
For publication in WNTC 2014, June 2014.

1

Abstract— The intrinsic robustness of an algorithm and
architecture depends highly on the combined ability tolerate
noise. In this paper, we present an alternative approach for
energy reduction for near threshold computing based on a
statistical modeling of computational noise induced from noisy
memory and non-ideal interconnects. We present this approach
as a complement to the standard approximate computing
approaches. We show results of the lightweight error checks and
recovery based on several design considerations on data value
speculation.

Index Terms—Approximate computing, noise resiliency,
computation noise, near threshold computing

I. INTRODUCTION
Research has shown that the most power efficient region of

operation for a circuit is at near its threshold voltage, and that
lowering supply voltage, possibly beyond safe-operation
region is a viable option to reduce power consumption [1,2].
This NTV (near threshold voltage) operating region is
beneficial for power efficiency due to low voltage swings and
quick logic transition. However, circuits operating in NTV
may not be deterministic as state transitions may occur due to
current noise or transistor mismatches.

In this paper, we advocate an alternative approach that
considers the statistical distribution rather than the
instantaneous occurrence of the error or noise. That is, certain
level noise can and should be acceptable as part of the normal
operating region, especially when an algorithm can safely
operate at that noise level. In this approach, we do not have to
detect and correct for hardware errors at every instance, but
instead, we check for the statistical distribution and noise
levels to be within tolerable levels. For instance, we can lower
operating voltages at various levels to reduce power while
allowing algorithms to operate in different levels of hardware
errors. We introduce the notion of a “computation noise”
which is analogous to “sensor noise”, whereby the processor
and memory subsystem introduces errors in the form of noise
that the algorithms can tolerate.

Traditional methods for error recovery such as
checkpointing (re-compute if there is an error) are often a
computationally and power expensive proposition. Other
hardware mechanisms such as ECC (error correcting codes)
also has high overhead, especially if we purposefully operate
in regions with higher error levels. While previous studies rely
explicitly on the resiliency of an algorithm [3] or new
circuits/architecture to support NTV [1] or approximate
computing [2], they do not explore how algorithms would
operate in different levels of detected errors. More

specifically, while we understand that lowering voltages can
reduce power and raising them when the severity of detected
errors exceeds a threshold, there has not been a thorough
exploration on how algorithms can operate beyond the “safe-
operating region”.

By studying algorithmic performance based on probability
of detected errors, we can define the range of voltage settings
that can be used based on the resiliency of the algorithms.
That is, we first quantify regions of operation whereby safe-
operation is defined by negligible levels of errors. Naturally if
the voltage continues to drop, algorithm performance would
degrade at a rate dependent on its construction. In this region
of operation, we offer a number of lightweight architectural
mechanisms that maintains its algorithmic performance. These
lightweight mechanisms range from the simple bit-parity
check and simple use-last-copy buffer.

In this paper, we focus specifically on lightweight
mechanisms that detect and correct for memory bit-flip errors.
Our paper contributions include: 1) a method to dynamically
inject computation noise into specified regions of the
compiled binary, 2) a set of architectures mechanisms for
lightweight detection and recovery of errors, and 3) an
analysis of algorithm performance that quantifies resilience in
presence of errors. Our results show how algorithm resiliency
can already be provided for “free” (i.e. without hardware
support), and how we can extend operation with additional
lightweight mechanisms. These results reinforce the need to
study algorithms to direct and/or inspire architecture
approaches.

This paper is organized as follows: in Section II, we present
examples of now algorithm resilience is impacted by
computational noise. In Section III, we define a set of
lightweight architectural mechanisms to allow the algorithms
to operate in different levels of injected errors. In Section IV,
we describe our simulation setup for selected set of
algorithms, including a methodology to inject computation
noise. In Section V, we provide a detailed set of analysis that
evaluates the resilience of the architecture and the
performance offered by the proposed lightweight mechanisms.
Finally in Section VI, we present our conclusions and discuss
our future work in this space.

II. ANALYZING COMPUTATIONAL NOISE
In this section, we show the statistical nature of an error

distribution (i.e. shape of the noise) to illustrate how
algorithms are impacted. In Figure 1, we show a statistically
generated distribution of image pixel values due to bit flip
errors for any bit in 8-bit pixel. That is, we generate this graph
over millions of pixels in an image with each bit in a pixel

Lightweight Detection and Recovery Mechanisms to Extend
Algorithm Resiliency in Noisy Computation

 Sek Chai, David Zhang Jingwen Leng, Vijay Janapa Reddi
 SRI International, Princeton, NJ University of Texas at Austin

For publication in WNTC 2014, June 2014.

2

having a probability of corruption. We show that the
distribution of errors to the original image, for each pixel, has
a Gaussian shape for three different cases. The shape is data
dependent, and can be considered as the convolution of the
individual bit error rate (shown in the Figure 1 inset) against
the data values.

For the “No Correction” case, the distribution of errors is
flat with equal spread, representing random output over the
data range. This means that the algorithm is faced with low
signal-to-noise ratio because the entropy of data is at a point
where results are no longer useful. For the “1MSB” case, we
show a distribution of errors when the most significant bit is
corrected. The noise shape shows that we can expect our
algorithms to be more resilient because most errors are within
a smaller range of values centered on zero. For the “4MSB”
case, we show a very narrow distribution of error where there
is only a small deviation from zero-mean for high error
resilience. Using this approach, we can understand how
computational noise can modify the entropy of data to a point
where the results are no longer useful. It is this understanding
of data entropy that can offer insights into opportunities to
increase power efficiency with computational noise.

