
CRAWLING AND WEB INDEXES

BASIC CRAWLER OPERATION

Begin with known “seed” URLs

Fetch and parse them

 Extract URLs they point to

 Place the extracted URLs on a queue

Fetch each URL on the queue and repeat

Sec. 20.2

2

CRAWLING PICTURE

Web

URLs frontier

Unseen Web

Seed

pages

URLs crawled

and parsed

Sec. 20.2

3

SIMPLE PICTURE – COMPLICATIONS

 Web crawling isn’t feasible with one machine

 All of the above steps distributed

 Malicious pages

 Spam pages

 Spider traps – incl dynamically generated

 Even non-malicious pages pose challenges

 Latency/bandwidth to remote servers vary

 Webmasters’ stipulations
 How “deep” should you crawl a site’s URL hierarchy?

 Site mirrors and duplicate pages

 Politeness – don’t hit a server too often

Sec. 20.1.1

4

WHAT ANY CRAWLER MUST DO

Be Polite: Respect implicit and

explicit politeness considerations

 Only crawl allowed pages

 Respect robots.txt (more on this shortly)

Be Robust: Be immune to spider

traps and other malicious behavior

from web servers

Sec. 20.1.1

5

WHAT ANY CRAWLER SHOULD DO

Be capable of distributed operation:

designed to run on multiple distributed

machines

Be scalable: designed to increase the

crawl rate by adding more machines

Performance/efficiency: permit full use

of available processing and network

resources

Sec. 20.1.1

6

WHAT ANY CRAWLER SHOULD DO

Fetch pages of “higher quality” first

Continuous operation: Continue

fetching fresh copies of a previously

fetched page

Extensible: Adapt to new data

formats, protocols

Sec. 20.1.1

7

UPDATED CRAWLING PICTURE

URLs crawled

and parsed

Unseen Web

Seed

Pages

URL frontier

Crawling thread

Sec. 20.1.1

8

URL FRONTIER

Can include multiple pages from the

same host

Must avoid trying to fetch them all

at the same time

Must try to keep all crawling threads

busy

Sec. 20.2

9

EXPLICIT AND IMPLICIT POLITENESS

Explicit politeness: specifications

from webmasters on what portions of

site can be crawled

 robots.txt

Implicit politeness: even with no

specification, avoid hitting any site

too often

Sec. 20.2

10

ROBOTS.TXT

Protocol for giving spiders (“robots”)

limited access to a website, originally

from 1994

 www.robotstxt.org/wc/norobots.html

Website announces its request on what

can(not) be crawled

 For a server, create a file /robots.txt

 This file specifies access restrictions

Sec. 20.2.1

11

http://www.robotstxt.org/wc/norobots.html

ROBOTS.TXT EXAMPLE

 No robot should visit any URL starting with

"/yoursite/temp/", except the robot called

“searchengine":

User-agent: *

Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Sec. 20.2.1

12

PROCESSING STEPS IN CRAWLING

 Pick a URL from the frontier

 Fetch the document at the URL

 Parse the URL

 Extract links from it to other docs (URLs)

 Check if URL has content already seen

 If not, add to indexes

 For each extracted URL

 Ensure it passes certain URL filter tests

 Check if it is already in the frontier (duplicate URL

elimination)

E.g., only crawl .edu,

obey robots.txt, etc.

Which one?

Sec. 20.2.1

13

BASIC CRAWL ARCHITECTURE

WWW

DNS

Parse

Content

seen?

Doc

FP’s

Dup

URL

elim

URL

set

URL Frontier

URL

filter

robots

filters

Fetch

Sec. 20.2.1

14

DNS (DOMAIN NAME SERVER)

 A lookup service on the internet

 Given a URL, retrieve its IP address

 Service provided by a distributed set of servers – thus,

lookup latencies can be high (even seconds)

 Common OS implementations of DNS lookup are

blocking: only one outstanding request at a time

 Solutions

 DNS caching

 Batch DNS resolver – collects requests and sends

them out together

Sec. 20.2.2

15

PARSING: URL NORMALIZATION

 When a fetched document is parsed, some of the

extracted links are relative URLs

 E.g., http://en.wikipedia.org/wiki/Main_Page has a

relative link to /wiki/Wikipedia:General_disclaimer

which is the same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

 During parsing, must normalize (expand) such relative

URLs

Sec. 20.2.1

16

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

CONTENT SEEN?

