruning happens. In the
inference phase, this continuous skimming predic-
tion value is binarized by a threshold-based step
function. The threshold value is pre-defined or
determined through a hyper-parameter search pro-
cess. Obviously, there exists a training-inference
paradigm mismatch where the actual skimming
only happens at the inference time. Such a mis-
match leads to a significant accuracy degradation.

Reinforcement Learning. TR-BERT (Ye et al.,
2021) proposes to use the reinforcement learning
(RL) to solve the discrete skimming decision prob-
lem. It uses a separated policy network as the
skimming predictor, and the backbone Transformer
model is considered as the value network. At first,
the backbone Transformer is fine-tuned separately.
It then updates the skimming policy network by
using the RL algorithm. This multi-step training
paradigm is tedious. And training the backbone
Transformer and skimming policy network sepa-
rately is sub-optimal compared to the joint opti-
mization paradigm. Moreover, the large search
space of such RL objective is difficult to converge
especially on small downstream datasets.

7277



Reparameterization. In this work, we propose
to use the reparameterization technique to address
the discrete skimming decision challenge. Its core
idea is to sample the backward propagation gra-
dient during training, whose details we describe
in Sec. 4. The advantage of our method is that
it enables the joint optimization of skim predictor
and backbone Transformer model and therefore
achieves the optimal solution. For example, we
will later demonstrate in Fig. 4 that the different
tasks or datasets prefer different layer-wise skim-
ming strategies, which are learned by our method.
We will further explain the results in Sec. 5.4.

3.2 Design Choices

In our work, we also jointly consider other de-
sign choices regarding the skimming optimization,
which includes the choice of input to the skimming
module and how to deal with the skimmed input.
We first explain the choices made by prior works,
and then explain the choice of our method.

Strategy. For the skimming optimization meth-
ods described above, there can be different strate-
gies regarding the implementation details. Gen-
erally, the skimming strategy can be categorized
into search-based or learning-based approach, as
described in Tbl. 1. However, when applied to
various downstream NLP tasks and datasets, the
dynamic skimming scheme prefers different layer-
wise strategies as we mentioned above. This layer-
wise skimming characteristics makes the search-
based approach not scalable and generally appli-
cable. In contrast, our method enables the joint
training of skimming strategy and downstream task
, which leads to better skimming decisions with
reference to both efficiency and accuracy. LTP is
the only by prior works adopting learning-based
method, which, however, uses the soft-masking
approach and suffers from the training-inference
mismatch.

Input for Skimming. POWER-BERT, LAT and
LTP treat the attention weight value as importance
score and utilize it as the criterion for making the
skimming decision. Compared to this value-based
method (Guan et al., 2020), TR-BERT uses hidden
state embeddings as input feature. In our work, we
use the hidden state embeddings because they en-
close contextual information of the corresponding
input token. Our work shows that the joint training
of skimming module and backbone Transformer

model leads to that the embeddings also learn to
carry features for skimming prediction.

Skimming Tokens. For the tokens pruned dy-
namically by the skimming decision during pro-
cessing, it is natural to remove them from all the
successive layers. However, LAT and TR-BERT
propose to forward such tokens to the final out-
put of the Transformer encoder, which keeps the
dimension of the Transformer output unchanged.
Our work adopts the forward-based design because
it is more friendly for the Transformer decoder
module on downstream tasks.

4 Transkimmer Methodology

4.1 Transformer with Skim Predictor

To predict which tokens to be pruned, we append
an extra prediction module before each layer as
shown in Fig. 2. This prediction module outputs
a skimming mask M , which is used to gather the
hidden state embedding H at the sequence length
dimension. The pruned embedding is then feed to
the Transformer layer as its input.

Hi+1 = Transkimmeri(Hi)

= Transformeri(Gather(Hi,M i))
(1)

In the skim mask, we use output 1 to denote re-
maining tokens and 0 to denote pruned tokens. The
gathering operation is to select the input tensor with
a provided mask. By optimizing this stand-alone
skim module, syntactically redundant and seman-
tically irrelevant tokens are skimmed and pruned.
The proposed skim predictor module is a multi-
layer perceptron (MLP) network composed of 2
linear layers with a layer norm operation (Ba et al.,
2016) and GeLU activation (Hendrycks and Gim-
pel, 2016). The activation function is an arbitrary
function with discrete output as skim decision.