It is straightforward to understand that the more bit errors
corrected, the better the performance of the algorithm. It is
also easy to understand that the MSB has more value
significance than the LSB (least-significant-bit). It is
important to note, however, that from an error distribution
perspective, by correcting the MSBs, we are preserving the
mean-center distribution. That is, as the entropy of data is
greater (i.e. flatter distribution), we can remove the tail end of
the distribution by correcting the MSB bits. Here, we use bit
error correction to illustrate a point on noise distribution, and
there are other mechanisms to correct the bit errors.

Figure 1. Statistical distribution of pixel values due to injected bit

errors. Mean centered around zero indicates approximate data
value range as well as algorithmic resilience.

We describe a case study that evaluates the efficacy of the
computational noise approach. We choose a video
stabilization algorithm because it has some of the
characteristics of neural algorithms, namely, iterative and
converging. We simulated this algorithm in C++ reading in
raw image files from memory. We then simulated soft errors
for the internal data structure to emulate computational noise

induced by memory. Figure 2 illustrates the effects of
computation noise on the processed image. An original image
is read to generate a Laplacian image [4], and then a motion
vector is generated. We show in Figure 2 (right most) effects
of computational noise at 10% probability of bit flip for each
bit in a pixel.

Figure 2. Level-1 Laplacian Pyramid [4] images showing the effects

of computational noise (memory bit flips).

Figure 3 describes the algorithmic results for different

levels of computational noise (represented by bit flip
probability). The output of the global-motion estimation
(GME) algorithm is a motion vector, representing camera
movement. We calculate the error against a ground truth by
calculating the Euclidean distance among the motion vectors,
which is described as transformed position of the image corner
and the center point. Zero pixel error would be ideal but single
to low digit pixel errors are tolerable, which is represented by
slight camera jitter with only a few pixel shift.

The results show a range of algorithmic operation based on
computational noise. Certainly, without any error correction,
the algorithm would not tolerate beyond 5% noise. However,
there is still a range of safe-operational conditions since there
are negligible levels of errors. With simple error corrections
for the top-most or top four MSB, the algorithm can operate in
higher levels of computational noise.

Figure 3. Noise resilience of video stabilization algorithm under
different levels of computational noise and lightweight recovery

mechanisms (e.g. MSB corrections)
To further enforce the notion of algorithmic resiliency, we

provide evidence with respect to the key sources of data
redundancy that enables robustness against noise. As others
have noted, recognition, mining, synthesis (RMS) applications
are the emerging important probabilistic applications [5,6],
with opportunities for optimization. For this paper, we would
describe data redundancy in the context of computer vision

!
!
!
!

0!!! 127! 255!'255! '127!
0!

1000!

2000!

3000!

4000!

14000!

18000!

35000!

4MSB!

1MSB!

No!Correc4on!

Single'Bit'Errors'

Mul0'Bit'Errors'

For publication in WNTC 2014, June 2014.

3

applications for object recognition.
Spatial redundancy. Spatial redundancy refers to the well-

known property that an image pixel has similar value to its
neighboring pixels. This property is already used by some
image compression technique such as JPEG. Spatial
redundancy provides error resilience for image processing
algorithms since the error occurred for processing one pixel
can be corrected based on values from neighboring pixels.

Temporal redundancy. Similar to spatial redundancy,
where redundancy exists in a single image, the adjacent image
frames in a video also carry similar pixel values [7,8].
Temporal redundancy also provides error resilience for certain
computer vision algorithms. For example, in the human
tracking surveillance applications, errors occurred in the
processing of one frame can be disregarded, and the
processing of following sequences can still track the human.

Kinematic redundancy. Kinematic redundancy comes
from an understanding of the physical object being detected
and tracked. An object model with physical attributes such as
speed and behavior can be used to remove false alarms from
spurious noise and incorrect inferences from other algorithmic
elements. For example, because we understand the maximum
speed of a human on foot, we can remove detected objects as
non-humans if they exceed the speed criterion. In examples
for gesture recognition, the connectivity between our body
parts using human skeleton modeling can be used to
distinguish and narrow down body poses based on what is
physically possible.

III. ARCHITECTURAL MECHANISMS
In this section, we describe the hardware mechanisms to

support lightweight detection and recovery. We begin by
noting existing research in approximate computing and
voltage scaling. For example, there is prior work [5,9] that
proposes to approximate original code region using neural
processing unit for better performance and energy efficiency.
Other researchers have proposed to build the logic elements
with lower precision or accuracy [10]. There is also a body of
research involving lowering of the operating voltage. Prior
work [11] proposed a dual-voltage design where components
can run in a high voltage that supports a precise and reliable
operation. Some microarchitectural components such as
register file, functional units and data caches can run in the
lower voltage for better energy efficiency. The effect of
running at a lower voltage is the reduced reliability of the
hardware: the read and write accesses to SRAM array might
fail and the functional units might produce the wrong values.

