
SCORING AND COMPLETE
SEARCH SYSTEM



THIS LECTURE

¢Speeding up vector space ranking
¢Putting together a complete search 

system
� Will require learning about  a 

number of miscellaneous topics 
and heuristics

Ch. 7

2



COMPUTING COSINE SCORES

Sec. 6.3.3

3



EFFICIENT COSINE RANKING

¢Find the K docs in the collection 
“nearest” to the query Þ K largest 
query-doc cosines.

¢Efficient ranking:
� Computing a single cosine efficiently.
� Choosing the K largest cosine values 

efficiently.
¢Can we do this without computing all N

cosines?

Sec. 7.1

4



EFFICIENT COSINE RANKING

¢ What we’re doing in effect: solving the K-nearest 
neighbor problem for a query vector

¢ In general, we do not know how to do this  
efficiently for high-dimensional spaces

¢ But it is solvable for short queries, and standard 
indexes support this well

Sec. 7.1

5



SPECIAL CASE – UNWEIGHTED QUERIES

¢ No weighting on query terms
� Assume each query term occurs only once

¢ Then for ranking, don’t need to normalize query 
vector
� Slight simplification of algorithm from previous lecture

Sec. 7.1

6



COMPUTING THE K LARGEST COSINES: 
SELECTION VS. SORTING

¢ Typically we want to retrieve the top K docs (in 
the cosine ranking for the query)
� not to totally order all docs in the collection

¢ Can we pick off docs with K highest cosines?

¢ Let J = number of docs with nonzero cosines
� We seek the K best of these J

Sec. 7.1

7



USE BINARY HEAP FOR SELECTING TOP K
¢ Shape property: a binary heap is 

a complete binary tree; that is, all 
levels of the tree, except possibly the 
last one (deepest) are fully filled, and, 
if the last level of the tree is not 
complete, the nodes of that level are 
filled from left to right.

¢ Heap property: the key stored in each 
node is either greater than or equal 
to (≥) or less than or equal to (≤) the 
keys in the node's children, according 
to some total order. Root stores the 
max or min value

8

1

.9 .3

.8.3 .1



USE BINARY HEAP FOR SELECTING TOP K
¢ Takes (worst-case) 2J operations 

to construct, then each of K 
“winners” read off in 2log J steps. 
(Floyd’s method)

¢ For J=1M, K=100, this is about 
10% of the cost of sorting.

Sec. 7.1

9

1

.9 .3

.8.3 .1



QUIZ: HEAP

¢ Construct a binary max heap from the following 
array of keys:

[43, 21, 9, 23, 5, 28, 6, 12]

¢ Draw the binary heap as your answer.
¢ How many steps does it take to build this binary 

heap? 
¢ How many steps does it take to get 5 “winners”?

10



BOTTLENECKS

¢ Previous approach was “exact”
¢ Primary computational bottleneck in scoring: 

cosine computation
¢ Can we avoid all this computation?
¢ Yes, but may sometimes get it wrong

� a doc not in the top K may creep into the list of 
K output docs

� Is this such a bad thing?

Sec. 7.1.1

11



COSINE SIMILARITY IS ONLY A PROXY

¢ User has a task and a query formulation
¢ Cosine matches docs to query
¢ Thus cosine is anyway a proxy for user happiness
¢ If we get a list of K docs “close” to the top K by 

cosine measure, should be ok
� Approximate solution!

Sec. 7.1.1

12



GENERIC APPROACH

¢ Find a set A of contenders, with K < |A| << N
� A does not necessarily contain the top K, 

but has many docs from among the top K
� Return the top K docs in A

¢ Think of A as pruning non-contenders
¢ The same approach is also used for other (non-

cosine) scoring functions
¢ Will look at several schemes following this 

approach

Sec. 7.1.1

13



INDEX ELIMINATION

¢ Basic algorithm: 
� cosine computation algorithm only considers docs 

containing at least one query term
¢ Take this further:

� Only consider high-idf query terms
� Only consider docs containing many query terms

Sec. 7.1.2

14



HIGH-IDF QUERY TERMS ONLY

¢ For a query such as catcher in the rye
¢ Only accumulate scores from catcher and rye
¢ Intuition: in and the contribute little to the 

scores and so don’t alter rank-ordering much
¢ Benefit:

� Postings of low-idf terms have many docs ® these 
(many) docs get eliminated from set A of contenders

� Save a lot of time!