M i = SkimPredictor(Hi)

= Activation(MLP (Hi))

where MLP = Linear(GeLU(LN(Linear)))

(2)

This skim predictor introduces extra model param-
eters and computation overhead. However, both of
them are very small compared to the vanilla Trans-
former model, which are about 7.9% and 6.5%
respectively. We demonstrate later that the compu-
tation overhead of skim module is much smaller
than the benefits brought by the reduction of input
tensor through skimming.

7278



Transkimmer Layer i

Tran
skim

m
er Laye

r i-1

Tran
skim

m
er Laye

r i+1

Skim
 P

red
icto

r

G
ath

e
r

Skim
 M

ask M
i

Skim
 A

tten
tio

n

FFN

D
o

w
n

stream
 C

lassifier

D
o

n
w

stream
 Lo

ss
Skim

 Lo
ss

To
tal Lo

ss

+++

+

Transformer Layer

1
0

0
1

0

H
id

d
en

 State
s Em

b
ed

d
in

g H
i

G
u

m
b

elSo
ftm

ax

M
LP

Figure 2: Architecture and end-to-end optimization objective of Transkimmer. The dashed token embeddings are
directly forwarded to the final output of Transformer layers without further processing.

For the tokens pruned by the skim module at
each layer, we forward the these pruned hidden
state embeddings to the last Transformer layer. As
such, the final output of the whole Transformer
model is composed of token embeddings skimmed
at all layers and the ones processed by all layers
without being skimmed.

HL =

L−1∑
i=0

H i ·M i (3)

And this output is used for classification layers on
various downstream tasks. This makes the skim-
ming operation also compatible for token classifi-
cation tasks such as extractive question answering
(QA) and named entity recognition (NER). This
also restores the once abandoned information for
downstream tasks.

4.2 End-to-End Optimization

In the above discussion, we have described that
Transkimmer can be easily augmented to a back-
bone model without modification to its current
structure. Furthermore, Transkimmer is also capa-
ble to utilize the pre-trained model parameters and
finetune the Transkimmer activated Transformer-
based models on downstream tasks. With an extra
skim loss appended to the optimization object, this
fine-tuning process is also performed end-to-end
without changing its origin paradigm.

Skim Attention. In the training procedure, Tran-
skimmer does not prune the hidden state tensors as
it does in the inference time. Because the gather-
ing and pruning operation of a portion of tokens
prevents the back-propagation of their gradients.

The absence of error signal from negative samples
interference the convergence of the Transkimmer
model. Therefore, we propose skim-attention to
mask the reduced tokens in training instead of ac-
tually pruning them. The attention weights to the
skimmed tokens are set to 0 and thus unreachable
by the other tokens.

SkimAttn(H i) = Attn(H i) ·M i (4)

By doing so, the remaining tokens will have the
identical computational value as actually pruning.
And the gradient signal is passed to the skim predic-
tor module from the skim attention multiplication.

Gumbel Softmax. Following the discussion in
Sec. 3.1, the output decision mask of skim predictor
is discrete and non-differentiable. To conquer this
inability of back propagation, we use the reparame-
terization method (Jang et al., 2017) to sample the
discrete skim prediction from the output probabil-
ity distribution πi of the MLP. The gradient of the
non-differentiable activation function is estimated
from the Gumbel-Softmax distribution during back
propagation.

M i
j = Activation(πij) ,for j = 0,1

= GumbelSoftmax(πij)

=
exp((log(πij) + gij)/τ)∑1
k=0 exp((log(π

i
k) + gik)/τ)

(5)

gij are independent and identically sampled from
Gumbel(0, 1) distribution. τ is the temperature
hyper-parameter controlling the one-hot prediction
distribution. We take τ = 0.1 for all experiments.