For brevity, we describe our design as having a simple error
check and value speculation (or prediction) to recover from
errors. Figure 4 shows a high level diagram of a Data
Speculation Logic module, comprising of a simple error check
(e.g. bit parity) and a buffer. The history value buffer stores
the operands for the approximate instructions only. Similarly
to register renaming, the entry in the buffer for approximate
instruction can be allocated in the decoding stage. Once the
error is detected, instead of supplying the faulty value, the
value stored in the history buffer is supplied. If no error is

detected, the corresponding entry in the history buffer is
updated with the correct value. Depending on whether we
want to rely on spatial, temporal, or kinematic redundancy, we
can create a set of heuristic mapping for the history buffer. We
can also simply turn off the data speculation logic and let the
error peculate through.

As we’ve noted in the previous sections, noise is acceptable
part of the computation. We describe the use of a history
buffer, but other value prediction logic can be used instead.
The intent of this study is to show a mechanism where the
amount of noise and the data value can be controlled.

Figure 4. Generic diagram of a Data Speculation Logic module

From a higher level architecture perspective, we anticipate a
example configuration that adopts the dual-voltage design, as
shown in Figure 5. Components filled with white color, such
as instruction fetch & decode, out of order execution engine,
functional units and load store queue, can only run in the high
voltage mode, i.e. run in precise mode. In contrast to that,
components filled in yellow color can run both high voltage
(precise mode) and lower voltage (approximate mode). Blue
components are special component that we propose to include
the data speculation logic. Although the design is very similar
to dual-voltage approach [11], we note the main difference in
using data speculation for improvements based on our
understanding of data redundancy. This allows the
miroarchitectural elements such as register files to run
exclusively in lower voltage mode.

Figure 5. Generic architectural diagram using the Data

Speculation Logic module

IV. EXPERIMENTAL SETUP
In our initial evaluation for the Data Speculation Logic

module, we consider several orthogonal design decisions.
First, we consider the mapping for the history buffer, i.e.
which data value to copy. In this paper, we show results where
we (a) copy value from the adjacent pixel location, and (b)

error assumed in the their work [JW says: needs to confirms
that] is appropriate for memory access errors. But it is not a
good fit for functional units since not all bits have the same
probability for random flipping: most significant bits typically
carry the critical path thus have higher probability for error
than least significant bit. The second key difference is that
we treat the Truffle design as a baseline. We propose a new
microarchitecture-level technique to harness the algorithm
resilience to improve the result quality with small overhead.

Instruction
Fetch &
Decode

Out of Order
Engine

Register File
(Read)

Exe

LSQ

DCache

Data
Speculation

Logic

Register File
(Write Back)

Data
Speculation

Logic

Figure 2: NTVAC architecture: whitle components can only
run in precise mode; yellow components can run
both precise and approximate mode, and blue com-
ponents are added for better result quality.

Error Check
Logic

History Value
Buffer

Read
Value

Approximate
Bit

History Buffer
Index

Figure 3: Data speculation logic in our design.

Harnessing Algorithm Resilience As discussed in Sec-
tion 2, there are three sources for the error resilience prop-
erty of computer vision algorithm: (1) spatial redundancy, (2)
temporal redundancy and (3) output flexibility. Our design
aims to leverage the spatial redundancy in the computer vision
algorithms.

Our design relies on light-weight error check and value
speculation to recover from errors. Figure 3 shows the data
speculation logic that we add to leverage the spatial redun-
dancy to improve the result quality. We require to add light-
weight protection codes for the memory and registers. The
history value buffer stores the operands in only for the approx-
imate instructions. Similarly to register renaming, the entry

in the buffer for approximate instruction can be allocated in
the decoding stage. Once the error is detected, instead of sup-
plying the faulty value, the value stored in the history buffer
is supplied. If no error is detected, the corresponding entry in
the history buffer is updated with the correct value.

Which Value to Protect and Which Value to Copy For
our design, there are two orthogonal design decisions: which
part of bits to protect and which value to use for recovery. This
leads to four possible design choices as shown in Figure 4. For
the protection, the whole variable can be protected, or the high
part of bits can be protected. For the recovery, the adjacent
memory location can be used, or the memory location used
in the previous instance of the same instruction can be used.
Our experiment shows the protection of higher half part of the
value performs better than protection of whole value. In the
other side, copying the value from the adjacent pixel location
and from the previous instance of the same instruction almost
perform the same. We choose the copying from previous
instance of the instruction since it provides more flexibility to
algorithms that do not have data structures stored in the form
of matrix such as a graph used in the map search benchmark.
We provide detailed discussion and evaluation of these design
choices in Section 5.

Higher
Parts

Lower
Parts

Higher
Parts

Lower
Parts

ECC
Protected

ECC
Protected

Copy From
Previous

Instruction

Copy From
Adjacent
Memory
Address

Design
Choice

A
(Our Design)

Design
Choice

B

Design
Choice

C

Design
Choice

D

Figure 4: Four Possible Design Choices.

4. Methdology

4.1. Error Injection

Our error injection framework is based on Pin [10] as shown
in Figure 5. Since Pin shares the same virtual memory address
space with the instrumented program, the program can directly
specify which region of memory can be injected with errors.

There are two phases of execution for better performance.
The first phase consists a single run to collect information for
instructions to inject errors. Based on the profiling results, the
second phase consists multiple run of the instrument program

3

error assumed in the their work [JW says: needs to confirms
that] is appropriate for memory access errors. But it is not a
good fit for functional units since not all bits have the same
probability for random flipping: most significant bits typically
carry the critical path thus have higher probability for error
than least significant bit. The second key difference is that
we treat the Truffle design as a baseline. We propose a new
microarchitecture-level technique to harness the algorithm
resilience to improve the result quality with small overhead.