 Duplication is widespread on the web

 If the page just fetched is already in the index, do

not further process it

 This is verified using document fingerprints or

shingles

Sec. 20.2.1

17

FILTERS AND ROBOTS.TXT

18

 Filters – regular expressions for URL’s to be

crawled/not

 Once a robots.txt file is fetched from a site, need

not fetch it repeatedly

 Doing so burns bandwidth, hits web server

 Cache robots.txt files

Sec. 20.2.1

DUPLICATE URL ELIMINATION

 For a non-continuous (one-shot) crawl, test to see

if an extracted+filtered URL has already been

passed to the frontier

 For a continuous crawl – see details of frontier

implementation

Sec. 20.2.1

19

DISTRIBUTING THE CRAWLER

 Run multiple crawl threads, under different

processes – potentially at different nodes

 Geographically distributed nodes

 Partition hosts being crawled into nodes

 Hash used for partition

 How do these nodes communicate and share

URLs?

Sec. 20.2.1

20

COMMUNICATION BETWEEN NODES

 Output of the URL filter at each node is sent to the

Dup URL Eliminator of the appropriate node

WWW

Fetch

DNS

Parse

Content

seen?

URL

filter

Dup

URL

elim

Doc

FP’s

URL

set

URL Frontier

robots

filters

Host

splitter

To

other

nodes

From

other

nodes

Sec. 20.2.1

21

URL FRONTIER: TWO MAIN CONSIDERATIONS

 Politeness: do not hit a web server too frequently

 Freshness: crawl some pages more often than others
 E.g., pages (such as News sites) whose content changes often

These goals may conflict each other.

(E.g., simple priority queue fails – many links out of a
page go to its own site, creating a burst of accesses to
that site.)

Sec. 20.2.3

22

POLITENESS – CHALLENGES

 Even if we restrict only one thread to fetch from a

host, can hit it repeatedly

 Common heuristic: insert time gap between

successive requests to a host that is >> time for

most recent fetch from that host

Sec. 20.2.3

23

Back queue selector

B back queues

Single host on each

Crawl thread requesting URL

URL FRONTIER: MERCATOR SCHEME

Biased front queue selector

Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

24

MERCATOR URL FRONTIER

 URLs flow in from the top into the frontier

 Front queues manage prioritization

 Back queues enforce politeness

 Each queue is FIFO

Sec. 20.2.3

25

FRONT QUEUES

Prioritizer

1 K

Biased front queue selector

Back queue router

Sec. 20.2.3

26

FRONT QUEUES

Prioritizer assigns to URL an integer

priority between 1 and K

 Appends URL to corresponding queue

Heuristics for assigning priority

 Refresh rate sampled from previous crawls

 Application-specific (e.g., “crawl news sites

more often”)

Sec. 20.2.3

27

BIASED FRONT QUEUE SELECTOR

 When a back queue requests a URL (in a

sequence to be described): picks a front queue

from which to pull a URL

 This choice can be round robin biased to queues

of higher priority, or some more sophisticated

variant

 Can be randomized

Sec. 20.2.3

28

BACK QUEUES

Biased front queue selector

Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

29

BACK QUEUE INVARIANTS

 Each back queue is kept non-empty while the crawl is

in progress

 Each back queue only contains URLs from a single

host

 Maintain a table from hosts to back queues

Host name Back queue

… 3

1

B

Sec. 20.2.3

30

BACK QUEUE HEAP

 One entry for each back queue

 The entry is the earliest time te at which the host

corresponding to the back queue can be hit again

 This earliest time is determined from

 Last access to that host

 Any time buffer heuristic we choose

Sec. 20.2.3

31

BACK QUEUE PROCESSING

 A crawler thread seeking a URL to crawl:

 Extracts the root of the heap

 Fetches URL at head of corresponding back queue q

(look up from table)

 Checks if queue q is now empty – if so, pulls a URL v

from front queues

 If there’s already a back queue for v’s host, append v to

that back queue and pull another URL from front queues,

repeat

 Else add v to q

 When q is non-empty, create heap entry for it

Sec. 20.2.3

32

NUMBER OF BACK QUEUES B

 Keep all threads busy while respecting politeness

 Mercator recommendation: three times as many

back queues as crawler threads

Sec. 20.2.3

33

RESOURCES

 IIR Chapter 20

 Mercator: A scalable, extensible web crawler

(Heydon et al. 1999)

 A standard for robot exclusion

34

http://research.microsoft.com/~najork/mercator.pdf
http://www.robotstxt.org/orig.html

EVALUATION

THIS LECTURE

 How do we know if our results are any good?