7279



Dataset CoLA RTE QQP MRPC SST-2 MNLI WNLI QNLI STS-B SQuAD IMDB YELP 20News

Task Acceptability NLI Similarity Paraphrase Sentiment NLI NLI QA Similarity QA Sentiment Sentiment Sentiment
Average Sample Length 11 64 30 53 25 39 37 51 31 152 264 179 551
Input Sequence Length 64 256 128 128 64 128 128 128 64 384 512 512 512
Harmony Coefficient 0.3 0.8 0.2 0.5 0.3 0.2 0.5 0.1 0.3 0.8 0.5 0.5 0.5

Table 2: Summary of evaluation datasets. The input sequence length matches the setting of prior works POWER-
BERT and LTP. It is determined by covering 99 percentile of input samples without truncation.

To achieve better token sparsification ratio, we
further add a skim loss term to the overall optimiza-
tion objective as follows

Lossskim =
1

L

1∑
L−1

sum(M i)

len(M i)
. (6)

The skim loss is essentially the ratio of tokens re-
mained in each layer thus representing the com-
putation complexity speedup. By decreasing this
objective, more tokens are forced to be pruned dur-
ing processing. To collaborate with the original
downstream task loss, we use a harmony coeffi-
cient λ to balance the two loss terms. As such, the
total loss used for training is formulated as

Losstotal = Lossdownstream + λLossskim. (7)

With the use of the previous settings, the Tran-
skimmer model is trained end-to-end without any
change to its original training paradigm.

Unbalanced Initialization. Another obstacle is
that skimming tokens during the training process
makes it much unstable and decreases its accu-
racy performance. With the pre-trained language
modeling parameters, the skim predictor module is
random initialized and predicts random decisions.
This induces significant processing mismatch in
the backbone Transformer model, where all tokens
are accessible. Consequently, the randomly initial-
ized skim predictor makes the training unstable and
diverged. We propose an unbalance initialization
technique to solve this issue. The idea is to force
positive prediction at first and learn to skim gradu-
ally. Generally, parameters are initialized by zero
mean distribution as

ω ∼ N(0, σ). (8)

We propose to initialize the bias vector of the last
linear layer in the skim predictor MLP with unbal-
anced bias as

βi ∼ N((−1)i+1µ0, σ), (9)

where i stands for the bias vector for prediction
1 or 0. Consequently, the skim predictor tends to
reserve tokens rather than skimming them when
innocent. The mean value µ0 of the unbalanced
distribution set to 5 for all the experiments.

5 Evaluation

5.1 Setup

Datasets. We evaluate the proposed Transkim-
mer method on various datasets. We use the
GLUE(Wang et al., 2019) benchmark includ-
ing 9 classification/regression datasets, extrac-
tive question answering dataset SQuAD-v2.0, and
sequence classification datasets 20News (Lang,
1995), YELP (Zhang et al., 2015) and IMDB (Maas
et al., 2011). These datasets are all publicly acces-
sible and the summary is shown in Tbl. 2. The
diversity of tasks and text contexts demonstrates
the general applicability of the proposed method.

Models. We follow the setting of the BERT
model to use the structure of the Transformer
encoder and a linear classification layer for all
the datasets. We evaluate the base setting with
12 heads and 12 layers in prior work (Devlin
et al., 2019). We implement Transkimmer upon
BERT and RoBERTa pre-trained language model
on downstream tasks.

Baselines. We compare our work to prior token
reduction works including POWER-BERT (Goyal
et al., 2020), Length-Adaptive Transformer (LA-
Transformer) (Kim and Cho, 2021), Learned Token
Pruning (LTP) (Kim et al., 2021), DeFormer (Cao
et al., 2020) and TR-BERT (Kim et al., 2021). We
also compare our method with model compression
methods of knowledge distillation and weight shar-
ing. Knowledge distillation uses a teacher model to
transfer the knowledge to a smaller student model.
Here we adopt DistilBERT (Sanh et al., 2019) set-
ting to distill a 6-layer model from the BERTbase
model. By sharing weight parameters among lay-
ers, the amount of weight parameters reduces. Note
that weight sharing does not impact the computa-