Instruction
Fetch &
Decode

Out of Order
Engine

Register File
(Read)

Exe

LSQ

DCache

Data
Speculation

Logic

Register File
(Write Back)

Data
Speculation

Logic

Figure 2: NTVAC architecture: whitle components can only
run in precise mode; yellow components can run
both precise and approximate mode, and blue com-
ponents are added for better result quality.

Error Check
Logic

History Value
Buffer

Read
Value

Approximate
Bit

History Buffer
Index

Figure 3: Data speculation logic in our design.

Harnessing Algorithm Resilience As discussed in Sec-
tion 2, there are three sources for the error resilience prop-
erty of computer vision algorithm: (1) spatial redundancy, (2)
temporal redundancy and (3) output flexibility. Our design
aims to leverage the spatial redundancy in the computer vision
algorithms.

Our design relies on light-weight error check and value
speculation to recover from errors. Figure 3 shows the data
speculation logic that we add to leverage the spatial redun-
dancy to improve the result quality. We require to add light-
weight protection codes for the memory and registers. The
history value buffer stores the operands in only for the approx-
imate instructions. Similarly to register renaming, the entry

in the buffer for approximate instruction can be allocated in
the decoding stage. Once the error is detected, instead of sup-
plying the faulty value, the value stored in the history buffer
is supplied. If no error is detected, the corresponding entry in
the history buffer is updated with the correct value.

Which Value to Protect and Which Value to Copy For
our design, there are two orthogonal design decisions: which
part of bits to protect and which value to use for recovery. This
leads to four possible design choices as shown in Figure 4. For
the protection, the whole variable can be protected, or the high
part of bits can be protected. For the recovery, the adjacent
memory location can be used, or the memory location used
in the previous instance of the same instruction can be used.
Our experiment shows the protection of higher half part of the
value performs better than protection of whole value. In the
other side, copying the value from the adjacent pixel location
and from the previous instance of the same instruction almost
perform the same. We choose the copying from previous
instance of the instruction since it provides more flexibility to
algorithms that do not have data structures stored in the form
of matrix such as a graph used in the map search benchmark.
We provide detailed discussion and evaluation of these design
choices in Section 5.

Higher
Parts

Lower
Parts

Higher
Parts

Lower
Parts

ECC
Protected

ECC
Protected

Copy From
Previous

Instruction

Copy From
Adjacent
Memory
Address

Design
Choice

A
(Our Design)

Design
Choice

B

Design
Choice

C

Design
Choice

D

Figure 4: Four Possible Design Choices.

4. Methdology

4.1. Error Injection

Our error injection framework is based on Pin [10] as shown
in Figure 5. Since Pin shares the same virtual memory address
space with the instrumented program, the program can directly
specify which region of memory can be injected with errors.

There are two phases of execution for better performance.
The first phase consists a single run to collect information for
instructions to inject errors. Based on the profiling results, the
second phase consists multiple run of the instrument program

3

For publication in WNTC 2014, June 2014.

4

copy from the previous instance of the same instruction. In
exploring these mapping choices, we are hoping to find the
impact of noise resilience based on speculating data from
spatial redundancy. Because the software is often coded where
image data is accessed in raster-scan, spatial locality is often
maintained within a window of data access.

Second, we consider the level of “data protection”. That is,
we can (a) protect the entire word such that the buffer will
always provide data without any noise, and (b) partial
protection of the high order MSB whereby the LSB is allowed
to contain noise. We choose to explore this aspect in order to
expand on the notion of shaping the statistical distribution of
injected noise, as shown previously in Figure 1.

In this section, we describe our simulation methodology
using an error injection mechanism directly during program
execution. We describe the algorithms under evaluation and
the associated metrics. Then we show our evaluation of the
proposed architectural mechanisms.

A. Error Injection
Our error injection framework is based on Pin [12] as

shown in Figure 6. Since Pin shares the same virtual memory
address space with the instrumented program, the program can
directly specify which region of memory can be injected with
errors.

There are two phases of execution for better performance.
The first phase consists of a single run to collect information
for instructions to inject errors. Based on the profiling results,
the second phase consists of multiple run of the instrument
program for statistical data collection. As such, the data collect
time is reduced considerably.

Figure 6. Pin Based Error Injection Framework Overview

The data error is only injected for instructions defined in
nested loops. In these regions, matrix based access to data is
common, e.g. row and column access to pixel data in image
processing and computer vision algorithms. We anticipate that
these instructions are destined for “approximate mode”, we
inject memory read errors using Pin in this area. Please see
Figure 7 for an example code snippet.

It is important to note that the Pin error-injection method is
used here to facilitate simulation only. There is certainly a line
of research and development available towards automatic
detection of code snippets for NTV operation, and other
methods to select the MSB and LSB of bit lengths in different

data types. Although right now we manually label instructions
as approximate, prior work [3,9] on high level programming
language for approximate computing would also suit our
framework.