Sec. 7.1.2

15



DOCS CONTAINING MANY QUERY TERMS

¢ Any doc with at least one query term is a 
candidate for the top K output list

¢ For multi-term queries, only compute scores for 
docs containing several of the query terms
� Say, at least 3 out of 4
� Imposes a “soft conjunction” on queries seen on web 

search engines (early Google)
¢ Easy to implement in postings traversal

Sec. 7.1.2

16



3 OF 4 QUERY TERMS

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

17

Concurrent Traversal



CHAMPION LISTS

¢ Precompute for each dictionary term t, the r docs 
of highest weight in t’s postings
� Call this the champion list for t
� (aka fancy list or top docs for t)

¢ Note that r has to be chosen at index build time
� Thus, it’s possible that r < K

¢ At query time, only compute scores for docs in the 
champion list of some query term
� Pick the K top-scoring docs from amongst these

Sec. 7.1.3

18



Quantitative

STATIC QUALITY SCORES

¢ We want top-ranking documents to be both 
relevant and authoritative

¢ Relevance is being modeled by cosine scores
¢ Authority is typically a query-independent 

property of a document
¢ Examples of authority signals

� Wikipedia among average websites
� Articles in certain newspapers
� A paper with many citations
� Many bitly’s, diggs or del.icio.us marks
� Pagerank

Sec. 7.1.4

19



20



21



MODELING AUTHORITY

¢ Assign to each document a query-independent
quality score in [0,1] to each document d
� Denote this by g(d)

¢ Thus, a quantity like the number of citations is 
scaled into [0,1]

¢Quiz: suggest a formula for this quality 
score.

Sec. 7.1.4

22



NET SCORE

¢ Consider a simple total score combining cosine 
relevance and authority

¢ net-score(q,d) = g(d) + cosine(q,d)
� Can use some other linear combination
� Indeed, any function of the two “signals” of user 

happiness – more later
¢ Now we seek the top K docs by net score

Sec. 7.1.4

23



TOP K BY NET SCORE – FAST METHODS

¢ First idea: Order all postings by g(d)
¢ Key: there is a common ordering for all postings
¢ Thus, can concurrently traverse query terms’ 

postings for
� Postings intersection
� Cosine score computation

Sec. 7.1.4

24



WHY ORDER POSTINGS BY G(D)?
¢ Under g(d)-ordering, top-scoring docs likely to 

appear early in postings traversal
¢ In time-bound applications (say, we have to 

return whatever search results we can in 50 ms), 
this allows us to stop postings traversal early
� Short of computing scores for all docs in postings

Sec. 7.1.4

25



QUIZ: G(D)-ORDERING

¢ How shall we order the postings by g(d) score,  by
increasing order or decreasing order? Why?

26



CHAMPION LISTS IN G(D)-ORDERING

¢ Can combine champion lists with g(d)-ordering
¢ Maintain for each term a champion list of the r

docs with highest g(d) + tf-idftd
¢ Seek top-K results from only the docs in these 

champion lists

Sec. 7.1.4

27



HIGH AND LOW LISTS

¢ For each term, we maintain two postings lists 
called high and low
� Think of high as the champion list

¢ When traversing postings on a query, only 
traverse high lists first
� If we get more than K docs, select the top K and stop
� Else proceed to get docs from the low lists

¢ Can be used even for simple cosine scores, 
without global quality g(d)

¢ A means for segmenting index into two tiers

Sec. 7.1.4

28



IMPACT-ORDERED POSTINGS
¢ So far: global ordering and concurrent traversal

¢ We only want to compute scores for docs for 
which tft,d is high enough

¢ We sort each postings list by tft,d
¢ Now: not all postings in a common order!