 Evaluating a search engine

 Benchmarks

 Precision and recall

 Results summaries:

 Making our good results usable to a user

Sec. 6.2

36

EVALUATING SEARCH ENGINES

37

MEASURES FOR A SEARCH ENGINE

 How fast does it index (offline)

 Number of documents/hour

 (Average document size)

 How fast does it search (online)

 Latency as a function of index size

 Expressiveness of query language

 Ability to express complex information needs

 Speed on complex queries

 Uncluttered UI

 Is it free?

Sec. 8.6

38

MEASURES FOR A SEARCH ENGINE

 All of the preceding criteria are measurable: we

can quantify speed/size

 we can make expressiveness precise

 The key measure: user happiness

 What is this?

 Speed of response/size of index are factors

 But blindingly fast, useless answers won’t make a

user happy

 Need a way of quantifying user happiness

Sec. 8.6

39

MEASURING USER HAPPINESS

 Issue: who is the user we are trying to make happy?

 Depends on the setting

 Web engine:

 User finds what s/he wants and returns to the engine
 Can measure rate of return users

 User completes task – search as a means, not end

 See Russell http://dmrussell.googlepages.com/JCDL-talk-
June-2007-short.pdf

 eCommerce site: user finds what s/he wants and buys

 Is it the end-user, or the eCommerce site, whose happiness
we measure?

 Measure time to purchase, or fraction of searchers who
become buyers?

Sec. 8.6.2

40

MEASURING USER HAPPINESS

 Enterprise (company/govt/academic): Care about

“user productivity”

 How much time do my users save when looking for

information?

 Many other criteria having to do with breadth of

access, secure access, etc.

Sec. 8.6.2

41

HAPPINESS: ELUSIVE TO MEASURE

 Most common proxy: relevance of search results

 But how do you measure relevance?

 We will detail a methodology here, then examine

its issues

 Relevance measurement requires 3 elements:

1. A benchmark document collection

2. A benchmark suite of queries

3. A usually binary assessment of either Relevant or

Nonrelevant for each query and each document

 Some work on more-than-binary, but not the standard

Sec. 8.1

42

EVALUATING AN IR SYSTEM

 Note: the information need is translated into a

query

 Relevance is assessed relative to the

information need not the query

 E.g., Information need: I'm looking for

information on whether drinking red wine is more

effective at reducing your risk of heart attacks

than white wine.

 Query: wine red white heart attack effective

 Evaluate whether the doc addresses the

information need, not whether it has these words

Sec. 8.1

43

Because the query

language may be

ill-designed!

STANDARD RELEVANCE BENCHMARKS

 TREC - National Institute of Standards and

Technology (NIST) has run a large IR test bed for

many years

 Reuters and other benchmark doc collections

used

 “Retrieval tasks” specified

 sometimes as queries

 Human experts mark, for each query and for

each doc, Relevant or Nonrelevant

 or at least for subset of docs that some system

returned for that query

Sec. 8.2

44

UNRANKED RETRIEVAL EVALUATION:

PRECISION AND RECALL

 Precision: fraction of retrieved docs that are

relevant = P(relevant|retrieved)

 Recall: fraction of relevant docs that are

retrieved

= P(retrieved|relevant)

 Precision P = tp/(tp + fp)

 Recall R = tp/(tp + fn)

Relevant Nonrelevant

Retrieved tp fp

Not Retrieved fn tn

Sec. 8.3

45

SHOULD WE INSTEAD USE THE

ACCURACY MEASURE FOR EVALUATION?

