
INDEX COMPRESSION (II)
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PREVIOUSLY…

 Heap’s law

 Zipf law

 Dictionary-as-a-string

 Blocking
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FRONT CODING

 Front-coding:

 Sorted words usually have long common prefix – store 

differences only

 (for last k-1 in a block of k)

8automata8automate9automatic10automation

→8automat*a1e2ic3ion

Encodes automat
Extra length

beyond automat.

Begins to resemble general string compression.

Sec. 5.2
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QUIZ (FRONT CODING)

 What does the following code decode into? 

7liber*ty2al3ate5alize
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RCV1 DICTIONARY COMPRESSION

SUMMARY

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2
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POSTINGS COMPRESSION

 The postings file is much larger than the 

dictionary, factor of at least 10.

 Key consideration: store each posting compactly.

 A posting for our purposes is a docID.

 For Reuters (800,000 documents), we would use 

32 bits per docID when using 4-byte integers.

 Alternatively, we can use log2 800,000 ≈ 20 bits 

per docID.

 Our goal: use far fewer than 20 bits per docID.

Sec. 5.3
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POSTINGS: TWO CONFLICTING FORCES

 A term like arachnocentric occurs in maybe 

one doc out of a million – we would like to store 

this posting using log2 1M ~ 20 bits.

 A term like the occurs in virtually every doc, so 

20 bits/posting is too expensive.

 Prefer 0/1 bitmap vector in this case 

Sec. 5.3
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POSTINGS FILE ENTRY

 We store the list of docs containing a term in 

increasing order of docID.

 computer: 33,47,154,159,202 …

 Consequence: it suffices to store gaps.

 33,14,107,5,43 …

 Hope: most gaps can be encoded/stored with far 

fewer than 20 bits.

Sec. 5.3
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THREE POSTINGS ENTRIES

Sec. 5.3
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VARIABLE LENGTH ENCODING

 Aim:

 For arachnocentric, we will use ~20 bits/gap entry.

 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use 

~log2G bits/gap entry.

 Key challenge: encode every integer (gap) with 

about as few bits as needed for that integer.

 This requires a variable length encoding

 Variable length codes achieve this by using short 

codes for small numbers

Sec. 5.3
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VARIABLE BYTE (VB) CODES

 For a gap value G, we want to use close to the 

fewest bytes needed to hold log2 G bits

 Begin with one byte to store G and dedicate 1 bit 

in it to be a continuation bit c

 If G ≤127, binary-encode it in the 7 available bits 

and set c =1 (indicating the last byte)

 Else encode G’s lower-order 7 bits and then use 

additional bytes to encode the higher order bits 

using the same algorithm

 At the end set the continuation bit of the last 

(lowest) byte to 1 (c =1) – and for the other bytes 

c = 0.

Sec. 5.3
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EXAMPLE

docIDs 824 829 215406

gaps 5 214577

VB code 00000110 

10111000 

10000101 00001101 

00001100 

10110001

Postings stored as the byte concatenation

000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are

uniquely prefix-decodable.

For a small gap (5), VB

uses a whole byte.

Sec. 5.3
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OTHER VARIABLE UNIT CODES

 Instead of bytes, we can also use a different “unit of 

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).

 Variable byte alignment wastes space if you have 

many small gaps – nibbles do better in such cases.

 Variable byte codes:

 Used by many commercial/research systems

 Good low-tech blend of variable-length coding and 

sensitivity to computer memory alignment matches (vs. 

bit-level codes, which we look at next).

 There is also recent work on word-aligned codes that 

pack a variable number of gaps into one word

Sec. 5.3
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QUIZ: NIBBLES

 What is the disadvantage of using smaller 

alignment units such as nibbles (4 bits) in VB 

encoding?
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UNARY CODE

 Represent n as n 1s with a final 0.

 Unary code for 3 is 1110.

 Unary code for 40 is

11111111111111111111111111111111111111110 .

 Unary code for 80 is:

111111111111111111111111111111111111111111

111111111111111111111111111111111111110

 This doesn’t look promising, but….
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GAMMA CODES

 We can compress better with bit-level codes

 The Gamma code is the best known of these.

 Represent a gap G as a pair length and offset

 offset is G in binary, with the leading bit cut off

 For example 13 → 1101 → 101

 length is the length of offset

 For 13 (offset 101), this is 3.

 We encode length with unary code: 1110.