� high tft,d doesn’t mean high authority
¢ How do we compute scores in order to pick off top 

K?
� Two ideas follow

Sec. 7.1.5

29



1. EARLY TERMINATION

¢ When traversing t’s postings, stop early after 
either
� a fixed number of r docs
� tft,d drops below some threshold

¢ Take the union of the resulting sets of docs
� One from the postings of each query term

¢ Compute only the scores for docs in this union

Sec. 7.1.5

30



2. IDF-ORDERED TERMS

¢ When considering the postings of query terms
¢ Look at them in order of decreasing idf

� High idf terms likely to contribute most to score
¢ As we update score contribution from each query 

term
� Stop if doc scores relatively unchanged

¢ Can apply to cosine or some other net scores

Sec. 7.1.5

31



CLUSTER PRUNING: PREPROCESSING

¢Pick ÖN docs at random: call these 
leaders

¢For every other doc, pre-compute 
nearest leader
� Docs attached to a leader: its followers;
� Likely: each leader has ~ ÖN followers.

Sec. 7.1.6

32



CLUSTER PRUNING: QUERY PROCESSING

¢Process a query as follows:
� Given query Q, find its nearest 

leader L.
� Seek K nearest docs from among 

L’s followers.

Sec. 7.1.6

33



VISUALIZATION

Query

Leader Follower

Sec. 7.1.6

34



WHY USE RANDOM SAMPLING

¢ Fast
¢ Leaders reflect data distribution

Sec. 7.1.6

35



GENERAL VARIANTS

¢ Have each follower attached to b1=3 (say) 
nearest leaders.

¢ From query, find b2=4 (say) nearest leaders and 
their followers.

¢ Can recurse on leader/follower construction.

Sec. 7.1.6

36



QUIZ: NEAREST LEADER

¢ Given a query, and N docs, to find the nearest 
leader, how many cosine computations do we do?
1. N
2. NlogN
3. N2

4. ÖN

Sec. 7.1.6

37



PARAMETRIC AND ZONE INDEXES

¢ Thus far, a doc has been a sequence of terms
¢ In fact documents have multiple parts, some with 

special semantics:
� Author
� Title
� Date of publication
� Language
� Format
� etc.

¢ These constitute the metadata about a document

Sec. 6.1

38



FIELDS

¢ We sometimes wish to search by these metadata
� E.g., find docs authored by William Shakespeare in 

the year 1601, containing alas poor Yorick
¢ Year = 1601 is an example of a field
¢ Also, author last name = shakespeare, etc.
¢ Field or parametric index: postings for each field 

value
� Sometimes build range trees (e.g., for dates)

¢ Field query typically treated as conjunction
� (doc must be authored by shakespeare)

Sec. 6.1

39



ZONE

¢ A zone is a region of the doc that can contain an 
arbitrary amount of text, e.g.,
� Title
� Abstract
� References …

¢ Build inverted indexes on zones as well to permit 
querying

¢ E.g., “find docs with merchant in the title zone 
and matching the query gentle rain”

Sec. 6.1

40



EXAMPLE ZONE INDEXES

Encode zones in dictionary vs. postings.

Sec. 6.1

41



QUIZ: ZONE INDEX

¢ Which one of the previous approaches is better if 
I want to search for “William” in the abstract of a 
doc? Why?

a) encode zones in the dictionary
b) encode zones in the postings

42



TIERED INDEXES

¢ Break postings up into a hierarchy of lists
� Most important
� …
� Least important

¢ Can be done by g(d) or another measure
¢ Inverted index thus broken up into tiers of 

decreasing importance
¢ At query time use top tier unless it fails to yield 

K docs
� If so drop to lower tiers

Sec. 7.2.1

43



EXAMPLE TIERED INDEX

Sec. 7.2.1

44



QUERY TERM PROXIMITY

¢ Free text queries: just a set of terms typed into 
the query box – common on the web

¢ Users prefer docs in which query terms occur 
within close proximity of each other

¢ Let w be the smallest window in a doc containing 
all query terms, e.g.,
� For the query strained mercy the smallest window in 

the doc The quality of mercy is not strained is 4
(words)

¢ Would like scoring function to take this into 
account – how? (we don’t know yet.)

Sec. 7.2.2

45



QUERY PARSERS

¢ Free text query from user may in fact spawn one 
or more queries to the indexes, e.g., query rising 
interest rates
� Run the query as a phrase query 
� If <K docs contain the phrase rising interest rates, run 

the two phrase queries rising interest and interest 
rates

� If we still have <K docs, run the vector space query 
rising interest rates

� Rank matching docs by vector space scoring
¢ This sequence is issued by a query parser

Sec. 7.2.3

46



AGGREGATE SCORES

¢ We’ve seen that score functions can combine 
cosine, static quality, proximity, etc.