 Given a query, an engine classifies each doc as

“Relevant” or “Nonrelevant”

 The accuracy of an engine: the fraction of these

classifications that are correct

 (tp + tn) / (tp + fp + fn + tn)

 Accuracy is a commonly used evaluation

measure in machine learning classification work

Sec. 8.3

46

WHY NOT JUST USE ACCURACY?

 How to build a 99.99% accurate search engine on

a low budget….

 People doing information retrieval want to find

something and have a certain tolerance for junk.

Search for:

0 matching results found.

Sec. 8.3

47

QUIZ: SNOOGLE

 Why does Snoogle on the previous page produce

99.99% accuracy? (recall the definition of

accuracy.)

48

PRECISION/RECALL

 You can get high recall (but low precision) by

retrieving all docs for all queries!

 Recall is a non-decreasing function of the number of

docs retrieved

 In a good system, precision decreases as either the

number of docs retrieved or recall increases

 This is not a theorem, but a result with strong empirical

confirmation

Sec. 8.3

49

DIFFICULTIES IN USING

PRECISION/RECALL

 Should average over large document

collection/query ensembles

 Need human relevance assessments

 People aren’t reliable assessors

 Assessments have to be binary

 Nuanced assessments?

 Heavily skewed by collection/authorship

 Results may not translate from one domain to

another

Sec. 8.3

50

A COMBINED MEASURE: F

 Combined measure that assesses precision/recall

tradeoff is F measure (weighted harmonic mean):

 People usually use balanced F1 measure

 i.e., with  = 1 or  = ½, i.e., 2*PR/(P+R)

 Harmonic mean is a conservative average

 See CJ van Rijsbergen, Information Retrieval

RP

PR

RP

F
+

+
=

−+

=
2

2)1(

1
)1(

1

1







Sec. 8.3

51

F1 (HARMONIC) AND OTHER AVERAGES

Combined Measures

0

20

40

60

80

100

0 20 40 60 80 100

Precision (Recall fixed at 70%)

Minimum

Maximum

Arithmetic

Geometric

Harmonic

Sec. 8.3

52

QUIZ: P/R, ACCURACY AND F1

 Compute the Precision, Recall, Accuracy and F1

according to the following table:

53

Relevant Nonrelevant

Retrieved 50 30

Not Retrieved 100 150

EVALUATING RANKED RESULTS

 Evaluation of ranked results:

 The system can return any number of results

 By taking various numbers of the top returned

documents (levels of recall), the evaluator can

produce a precision-recall curve

Sec. 8.4

54

A PRECISION-RECALL CURVE

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall

P
re

c
is

io
n

Sec. 8.4

55

AVERAGING OVER QUERIES

 A precision-recall graph for one query isn’t a

very sensible thing to look at

 You need to average performance over a whole

bunch of queries.

 But there’s a technical issue:

 Precision-recall calculations place some

discontinuous points on the graph

 How do you determine a value (interpolate) between

the points?

Sec. 8.4

56

INTERPOLATED PRECISION

 Idea: If locally precision increases with

increasing recall, then you need to accommodate

for that…

 So you take the max of precisions to right of

value

Sec. 8.4

57

EVALUATION

 Graphs are good, but people want summary

measures!

 Precision at fixed retrieval level

 Precision-at-k: Precision of top k results

 Perhaps appropriate for most of web search: all people want are

good matches on the first one or two results pages

 But: averages badly and has an arbitrary parameter of k

 11-point interpolated average precision

 The standard measure in the early TREC competitions: you take

the precision at 11 levels of recall varying from 0, 0.1, 0.2, 0.3

through 1.0, using interpolation (the value for 0 is always

interpolated!), and average them

 Evaluates performance at all recall levels

Sec. 8.4

58

TYPICAL (GOOD) 11 POINT PRECISIONS

 SabIR/Cornell 8A1 11pt precision from TREC 8 (1999)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

c
is

io
n

Sec. 8.4

59

points are interpolated

QUIZ: 11-POINT AVERAGE PRECISION

 How do you estimate the precision at recall = 0?

60

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

P
re

c
is

io
n

YET MORE EVALUATION MEASURES…

 Mean average precision (MAP)

 Average of the precision value obtained for the top k

documents, each time a relevant doc is retrieved

 Avoids interpolation, use of fixed recall levels

 MAP for query collection is arithmetic ave.