7280



Method Padding COLA RTE QQP MRPC SST-2 MNLI WNLI QNLI STS-B
Matthews FLOPs Acc. FLOPs Acc. FLOPs F1 FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Pearson FLOPs

BERTbase Baseline - 57.8 1.00× 65.7 1.00× 91.3 1.00× 88.9 1.0× 93.0 1.00× 84.9 1.00× 56.3 1.00× 91.4 1.00× 88.6 1.00×
DeeBERT - - - 66.7 1.50× - - 85.2 1.79× 91.5 1.89× 80.0 1.59× - - 87.9 1.79× - -
POWER-BERT Sequence 52.3 4.50× 67.4 3.40× 90.2 4.50× 88.1 2.70× 92.1 2.40× 83.8 2.60× - - 90.1 2.00× 85.1 2.00×
LAT Sequence - - - - - - - - 92.8 2.90× 84.4 2.80× - - - - - -
Transkimmer No 58.9 1.75× 68.9 2.85× 90.8 2.79× 88.5 3.13× 92.3 1.58× 83.2 2.02× 56.3 5.56× 90.5 2.33× 87.4 3.45×
Transkimmer Sequence 58.9 18.9× 68.9 4.67× 90.8 11.72× 88.5 7.45× 92.3 10.89× 83.2 6.65× 56.3 18.10× 90.5 6.01× 87.4 18.20×

DistilBERT - 55.7 1.98× 58.8 1.98× 90.3 1.98× 88.3 1.98× 90.6 1.98× 87.5 1.98× 53.5 1.98× 89.3 1.98× 87.0 1.98×
+Transkimmer No 55.1 3.52× 59.2 4.12× 90.1 4.95× 87.8 9.92× 89.5 5.01× 86.7 4.40× 56.3 10.41× 87.5 4.04× 86.5 3.47×

ALBERT - 58.3 0.99× 70.7 0.99× 90.2 0.99× 90.4 0.99× 90.9 0.99× 81.8 0.99× 56.3 0.99× 89.2 0.99× 90.4 0.99×
+Transkimmer No 53.4 1.52× 71.5 1.57× 90.2 3.09× 90.6 1.94× 90.1 3.25× 81.5 1.67× 57.7 6.19× 90.1 2.30× 89.8 1.46×

RoBERTabase Baseline - 61.8 1.00× 78.0 1.00× 90.4 1.00× 92.1 1.00× 94.3 1.00× 87.5 1.00× 56.6 1.00× 92.9 1.00× 90.9 1.00×
LTP Batch - - 78.0 1.81× 89.7 2.10× 91.6 2.10× 93.5 2.09× 86.5 1.88× - - 92.0 1.87× 90.0 1.95×
Transkimmer No 61.3 1.52× 76.2 1.79× 91.0 4.92× 91.9 2.67× 93.5 2.08× 86.7 2.19× 56.3 8.41× 91.7 2.85× 90.5 2.70×

Table 3: Performance and FLOPs (speedup) on GLUE benchmark with BERTbase and RoBERTabase as backbone
model. Transkimmer is adopted on DistilBERT and ALBERT to shows its applicability to general model compres-
sion methods.

SQuADv2.0 20News Yelp IMDB
Model Padding F1 FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs

BERTbase 77.1 1.00× 86.7 1.00× 69.9 1.00× 94.0 1.00×
TR-BERT No 75.7 2.08× 87.4 4.22× 70.0 2.19× 93.6 2.26×
POWER-BERT Sequence - - 86.5 2.91× 67.4 2.75× 92.1 3.05×
LAT Batch - - - - - - 92.5 2.70×
DeFormer Sequence 71.4 2.19× - - - - - -
Transkimmer No 75.7 2.10× 86.1 5.27× 70.1 2.51× 93.7 2.70×

Table 4: Performance and FLOPs evaluation on sev-
eral downstream tasks and datasets with BERTbase as
backbone model. The speedup results are emphasized
considering the padding setting.

tion FLOPs (floating-point operations). We eval-
uate Transkimmer on ALBERT (Lan et al., 2020)
that shares weight parameters among all layers. To
express that token reduction method is compatible
with these model compression methods, we further
implement Transkimmer method with this works to
demonstrate their cooperation effect. Besides, Dee-
BERT(Xin et al., 2020) is a Transformer early exit
baseline which can be regarded as coarse-grained
input skimming.