¢ How do we know the best combination?
¢ Some applications – expert-tuned
¢ Increasingly common: machine-learned

� In later lecture

Sec. 7.2.3

47



PUTTING IT ALL TOGETHER

Sec. 7.2.4

48



Components we have introduced 
thus far

• Document preprocessing (linguistic and otherwise)
• Positional indexes
• Tiered indexes
• Spelling correction
• k-gram indexes for wildcard queries and spelling correction
• Query processing
• Document scoring
• Term-at-a-time processing

49



Components we haven’t covered yet
• Document cache: we need this for generating snippets 

(=dynamic summaries)
• Machine-learned ranking functions
• Proximity ranking (e.g., rank documents in which the query 

terms occur in the same local window higher than documents in 
which the query terms occur far from each other)

• Query parser

50



Vector space retrieval: Interactions
• How do we combine phrase retrieval with vector space retrieval?
• We do not want to compute document frequency / idf for every

possible phrase. Why?
• How do we combine Boolean retrieval with vector space retrieval?

• For example: “+”-constraints and “-”-constraints
• Post-filtering is simple, but can be very inefficient – no easy 

answer.
• How do we combine wild cards with vector space retrieval?

• Again, no easy answer

51



RESOURCES

¢ IIR 7, 6.1

52



WEB SEARCH BASICS



OVERVIEW

¢ Big picture
¢ Ads – they pay for the web
¢ Duplicate detection – addresses one aspect of 

chaotic content creation
¢ Spam detection – addresses one aspect of lack of 

central access control
¢ Size of the web

54



Big Picture

55



BRIEF (NON-TECHNICAL) HISTORY

¢ Early keyword-based engines ca. 1995-1997
� Altavista, Excite, Infoseek, Inktomi, Lycos

¢ Paid search ranking: Goto (morphed into 
Overture.com ® Yahoo!)
� Your search ranking depended on how much you paid
� Auction for keywords: casino was expensive!

56



BRIEF (NON-TECHNICAL) HISTORY

¢ 1998+: Link-based ranking pioneered by Google
� Blew away all early engines save Inktomi
� Great user experience in search of a business model
� Meanwhile Goto/Overture’s annual revenues were 

nearing $1 billion
¢ Result: Google added paid search “ads” to the 

side, independent of search results
� Yahoo followed suit, acquiring Overture (for paid 

placement) and Inktomi (for search)
¢ 2005+: Google gains search share, dominating in 

Europe and very strong in North America
� 2009: Yahoo! and Microsoft propose combined paid 

search offering
57



Algorithmic results.

Paid
Search Ads

58



59



WEB SEARCH BASICS

The Web

Ad indexes

Web  Results 1 - 10 of about 7,310,000 for miele. (0.12 seconds)  

Miele, Inc -- Anything else is a compromise 
At the heart of your home, Appliances by Miele. ... USA. to miele.com. Residential Appliances. 
Vacuum Cleaners. Dishwashers. Cooking Appliances. Steam Oven. Coffee System ...  
www.miele.com/ - 20k - Cached - Similar pages  

Miele 
Welcome to Miele, the home of the very best appliances and kitchens in the world.  
www.miele.co.uk/ - 3k - Cached - Similar pages  

Miele - Deutscher Hersteller von Einbaugeräten, Hausgeräten ... - [ Translate this 
page ] 
Das Portal zum Thema Essen & Geniessen online unter www.zu-tisch.de. Miele weltweit 
...ein Leben lang. ... Wählen Sie die Miele Vertretung Ihres Landes.  
www.miele.de/ - 10k - Cached - Similar pages  

Herzlich willkommen bei Miele Österreich - [ Translate this page ] 
Herzlich willkommen bei Miele Österreich Wenn Sie nicht automatisch 
weitergeleitet werden, klicken Sie bitte hier! HAUSHALTSGERÄTE ...  
www.miele.at/ - 3k - Cached - Similar pages  

 

 

 

 

  
Sponsored Links 

 
CG Appliance Express 
Discount Appliances (650) 756-3931 
Same Day Certified Installation 
www.cgappliance.com 
San Francisco-Oakland-San Jose, 
CA 
 