Figure 7. Example codes snippet for error injection

B. Evaluated Algorithms
We focus on video stabilization application, which consists of
multiple algorithmic components. For each access to memory
buffers in these algorithmic elements, we inject data error
based on a set probability of error per bit.
Pyramid. An image pyramid is a type of multi-scale signal
representation of the original image. It consists of a sequence
of copies of an original image in which both sample density
and resolution are decreased in regular steps, as shown in
Figure 7. Each level of the pyramid images consists a
Gaussian and Laplace image. The bottom, or zero level of the
pyramid, G0, is equal to the original image. This is low-pass
filtered and subsampled by a factor of two to obtain the next
pyramid level, G1. G1 is then filtered in the same way and
subsampled to obtain G2. Further repetitions of the filter
subsample steps generate the remaining pyramid levels.
Pyramid [4,13] is very important in computer vision area since
it provides a common framework for implementing highly
efficient analysis algorithms as well as an architecture for
special purpose image processing hardware.

Global Motion Estimation. Global motion estimation (GME)
is widely used for video stabilization [14] and compression
[15]. GME benchmark implements the hierarchical algorithm
described in [16], as shown in Figure 8. The motion estimation
is performed on difference levels of pyramid images instead of
the source image level. Hierarchical approach adopts a coarse-
fine refinement strategy, i.e. the estimation is performed at the
lower resolution pyramid images first then higher resolution
levels for better accuracy. Thus the pyramid-based approach is
more computation efficient than algorithms processing the
original image.

Output Quality Metric. For each benchmark, we have a
metric for deciding the quality of its result. For Pyramid, the
signal to noise ratio (SNR) is used. For GME, to derive the
quality metric, we first apply the estimated motion vector to
selected five points (four corners and one center). Then we
apply the ground truth motion vector to the same points. The
result quality is derived by calculating the Euclidean distance
among transformed position of these points with estimated
motion vector and ground truth motion vector.

Program Pin

Instrumentation APIs

Operating System

Hardware

Pin Tool:
Profiler

Pin Tool:
Error Injection

Profiling
Results

Specify Error
Injection Region

Inject Errors

Figure 5: Pin Based Error Injection Framework Overview.

for statistical data collection. As such, the data collect time is
reduced a lot.

Error Injection Region The error is only injected to instruc-
tions that can run in the approximate mode. Computer vision
algorithms typically performs the computation on images or
matrices. Prior work[JW says: [?]] has shown computation re-
lated to matrices processing can be approximate. Thus we only
apply the approximate computing to such region, as shown in
the example code snippet in Figure 6. Although right now we
manually label instructions as approximate, prior work [13] on
hight level programming language for approximate computing
would also suit our framework.

for (unsigned i = 0; i < height, i ++) {

for (unsigned j = 0; j < width, j ++) {

// Approximate region: start noise injection

}

}

Figure 6: Example code snippet for approximate computing re-
gion.

4.2. Evaluated Algorithms

The evaluated benchmarks are all computer vision algorithms.
They range from video stabilization, geo-registration & track-
ing, video compression and navigation category. Those bench-
marks are summarized in Table 1.

Benchmark Decription

Pyramid Video Stablization

Global Motion Estimate (GME) Video Stablization

Map Search Navigation

Table 1: Evaluated Benchmarks and Description.

Motion
Vector

Frame 1Frames

Gaussian
Filter

Sub-
sampling

-

Level
1 Level

2 ...

Level
1 Level

2 ...

Gaussian pyramids

Laplace pyramids

Global Motion Estimation

Pyramid Generation

Figure 7: Overview of Global Motion Estimation Algorithm.

Pyramid An image pyramid is a type of multi-scale signal
representation of the original image. It consists of a sequence
of copies of an original image in which both sample density
and resolution are decreased in regular steps, as shown in Fig-
ure 7. Each level of the pyramid images consists a Gaussian
and Laplace image. The bottom, or zero level of the pyramid,
G0, is equal to the original image. This is lowpass-filtered
and subsampled by a factor of two to obtain the next pyramid
level, G1. G1 is then filtered in the same way and subsampled
to obtain G2. Further repetitions of the filtersubsample steps
generate the remaining pyramid levels. Pyramid [1, 3] is very
important in computer vision area since it provides a common
framework for implementing highly efficient analysis algo-
rithms as well as an architecture for special purpose image
processing hardware.

Global Motion Estimation Global motion estimation
(GME) is widely used for video stabilization [14] and com-
pression [7]. GME benchmark implements the hierarchical
algorithm described in [2], as shown in Figure 7. The motion
estimation is performed on difference levels of pyramid im-
ages instead of the source image level, as shown in Figure 7.
Hierarchical approach adopts a coarse-fine refinement strat-
egy, i.e. the estimation is performed at the lower resolution
pyramid images first then higher resolution levels for better
accuracy. Thus the pyramid based approach is more computa-
tion efficient than algorithms processing the original image. In
Section 5, we will also show using multiple levels of pyramid
images makes the algorithm also more error resilient.

Map Search The map search algorithm adopts A⇤ algorithm
as described in [says: []]
Map Search Explaination

Output Quality Metric For each benchmark, we have a
metric for deciding the quality of its result. For Pyramid, the
signal to noise ratio (SNR) is used. For GME, to derive the
quality metric, we first apply the estimated motion vector to se-
lected five points (four corners and one center). Then we apply
the ground truth motion vector to the same points. The result
quality is derived by calculating the Euclidean distance among

4

Program Pin

Instrumentation APIs

Operating System

Hardware

Pin Tool:
Profiler

Pin Tool:
Error Injection

Profiling
Results

Specify Error
Injection Region

Inject Errors

Figure 5: Pin Based Error Injection Framework Overview.

for statistical data collection. As such, the data collect time is
reduced a lot.