Padding. While processing batched input sam-
ples, Transformer models perform a padding opera-
tion on the input sequences to align the input length.
Sequences are appended with a special padding
token [PAD] to a predefined sequence length for
the convenience of successive computing. This is
a trivial setting for general evaluation but could
lead to possible pseudo speedup for token reduc-
tions works. Because the padded tokens can be
pruned without prediction. For the prior works,
there are three evaluation settings with reference
to padding, padding to a fixed sequence length,
padding to mini-batch maximum length and no
padding (denoted as Sequence, Batch and No in
Fig. 3 & 4). We indicate the padding methods of
prior works and evaluate Transkimmer with differ-

ent padding settings for a fair comparison. The
speedup of padding to mini-batch maximum length
setting is related to batch size and processing or-
der of input samples. So it is difficult to make a
direct comparison under this setting. However, it
can be estimated with padding to fixed sequence
length as upper bound and no padding as lower
bound. The sequence length on different datasets is
determined following prior works’ settings (Goyal
et al., 2020; Kim et al., 2021). We measure the
inference FLOPs as a general measurement of the
model computational complexity on all platforms.
We use the TorchProfile(?) tool to calculate the
FLOPs for each model.

Training Setting. We implement the proposed
method based on open-sourced library from Wolf
et al. (2020)1. For each baseline model, we use the
released pre-trained checkpoints 2. We follow the
training setting used by Devlin et al. (2019) and
Liu et al. (2019) to perform the fine-tuning on the
above datasets. We perform all the experiments
reported with random seed 42. We use four V100
GPUs for training experiments.

The harmony coefficient λ is determined by
hyper-parameter grid search on development set
with 20% data random picked from training set set.
The search space is from 0.1 to 1 with a step of 0.1.

5.2 Overall Results

We show the overall results on several datasets and
demonstrate our observations. Tbl. 3 demonstrates
the accuracy and speedup evaluated on GLUE
benchmark. And Tbl. 4 further demonstrates the
results on other datasets with longer input.

1The source code is available at https://github.
com/ChandlerGuan/Transkimmer.

2We use pre-trained checkpoints from Wolf et al. (2020).

7281

https://github.com/ChandlerGuan/Transkimmer
https://github.com/ChandlerGuan/Transkimmer


1.0 1.5 2.0 2.5 3.0 3.5 4.0

82

84

86

88

90
Ac

cu
ra

cy
MRPC

Transkimmer
POWER-BERT
DistillBERT
LTP

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Speedup (FLOPs)

55

60

65

70

75

F1

SQuAD-v2.0

Transkimmer
TR-BERT
DistilBERT
DeFormer

Figure 3: Trade-off results between accuracy and
speedup of MRPC and SQuAD-v2.0 datasets by tuning
the harmony coefficient. Note that different padding
settings are used for each baseline while Transkimmer
doesn’t count any padding.

Comparison to vanilla model baseline. Gener-
ally, Transkimmer achieves considerably speedup
to the vanilla models with a minor accuracy degra-
dation, which is less than 1% for nearly all cases.
The average speedup is 2.81× on GLUE bench-
mark and over 2× on the other datasets. This
demonstrates the inference efficiency improvement
of the Transkimmer input reduction method. We
also evaluate Transkimmer with RoBERTa model
as backbone and reach 3.24× average speedup on
GLUE benchmark. This result further expresses the
general applicability of Transkimmer with different
Transformer-based pre-trained language models.
Among all the datasets we evaluated, Transkimmer
tends to have better acceleration ratio on the easier
ones. For example, sequence classification tasks
like QQP and STS-B are better accelerated than
QA or NLI datasets. We suggest that the Trans-
former backbone is able to process the information
at shallower layers and skim the redundant part
earlier. This is also demonstrated in the following
post-hoc analysis Sec. 5.4.