 Macro-averaging: each query counts equally

 R-precision

 If we have a known (though perhaps incomplete) set of

relevant documents of size Rel, then calculate

precision of the top Rel docs returned

 Perfect system could score 1.0.

Sec. 8.4

61

VARIANCE

 For a test collection, it is usual that a system

does crummily on some information needs (e.g.,

MAP = 0.1) and excellently on others (e.g., MAP =

0.7)

 Indeed, it is usually the case that the variance in

performance of the same system across queries is

much greater than the variance of different

systems on the same query.

 That is, there are easy information needs and

hard ones!

Sec. 8.4

62

CREATING TEST

COLLECTIONS

FOR IR EVALUATION
63

TEST COLLECTIONS

Sec. 8.5

64

FROM DOCUMENT COLLECTIONS

TO TEST COLLECTIONS

 Still need

 Test queries

 Relevance assessments

 Test queries

 Must be relevant to docs available

 Best designed by domain experts

 Random query terms generally not a good idea

 Relevance assessments

 Human judges, time-consuming

 Are human panels perfect?

Sec. 8.5

65

KAPPA MEASURE FOR INTER-JUDGE

(DIS)AGREEMENT

 Kappa measure

 Agreement measure among judges

 Designed for categorical judgments

 Corrects for chance agreement

 Kappa = [P(A) – P(E)] / [1 – P(E)]

 P(A) – proportion of time judges agree

 P(E) – what agreement would be by chance

 Kappa = 0 for chance agreement, 1 for total

agreement.

Sec. 8.5

66

KAPPA MEASURE: EXAMPLE

Number of docs Judge 1 Judge 2

300 Relevant Relevant

70 Nonrelevant Nonrelevant

20 Relevant Nonrelevant

10 Nonrelevant Relevant

P(A)? P(E)?

Sec. 8.5

67

KAPPA EXAMPLE

 P(A) = 370/400 = 0.925

 P(nonrelevant) = (10+20+70+70)/800 = 0.2125

 P(relevant) = (10+20+300+300)/800 = 0.7878

 P(E) = 0.2125^2 + 0.7878^2 = 0.665

 Kappa = (0.925 – 0.665)/(1-0.665) = 0.776

 Kappa > 0.8 = good agreement

 0.67 < Kappa < 0.8 → “tentative conclusions”
(Carletta ’96)

 Depends on purpose of study

 For >2 judges: average pairwise kappas

Sec. 8.5

68

QUIZ: KAPPA COEFFICIENT

Compute Kappa coefficient for the following test

set (Kappa = [P(A) – P(E)] / [1 – P(E)]):

69

Number of docs Judge 1 Judge 2

200 Relevant Relevant

80 Nonrelevant Nonrelevant

100 Relevant Nonrelevant

120 Nonrelevant Relevant

TREC

 TREC Ad Hoc task from first 8 TRECs is standard IR task

 50 detailed information needs a year

 Human evaluation of pooled results returned

 More recently other related things: Web track, HARD track

 A TREC query (TREC 5)

<top>

<num> Number: 225

<desc> Description:

What is the main function of the Federal Emergency

Management Agency (FEMA) and the funding level provided

to meet emergencies? Also, what resources are available to

FEMA such as people, equipment, facilities?

</top>

Sec. 8.2

70

STANDARD RELEVANCE BENCHMARKS:

OTHERS

 GOV2
 Another TREC/NIST collection

 25 million web pages

 Largest collection that is easily available

 But still 3 orders of magnitude smaller than what
Google/Bing/Baidu index

 NTCIR
 East Asian language and cross-language information

retrieval

 Cross Language Evaluation Forum (CLEF)
 This evaluation series has concentrated on

European languages and cross-language information
retrieval.

 Many others

Sec. 8.2

71

IMPACT OF INTER-JUDGE AGREEMENT

 Impact on absolute performance measure can be

significant (0.32 vs 0.39)

 Little impact on ranking of different systems or

relative performance

 Suppose we want to know if algorithm A is better

than algorithm B

 A standard information retrieval experiment will give

us a reliable answer to this question.

Sec. 8.5

72

CRITIQUE OF PURE RELEVANCE

 Relevance vs Marginal Relevance

 A document can be redundant even if it is highly

relevant

 Duplicates

 The same information from different sources

 Marginal relevance is a better measure of utility for the

user.