Error Injection Region The error is only injected to instruc-
tions that can run in the approximate mode. Computer vision
algorithms typically performs the computation on images or
matrices. Prior work[JW says: [?]] has shown computation re-
lated to matrices processing can be approximate. Thus we only
apply the approximate computing to such region, as shown in
the example code snippet in Figure 6. Although right now we
manually label instructions as approximate, prior work [13] on
hight level programming language for approximate computing
would also suit our framework.

for (unsigned i = 0; i < height, i ++) {

for (unsigned j = 0; j < width, j ++) {

// Approximate region: start noise injection

}

}

Figure 6: Example code snippet for approximate computing re-
gion.

4.2. Evaluated Algorithms

The evaluated benchmarks are all computer vision algorithms.
They range from video stabilization, geo-registration & track-
ing, video compression and navigation category. Those bench-
marks are summarized in Table 1.

Benchmark Decription

Pyramid Video Stablization

Global Motion Estimate (GME) Video Stablization

Map Search Navigation

Table 1: Evaluated Benchmarks and Description.

Motion
Vector

Frame 1Frames

Gaussian
Filter

Sub-
sampling

-

Level
1 Level

2 ...

Level
1 Level

2 ...

Gaussian pyramids

Laplace pyramids

Global Motion Estimation

Pyramid Generation

Figure 7: Overview of Global Motion Estimation Algorithm.

Pyramid An image pyramid is a type of multi-scale signal
representation of the original image. It consists of a sequence
of copies of an original image in which both sample density
and resolution are decreased in regular steps, as shown in Fig-
ure 7. Each level of the pyramid images consists a Gaussian
and Laplace image. The bottom, or zero level of the pyramid,
G0, is equal to the original image. This is lowpass-filtered
and subsampled by a factor of two to obtain the next pyramid
level, G1. G1 is then filtered in the same way and subsampled
to obtain G2. Further repetitions of the filtersubsample steps
generate the remaining pyramid levels. Pyramid [1, 3] is very
important in computer vision area since it provides a common
framework for implementing highly efficient analysis algo-
rithms as well as an architecture for special purpose image
processing hardware.

Global Motion Estimation Global motion estimation
(GME) is widely used for video stabilization [14] and com-
pression [7]. GME benchmark implements the hierarchical
algorithm described in [2], as shown in Figure 7. The motion
estimation is performed on difference levels of pyramid im-
ages instead of the source image level, as shown in Figure 7.
Hierarchical approach adopts a coarse-fine refinement strat-
egy, i.e. the estimation is performed at the lower resolution
pyramid images first then higher resolution levels for better
accuracy. Thus the pyramid based approach is more computa-
tion efficient than algorithms processing the original image. In
Section 5, we will also show using multiple levels of pyramid
images makes the algorithm also more error resilient.

Map Search The map search algorithm adopts A⇤ algorithm
as described in [says: []]
Map Search Explaination

Output Quality Metric For each benchmark, we have a
metric for deciding the quality of its result. For Pyramid, the
signal to noise ratio (SNR) is used. For GME, to derive the
quality metric, we first apply the estimated motion vector to se-
lected five points (four corners and one center). Then we apply
the ground truth motion vector to the same points. The result
quality is derived by calculating the Euclidean distance among

4

For publication in WNTC 2014, June 2014.

5

Figure 8. Algorithmic Overview of Video Stabilization

V. RESULTS AND EVALUATION
We first present the evaluation of the algorithm resilience of

selected algorithms described earlier. We analyze the error
resilience property by inspecting how the output result quality
changes with different bit flip probability when running in the
approximate mode. We consider the four different design
options to map the buffers in the Data Speculation Logic
module.

In Figure 9, we show the simulation results for different bit
flip probability against output quality metric. In general, result
errors in the order of a single pixel are tolerable. We show
three baseline comparisons with the first two graphs. The
“Baseline” represents computational noise injected without
any checking or recovery. The “Error in source image”
represents sensor-oriented noise at the input without any
computational noise, representing the traditional computing
without NTC (and obviously, without the power benefits of
NTC). The “ECC-Single Error Detection” represents
traditional ECC applied as error recovery.

We evaluate two versions of benchmark GME: using only
level 1 of the pyramid images (Figure 9a) and using multiple
levels (Figure 9b). From the two plots, we see that single level
GME’s output is less resilient compared to the GME using
multiple levels, which we anticipated based on spatial
redundancy. We see and anticipated that, in comparison with
base line, computational noise is more demanding than just
sensor noise (our base line data). That is, without NTC and
higher power computation, the algorithm can tolerate sensor
noise up to these levels. For multi-level GME, we also
injected errors in every level of the pyramid, so the intrinsic
robustness of the algorithm can maintain resiliency from input
sensor noise up to p=0.04 (4% bit flip probability).

Based on our results, we find that there is negligible
difference in performance for cases where the Data
Speculation Logic module gathers data from adjacent memory
location or from data used previous instruction. This confirms
our anticipation that the image access pattern is raster-scan
and spatial locality is therefore maintained within a window of
data access. From this, we can also conclude that the Data
Speculation Logic module can be simplified because the
history buffer is tied closely with instruction stream rather
than memory access. More specifically, we are suggesting that
the logic to maintain the mapping in the history buffer is
greatly simplified when we are just considering data from
most recently used instructions.