Miele Vacuum Cleaners 
Miele Vacuums- Complete Selection 
Free Shipping! 
www.vacuums.com 
 
Miele Vacuum Cleaners 
Miele-Free Air shipping! 
All models. Helpful advice. 
www.best-vacuum.com 
 
  

 
      

 

Web spider

Indexer

Indexes

Search

User

Sec. 19.4.1

60



Search is the top activity on the web

61



Without search engines, the web 
wouldn’t work

• Without search, content is hard to find.
• → Without search, there is no incentive to create 

content.
• Why publish something if nobody will read it?
• Why publish something if I don’t get ad revenue from it?

• Somebody needs to pay for the web.
• Servers, web infrastructure, content creation
• A large part today is paid by search ads.
• Search pays for the web.

62



Interest aggregation
• Unique feature of the web: A small number of 

geographically dispersed people with similar 
interests can find each other.
• Elementary school kids with hemophilia
• People interested in translating R5R5 Scheme into 

relatively portable C (open source project)
• Search engines are a key enabler for interest 

aggregation.

63



IR on the web vs. IR in general
• On the web, search is not just a nice feature.
• Search is a key enabler of the web: . . .
• . . . financing, content creation, interest aggregation

etc. 

• Web need financing → look at search ads
• The web is a chaotic und uncoordinated collection. → 

lots of duplicates – need to detect duplicates
• No control / restrictions on who can author content → 

lots of spam – need to detect spam
• The web is very large. → need to know how big it is 64



USER NEEDS

¢ Need [Brod02, RL04]
� Informational – want to learn about something (~40% / 65%)

� Navigational – want to go to that page (~25% / 15%)

� Transactional – want to do something (web-mediated) (~35% / 
20%)
¢ Access a  service
¢ Downloads 
¢ Shop

� Gray areas
¢ Find a good hub
¢ Exploratory search “see what’s there”

Low hemoglobin

United Airlines

Seattle weather
Mars surface images

Canon S410

Car rental Brasil

Sec. 19.4.1

65



HOW FAR DO PEOPLE LOOK FOR
RESULTS?

66

CTR =  clicks / impressions

71% CTR for page 1, 6% for page 2 + 3 combined

Page 1 receives 95% traffic, remaining pages get 5%



USERS’ EMPIRICAL EVALUATION OF
RESULTS
¢ Quality of pages varies widely

� Relevance is not enough
� Other desirable qualities (non IR!!)

¢ Content: Trustworthy, diverse, non-duplicated, well maintained
¢ Web readability: display correctly & fast
¢ No annoyances: pop-ups, etc.

¢ Precision vs. recall
� On the web, recall seldom matters

¢ What matters
� Precision at 1? Precision above the fold?
� Comprehensiveness – must be able to deal with obscure queries

¢ Recall matters when the number of matches is very small
¢ User perceptions may be unscientific, but are 

significant over a large aggregate
67



QUIZ: WINNING FACTOR

¢ What are the important factors in the quality of 
web search? (multiple correct answers)
a) Readability
b) Precision
c) Recall
d) Relevance

68



USERS’ EMPIRICAL EVALUATION OF
ENGINES

¢ Relevance and validity of results
¢ UI – Simple, no clutter, error tolerant
¢ Trust – Results are objective
¢ Coverage of topics for polysemic queries
¢ Pre/Post process tools provided

� Mitigate user errors (auto spell check, search assist,…)
� Explicit: Search within results, more like this, refine ...
� Anticipative: related searches

¢ Deal with idiosyncrasies
� Web specific vocabulary

¢ Impact on stemming, spell-check, etc.
� Web addresses typed in the search box

¢ “The first, the last, the best and the worst …”
69



THE WEB DOCUMENT COLLECTION

¢ No design/co-ordination
¢ Distributed content creation, linking, 

democratization of publishing
¢ Content includes truth, lies, obsolete 

information, contradictions … 
¢ Unstructured (text, html, …), semi-

structured (XML, annotated photos), 
structured (Databases)…

¢ Scale much larger than previous text 
collections … but corporate records are 
catching up

¢ Growth – slowed down from initial 
“volume doubling every few months” 
but still expanding

¢ Content can be dynamically generatedThe Web

Sec. 19.2

70