Comparison to input reduction prior works.
As shown in Tbl. 3, Transkimmer outperforms
all the input reduction methods by a margin on
GLUE benchmark. To make a fair comparison, we
evaluate Transkimmer with two padding settings,
padding to fixed sequence length or no padding.
For most cases, Transkimmer has better accuracy
performance and higher speedup ratio at the same
time. When taking the special padding token
into account, Transkimmer is able to accelerate

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0

20

40

60

80

100

N
um

be
r 

of
 T

ok
en

s 
(%

)

MRPC
WNLI
STS-B
COLA
SST-2
QNLI
QQP
RTE
MNLI

Figure 4: Layer-wise skim strategies analysis of
datasets from GLUE benchmark. The normalized area
under curve is viewed as an approximate speedup ratio
with reference to sequence length.

BERTbase model for 10.97× on GLUE benchmark.
Transkimmer also outperforms the other methods
on tasks shown in Tbl. 4. TR-BERT has the closet
performance compared with Transkimmer but with
a much complicated RL paradigm and larger search
space.

Comparison to model compression methods.
The comparison to two model compression meth-
ods is shown in Tbl. 3. Transkimmer outperforms
the knowledge distillation and weight sharing base-
line by a margin. Besides, the dynamic skimming
idea itself is orthogonal to this existing model com-
pression methods. To elaborate, we further adopt
the proposed Transkimmer method on DistilBERT
and ALBERT models. With the proposed end-to-
end training objective, Transkimmer is easily aug-
mented to these methods. There is also no need
to change the original training process. The re-
sult shows that the Transkimmer method further
accelerates the inference efficiency of compressed
models with nearly no extra accuracy degradation.

5.3 Accuracy and Performance Trade-Off

Fig. 3 demonstrates the accuracy and performance
trade-off analysis by tuning the harmony coeffi-
cient. We show the results on MRPC and SQuAD-
v2.0 datasets to give comparisons with different
baselines. It is shown that Transkimmer achieves a
better accuracy to speedup Pareto curve compared
to prior works. Transkimmer is able to provide bet-
ter acceleration gain with less accuracy degradation.
Especially, Transkimmer has a 1.5× speedup with-
out accuracy loss. The result validates our design
decisions analyzed in the input reduction search
space choices.

7282



Dataset Example

1

2

3

4

5

6

7

8

9

10

11

12

SST-2 [CLS] Even horror fans will most likely not find what they’re seeking with trouble every day; the movie lacks both
thrills and humor. [SEP]

SQuAD
Question: [CLS] In what country is Normandy located? [SEP]
Context: The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in
the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse
("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland and Norway who, under their
leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and
mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with
the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the normans emerged
initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries. [SEP]
Answer: France

Table 5: Post-hoc case study of SST-2 sentimental analysis and SQuAD QA tasks from Transkimmer model with
BERTbase setting. The color indicated by the colorbar represents the Transformer layer index where the token is
pruned. Specifically, the black tokens are fully processed without being skimmed.

5.4 Post-hoc Analysis

Skim Strategy. Fig. 4 is the result of the num-
ber of tokens remained for the processing of each
Transformer layer. The normalized area under each
curve is a rough approximation of the speedup ratio
with reference to the tokens number. By end-to-end
optimization, Transkimmer learns significant dis-
tinguished strategies on different tasks. On WNLI
dataset, over 90% of tokens are pruned within the
first 3 layers and guarantees a high acceleration
gain. The steer cliff at layer 7 on COLA demon-
strates a large portion of skimming at this particular
position. We suggest that this is because the pro-
cessing of contextual information is sufficient for
the skimming decision at this specific layer.