Figure 9. Evaluated resiliency under different data speculation

schemes
With respect of the design choice related to level of protection
for the bits, we find that it is fine to leave the LSB noisy. In
fact, the results show that if we copy the duplicate the entire
pixel data, the system has a higher overall error.
Algorithmically, we note that copying the previously used
pixel may be fast and simple, but it will introduce horizontal
smearing due to data duplication. This smearing affects the
motion vector with duplicated data. In comparison, with noisy
LSB (e.g. protect and copy only MSB from previous
instruction), we leave the algorithm with statistical noise in the
motion estimation algorithm, without throwing off the
convergence. More specifically, the smearing effect from data
duplication is more likely to indicate camera motion, while
pixel noise (from LSB) would not. From this result, we can
infer that the history buffer can be greatly simplified because
we just need to store the upper MSB, while LSB can be noisy.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we explore the notion of computation noise

and its statistical nature to arrive at an alternative approach for
resiliency. We presented a very early design of a lightweight
error checking and recovery mechanism to extend noise
resiliency beyond the traditional “safe operating region” of the
algorithm. We describe a microarchitecture design with results
of how approximate computing can be extended with data

Program Pin

Instrumentation APIs

Operating System

Hardware

Pin Tool:
Profiler

Pin Tool:
Error Injection

Profiling
Results

Specify Error
Injection Region

Inject Errors

Figure 5: Pin Based Error Injection Framework Overview.

for statistical data collection. As such, the data collect time is
reduced a lot.

Error Injection Region The error is only injected to instruc-
tions that can run in the approximate mode. Computer vision
algorithms typically performs the computation on images or
matrices. Prior work[JW says: [?]] has shown computation re-
lated to matrices processing can be approximate. Thus we only
apply the approximate computing to such region, as shown in
the example code snippet in Figure 6. Although right now we
manually label instructions as approximate, prior work [13] on
hight level programming language for approximate computing
would also suit our framework.

for (unsigned i = 0; i < height, i ++) {

for (unsigned j = 0; j < width, j ++) {

// Approximate region: start noise injection

}

}

Figure 6: Example code snippet for approximate computing re-
gion.

4.2. Evaluated Algorithms

The evaluated benchmarks are all computer vision algorithms.
They range from video stabilization, geo-registration & track-
ing, video compression and navigation category. Those bench-
marks are summarized in Table 1.

Benchmark Decription

Pyramid Video Stablization

Global Motion Estimate (GME) Video Stablization

Map Search Navigation

Table 1: Evaluated Benchmarks and Description.

Motion
Vector

Frame 1Frames

Gaussian
Filter

Sub-
sampling

-

Level
1 Level

2 ...

Level
1 Level

2 ...

Gaussian pyramids

Laplace pyramids

Global Motion Estimation

Pyramid Generation

Figure 7: Overview of Global Motion Estimation Algorithm.

Pyramid An image pyramid is a type of multi-scale signal
representation of the original image. It consists of a sequence
of copies of an original image in which both sample density
and resolution are decreased in regular steps, as shown in Fig-
ure 7. Each level of the pyramid images consists a Gaussian
and Laplace image. The bottom, or zero level of the pyramid,
G0, is equal to the original image. This is lowpass-filtered
and subsampled by a factor of two to obtain the next pyramid
level, G1. G1 is then filtered in the same way and subsampled
to obtain G2. Further repetitions of the filtersubsample steps
generate the remaining pyramid levels. Pyramid [1, 3] is very
important in computer vision area since it provides a common
framework for implementing highly efficient analysis algo-
rithms as well as an architecture for special purpose image
processing hardware.

Global Motion Estimation Global motion estimation
(GME) is widely used for video stabilization [14] and com-
pression [7]. GME benchmark implements the hierarchical
algorithm described in [2], as shown in Figure 7. The motion
estimation is performed on difference levels of pyramid im-
ages instead of the source image level, as shown in Figure 7.
Hierarchical approach adopts a coarse-fine refinement strat-
egy, i.e. the estimation is performed at the lower resolution
pyramid images first then higher resolution levels for better
accuracy. Thus the pyramid based approach is more computa-
tion efficient than algorithms processing the original image. In
Section 5, we will also show using multiple levels of pyramid
images makes the algorithm also more error resilient.

Map Search The map search algorithm adopts A⇤ algorithm
as described in [says: []]
Map Search Explaination

Output Quality Metric For each benchmark, we have a
metric for deciding the quality of its result. For Pyramid, the
signal to noise ratio (SNR) is used. For GME, to derive the
quality metric, we first apply the estimated motion vector to se-
lected five points (four corners and one center). Then we apply
the ground truth motion vector to the same points. The result
quality is derived by calculating the Euclidean distance among