 Using facts/entities as evaluation units more

directly measures true relevance.

 But harder to create evaluation set

 See Carbonell reference

Sec. 8.5.1

73

CAN WE AVOID HUMAN JUDGMENT?

 No.

 Makes experimental work hard

 Especially on a large scale

 In some very specific settings, can use proxies

 E.g.: for approximate vector space retrieval, we can

compare the cosine distance closeness of the closest

docs to those found by an approximate retrieval

algorithm

 But once we have test collections, we can reuse

them (so long as we don’t overtrain too badly)

Sec. 8.6.3

74

EVALUATION AT LARGE SEARCH ENGINES

 Search engines have test collections of queries and hand-

ranked results

 Recall is difficult to measure on the web

 Search engines often use precision at top k, e.g., k = 10

 . . . or measures that reward you more for getting rank 1

right than for getting rank 10 right.

 NDCG (Normalized Discounted Cumulative Gain)

 Search engines also use non-relevance-based measures.

 Clickthrough on first result

 Not very reliable if you look at a single clickthrough … but

pretty reliable in the aggregate.

 Studies of user behavior in the lab

 A/B testing

Sec. 8.6.3

75

A/B TESTING

 Purpose: Test a single innovation

 Prerequisite: You have a large search engine up and running.

 Have most users use old system

 Divert a small proportion of traffic (e.g., 1%) to the new system that

includes the innovation

 Evaluate with an “automatic” measure like clickthrough on first result

 Now we can directly see if the innovation does improve user happiness.

 Probably the evaluation methodology that large search engines trust most

 In principle less powerful than doing a multivariate regression analysis,

but easier to understand

Sec. 8.6.3

76

RESULTS PRESENTATION

77

RESULT SUMMARIES

 Having ranked the documents matching a query,

we wish to present a results list

 Most commonly, a list of the document titles plus

a short summary, aka “10 blue links”

Sec. 8.7

78

SUMMARIES

 The title is often automatically extracted from
document metadata. What about the summaries?
 This description is crucial.

 User can identify good/relevant hits based on
description.

 Two basic kinds:
 Static

 Dynamic

 A static summary of a document is always the
same, regardless of the query that hit the doc

 A dynamic summary is a query-dependent
attempt to explain why the document was
retrieved for the query at hand

Sec. 8.7

79

STATIC SUMMARIES

 In typical systems, the static summary is a
subset of the document

 Simplest heuristic: the first 50 (or so – this can be
varied) words of the document

 Summary cached at indexing time

 More sophisticated: extract from each document
a set of “key” sentences

 Simple NLP heuristics to score each sentence

 Summary is made up of top-scoring sentences.

 Most sophisticated: NLP models used to
synthesize a summary

 Seldom used in classic IR; cf. text summarization
work, but increasing so with ChatGPT, etc.

Sec. 8.7

80

DYNAMIC SUMMARIES

 Present one or more “windows” within the

document that contain several of the query terms

 “KWIC” snippets: “Keyword in Context” presentation

Sec. 8.7

81

TECHNIQUES FOR DYNAMIC SUMMARIES

 Find small windows in doc that contain query

terms

 Requires fast window lookup in a document cache

 Score each window wrt query

 Use various features such as window width, position in

document, etc.

 Combine features through a scoring function –

methodology to be covered later

 Challenges in evaluation: judging summaries

 Easier to do pairwise comparisons rather than binary

relevance assessments

Sec. 8.7

82

QUIZ: STATIC SUMMARY

A static summary can be anything below

except:

a) First 50 words of original document

b) Formulated based on the query

c) Extracted sentences from original document

d) Synthesized from original document

83

QUICKLINKS

 For a navigational query such as united

airlines user’s need likely satisfied on

www.united.com

 Quicklinks provide navigational cues on that

home page

84

http://www.united.com/

85

ALTERNATIVE RESULTS PRESENTATIONS?

86

RESOURCES FOR THIS LECTURE

 IIR 8

 MIR Chapter 3

 MG 4.5

 Carbonell and Goldstein 1998. The use of MMR,

diversity-based reranking for reordering

documents and producing summaries. SIGIR 21.

87