Post-Hoc Case Study. Moreover, several post-
hoc case studies are demonstrated with Tbl. 5. In
the SST-2 sentimental analysis example, the defi-
nite articles and apostrophes are discarded at the
beginning. And all words are encoded in contex-
tual hidden states embeddings and gradually dis-
carded except for a few significant key words. Only
the special token [CLS] is fully processed in this
example for final sentimental classification. How-
ever, on the token classification task example from
SQuAD dataset, all tokens are given to the down-
stream classifier to predict the answer position. The
answer tokens are processed by all Transformer lay-
ers. Similarly, the question part is also kept with
tokens containing enough information. Another
detail worth mentioning is that we use subword
tokenization for the SQuAD dataset. As such, sub-
word tokens of the same word might be discarded
at different layers. For instance, the word Francia
is tokenized into fran- and -cia two subword tokens,
which are pruned at layer 4 and 6 respectively.

6 Conclusion

Input skimming or dynamic input reduction is an
emerging Transformer model acceleration method
studied by many works recently. This idea uti-
lizes the semantic structure of language and the
syntactic information of the input context for in-
ference acceleration. Compared to static model
weight compression methods, input skimming ex-
plores the redundancy in the input and hidden state
tensors. As such, it is orthogonal and compatible
with those model compression algorithms with its
dynamic feature.

In this work, we propose an accurate and effi-
cient Transformer inference acceleration method
by teaching it how to skim input contents. The
proposed Transkimmer method is trained with
an easy and end-to-end paradigm. Furthermore,
Transkimmer is also generally applicable to var-
ious Transformer-based model structures. It is
even compatible with the static model compression
methods like knowledge distillation and weight
sharing. We believe that the above features guar-
antee the Transkimmer method a wide range of
applicable production scenarios.

Acknowledgement

This work was supported by the National Key R&D
Program of China under Grant 2021ZD0110104,
the National Natural Science Foundation of China
(NSFC) grant (U21B2017, 62106143, 62072297,
and 61832006), and Shanghai Pujiang Program.
We would like to thank the reviewers of ACL
rolling review for their supportive comments and
suggestions. Jingwen Leng and Minyi Guo are the
corresponding authors of this paper.

7283



References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto,
Jordi Torres, and Shih-Fu Chang. 2018. Skip RNN:
learning to skip state updates in recurrent neural net-
works. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Qingqing Cao, Harsh Trivedi, Aruna Balasubrama-
nian, and Niranjan Balasubramanian. 2020. De-
Former: Decomposing pre-trained transformers for
faster question answering. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4487–4497, Online. As-
sociation for Computational Linguistics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chenhe Dong, Guangrun Wang, Hang Xu, Jiefeng
Peng, Xiaozhe Ren, and Xiaodan Liang. 2021. Effi-
cientbert: Progressively searching multilayer percep-
tron via warm-up knowledge distillation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1424–1437.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan T. Chakaravarthy, Yogish Sabhar-
wal, and Ashish Verma. 2020. Power-bert: Ac-
celerating BERT inference via progressive word-
vector elimination. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages
3690–3699. PMLR.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen
Chen, and Jiawei Han. 2021. On the transformer
growth for progressive BERT training. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages

5174–5180, Online. Association for Computational
Linguistics.

Yue Guan, Jingwen Leng, Chao Li, Quan Chen, and
Minyi Guo. 2020. How far does BERT look at:
Distance-based clustering and analysis of BERT’s
attention. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics,
pages 3853–3860, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan Lin,
Minyi Guo, and Yuhao Zhu. 2021. Block-skim: Ef-
ficient question answering for transformer. arXiv
preprint arXiv:2112.08560.

Cong Guo, Bo Hsueh, Jingwen Leng, Yuxian Qiu,
Yue Guan, Zehuan Wang, Xiaoying Jia, Xipeng Li,
Minyi Guo, and Yuhao Zhu. Accelerating sparse
dnn models without hardware-support via tile-wise
sparsity. In 2020 SC20: International Conference
for High Performance Computing, Networking, Stor-
age and Analysis (SC), pages 204–218. IEEE Com-
puter Society.

Cong Guo, Yuxian Qiu, Jingwen Leng, Xiaotian Gao,
Chen Zhang, Yunxin Liu, Fan Yang, Yuhao Zhu,
and Minyi Guo. 2022. SQuant: On-the-fly data-free
quantization via diagonal hessian approximation. In
International Conference on Learning Representa-
tions.