4

0.0001$
2$ 3$ 4$ 5$ 6$ 7$ 8$9$

0.001$
2$ 3$ 4$ 5$ 6$ 7$ 8$9$

0.01$
2$ 3$ 4$ 5$ 6$ 7$ 8$9$

0.1$

0.1$

2$

3$

4$
5$
6$
7$
8$
9$

1$

2$

3$

4$
5$
6$
7$
8$
9$

10$

Bit$Flip$Probability$

Re
su
lt$
Er
ro
r$(
Pi
xe
l)$

Baseline$
Errorinsource$image$only$

Protect$MSB,$Copy$previous$pixel$
Protect$MSB,$Copy$previous$instrucJon$

ECC$Single$Error$DetecJon$

Protectallbits,$Copy$previous$instrucJon$
Protectallbits,$Copy$previous$pixel$

(a)$Single$levelGME

0.0001$
2$ 3$ 4$ 5$ 6$ 7$ 8$9$

0.001$
2$ 3$ 4$ 5$ 6$ 7$ 8$9$

0.01$
2$ 3$ 4$ 5$ 6$ 7$ 8$9$

0.1$

0.01$

2$

3$

4$
5$
6$
7$
8$
9$

0.1$

Bit$Flip$Probability$

Re
su
lt$
Er
ro
r$(
Pi
xe
l)$

Baseline$
Errorinsource$image$only$

Protect$MSB,$Copy$previous$pixel$
Protect$MSB,$Copy$previous$instrucJon$

ECC$Single$Error$DetecJon$

Protectallbits,$Copy$previous$instrucJon$
Protectallbits,$Copy$previous$pixel$

(b)$MulJple$levelsGME

2$

3$

4$
5$
6$
7$
8$
9$

1$

2$

3$

4$
5$
6$
7$
8$
9$

10$

For publication in WNTC 2014, June 2014.

6

value speculation. We show that with an understanding of the
spatial, temporal, and kinematic data redundancy, we can
arrive at a greatly simplified design, while maintaining
algorithmic performance.

Going forward, there is much more we can do as future
work to extend the idea of noise as an architecture and circuit
design parameter for data value approximation. Specifically,
we would like to merge the approach with approximate
computing concepts such as lower precision and loop
perforation. With the computational noise approach, we would
instead provide full precision data, but in presence of noise.

Our intent is focused on showing what are the algorithmic
performances given some controllable source of
computational noise. We point to the idea that lightweight
mechanisms could be afforded to maintain algorithmic
performance. While our paper describes only a small fraction
of the processor microarchitecture can operate in NTV, we
expect to explore and expand into larger proportion of the
chip. Our initial design using a history value buffers are
offered as evaluation of possible architectural mechanisms,
but other, smaller logic circuit could be used instead for data
speculation. We are not at a point where we can generalize a
circuit for data speculation.

Furthermore, there are number of VLSI design rules that
can be reconsidered because we are now able to leverage noise
in the design parameter. For example, we can save power by
lowering voltage and introduce crosstalk in interconnects, for
example. We may even have non-symmetrically interconnect
widths for a bus (e.g. purposefully lay out a network where the
least significant bits – LSB – are narrower and thus noisy, to
improve wiring density.

REFERENCES
[1] Ronald G. Dreslinski, et al. "Near-threshold computing:
Reclaiming moore's law through energy efficient integrated circuits."
Proceedings of the IEEE 98.2 (2010): 253-266.
[2] Smruti R. Sarangi, et al. "VARIUS: A model of process variation
and resulting timing errors for microarchitects." Semiconductor
Manufacturing, IEEE Transactions on 21.1 (2008): 3-13.
[3] M. Corbin, et. al., “Proving Acceptability Properties of Relaxed
Approximate Programs”, PLDI’12.
[4] C.H. Anderson, J.R. Bergen, P.J. Burt ,and J.M .Ogden, “Pyramid
methods in image processing,” 1984.
[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,“ Neural
Acceleration for General-Purpose Approximate Programs,” in
Proceedings of International Symposium on Microarchitecture
(MICRO), 2012.
[6] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra, “ERSA:
Error Resilient System Architecture for probabilistic applications,” in
Proceedings of Design, Automation Test in Europe Conference
Exhibition (DATE), 2010.
[7] H. Lu, B. Wang, X. Xue, and Y.P. Tan, “Effective Shot Boundary
Classification Using Video Spatial-Temporal Information,” in
Proceedings of International Symposium on Circuits and Systems
(ISCAS), 2005.
[8] L.-Q. Xu and Y. Li, “Video Classification Using Spatial-temporal
Features and PCA,” in Proceedings of International Conference on
Multimedia and Expo (ICME), 2003.
[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.,
“Architecture Support for Disciplined Approximate Programming,”
in Proceedings of International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS),
2012.
[10] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K.
Roy, “IMPACT: IMPrecise Adders for Low-power Approximate
Computing,” in Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED), 2011.
[11] D. Mohapatra, V. Chippa, A. Raghunathan, and K. Roy,
“Design of voltage-scalable meta-functions for approximate
computing,” in Proceedings of Design, Automation Test in Europe
Conference Exhibition (DATE), 2011.
[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S.Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
pro- gram analysis tools with dynamic instrumentation,” in
Proceedings of Conference on Programming Language Design and
Implementation (PLDI), 2005.
[13] P. Burt, “A Pyramid Framework for Real-Time Computer
Vision,”in Foundations of Image Understanding, ser. The Springer
International Series in Engineering and Computer Science. Springer
US, 2001.
[14] T.-S. Wang, S.-J. Kang, K.-Y. Byun, T.-C. Kim, and S.-J.Ko,
“Robust global motion estimation for video stabilization,” in Global
Conference on Consumer Electronics (GCCE), 2012
[15] Y. Keller and A. Averbuch, “Fast gradient methods based on
global motion estimation for video compression,” Circuits and
Systems for Video Technology, IEEE Transactions on, 2003.
[16] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani,
“Hierarchical model-based motion estimation,” in Computer Vision
ECCV’92, ser. Lecture Notes in Computer Science, 1992, vol. 588.