Christian Hansen, Casper Hansen, Stephen Alstrup,
Jakob Grue Simonsen, and Christina Lioma. 2019.
Neural speed reading with structural-jump-lstm. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Xuanli He, Iman Keivanloo, Yi Xu, Xiang He, Belinda
Zeng, Santosh Rajagopalan, and Trishul Chilimbi.
2021. Magic pyramid: Accelerating inference with
early exiting and token pruning. arXiv preprint
arXiv:2111.00230.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categor-
ical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Gyuwan Kim and Kyunghyun Cho. 2021. Length-
adaptive transformer: Train once with length drop,
use anytime with search. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6501–6511, Online. As-
sociation for Computational Linguistics.

7284

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2004.05150
https://openreview.net/forum?id=HkwVAXyCW
https://openreview.net/forum?id=HkwVAXyCW
https://openreview.net/forum?id=HkwVAXyCW
https://doi.org/10.18653/v1/2020.acl-main.411
https://doi.org/10.18653/v1/2020.acl-main.411
https://doi.org/10.18653/v1/2020.acl-main.411
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://proceedings.mlr.press/v119/goyal20a.html
http://proceedings.mlr.press/v119/goyal20a.html
http://proceedings.mlr.press/v119/goyal20a.html
https://doi.org/10.18653/v1/2021.naacl-main.406
https://doi.org/10.18653/v1/2021.naacl-main.406
https://doi.org/10.18653/v1/2020.coling-main.342
https://doi.org/10.18653/v1/2020.coling-main.342
https://doi.org/10.18653/v1/2020.coling-main.342
https://arxiv.org/abs/2112.08560
https://arxiv.org/abs/2112.08560
https://openreview.net/forum?id=JXhROKNZzOc
https://openreview.net/forum?id=JXhROKNZzOc
https://openreview.net/forum?id=B1xf9jAqFQ
https://arxiv.org/abs/2111.00230
https://arxiv.org/abs/2111.00230
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508


Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Woosuk Kwon, Joseph Hassoun, and Kurt
Keutzer. 2021. Learned token pruning for transform-
ers. arXiv preprint arXiv:2107.00910.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Ken Lang. 1995. Newsweeder: Learning to filter
netnews. In Machine Learning Proceedings 1995,
pages 331–339. Elsevier.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sen-
tence embedding. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035–
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik
Roy. 2016. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In 2016
Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 475–480. IEEE.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533–536.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Min Joon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2018. Neural speed reading via skim-rnn.
In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020. Efficient transformers: A survey.
arXiv e-prints, pages arXiv–2009.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. 2016. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recogni-
tion (ICPR), pages 2464–2469. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Chunpei Wang and Xiaowang Zhang. 2020. Q-bert: A
bert-based framework for computing sparql similar-
ity in natural language. In Companion Proceedings
of the Web Conference 2020, pages 65–66.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021.
Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE In-
ternational Symposium on High-Performance Com-
puter Architecture (HPCA), pages 97–110. IEEE.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and
Song Han. 2020. Lite transformer with long-short
range attention. In 8th International Conference on

7285

https://arxiv.org/abs/2107.00910
https://arxiv.org/abs/2107.00910
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://openreview.net/forum?id=Sy-dQG-Rb
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=ByeMPlHKPH
https://openreview.net/forum?id=ByeMPlHKPH


Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, On-
line. Association for Computational Linguistics.

Deming Ye, Yankai Lin, Yufei Huang, and Maosong
Sun. 2021. TR-BERT: Dynamic token reduction for
accelerating BERT inference. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5798–5809, On-
line. Association for Computational Linguistics.

Adams Wei Yu, Hongrae Lee, and Quoc Le. 2017.
Learning to skim text. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1880–
1890, Vancouver, Canada. Association for Computa-
tional Linguistics.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big bird: Transformers for longer se-
quences. arXiv preprint arXiv:2007.14062.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649–
657.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems,
33.

7286

https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.18653/v1/P17-1172
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html