 Gamma code of 13 is the concatenation of length

and offset: 1110101

Sec. 5.3
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GAMMA CODE EXAMPLES

number length offset g-code

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3
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GAMMA CODE PROPERTIES

 G is encoded using 2 log G + 1 bits

 Length of offset is log G bits

 Length of length is log G + 1 bits

 All gamma codes have an odd number of bits

 Almost within a factor of 2 of best possible, log2 G

 Gamma code is uniquely prefix-decodable, like 

VB

 Gamma code can be used for any distribution

 Gamma code is parameter-free

Sec. 5.3
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GAMMA SELDOM USED IN PRACTICE

 Machines have word boundaries – 8, 16, 32, 64 

bits

 Operations that cross word boundaries are slower

 Compressing and manipulating at the 

granularity of bits can be slow

 Variable byte encoding is aligned and thus 

potentially more efficient

 Regardless of efficiency, variable byte is 

conceptually simpler at little additional space 

cost

Sec. 5.3
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RCV1 COMPRESSION

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, g-encoded 101.0

Sec. 5.3
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INDEX COMPRESSION SUMMARY

 We can now create an index for highly efficient 

Boolean retrieval that is very space efficient

 Only 4% of the total size of the collection

 Only 10-15% of the total size of the text in the 

collection

 However, we’ve ignored positional information

 Hence, space savings are less for indexes used in 

practice

 But techniques substantially the same.

Sec. 5.3
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RESOURCES FOR TODAY’S LECTURE

 IIR 5

 MG 3.3, 3.4.

 F. Scholer, H.E. Williams and J. Zobel. 2002. 

Compression of Inverted Indexes For Fast Query 

Evaluation. Proc. ACM-SIGIR 2002.

 Variable byte codes

 V. N. Anh and A. Moffat. 2005. Inverted Index 

Compression Using Word-Aligned Binary Codes. 

Information Retrieval 8: 151–166.  

 Word aligned codes

Ch. 5
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MORE RESOURCES

K. Kukich. Techniques for automatically 

correcting words in text. ACM Computing 

Surveys 24(4), Dec 1992.

Dean, Jeffrey, and Sanjay Ghemawat. 

MapReduce: simplified data processing on 

large clusters, OSDI (4) (2004).
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SCORING, TERM

WEIGHTING & VECTOR

SPACE MODEL



RECAP OF LAST LECTURE

 Collection and vocabulary statistics: Heaps’ and Zipf’s laws

 Dictionary compression for Boolean indexes

 Dictionary string, blocks, front coding

 Postings compression: Gap encoding, prefix-unique codes

 Variable-Byte and Gamma codes

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, γ-encoded 101.0

MB
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OUTLINE

 Ranked retrieval

 Scoring documents

 Term frequency

 Collection statistics

 Weighting schemes

 Vector space scoring
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RANKED RETRIEVAL

 Thus far, our queries have all been Boolean.

 Documents either match or don’t.

 Good for expert users with precise understanding 

of their needs and the collection.

 Also good for applications: Applications can easily 

consume 1000s of results.

 Not good for the majority of users.

 Most users incapable of writing Boolean queries (or 

they are, but they think it’s too much work).

 Most users don’t want to wade through 1000s of 

results.

 This is particularly true of web search.

Ch. 6
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PROBLEM WITH BOOLEAN SEARCH:

FEAST OR FAMINE

 Boolean queries often result in either too few (=0) 

or too many (1000s) results.

 Query 1: “standard user dlink 650” → 200,000 

hits

 Query 2: “standard user dlink 650 no card 

found”: 0 hits

 It takes a lot of skill to come up with a query that 

produces a manageable number of hits.

 AND gives too few; OR gives too many

Ch. 6
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RANKED RETRIEVAL MODELS

 Rather than a set of documents satisfying a 

query expression, in ranked retrieval, the system 

returns an ordering over the (top) documents in 

the collection for a query

 Free text queries: Rather than a query language 

of operators and expressions, the user’s query is 

just one or more words in a human language

 In principle, these are two separate choices here, 

but in practice, ranked retrieval has normally 

been associated with free text queries and vice 

versa
29



FEAST OR FAMINE: NOT A PROBLEM IN

RANKED RETRIEVAL

 When a system produces a ranked 

result set, large result sets are not an 

issue

 Indeed, the size of the result set is not 

an issue

 We just show the top k ( ≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works

Ch. 6
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SCORING AS THE BASIS OF RANKED

RETRIEVAL

 We wish to return the documents in an order 

most likely to be useful to the searcher

 How can we rank-order the documents in the 

collection with respect to a query?

 Assign a score – say in [0, 1] – to each document

 This score measures how well document and 

query “match”.

Ch. 6

31



QUERY-DOCUMENT MATCHING SCORES

 We need a way of assigning a score to a 

query/document pair

 Let’s start with a one-term query

 If the query term does not occur in the document: 

score should be 0

 The more frequent the query term in the 

document, the higher the score (should be)

 We will look at a number of alternatives for this.

Ch. 6
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TAKE 1: JACCARD COEFFICIENT

 Recall from last lecture: A commonly used 

measure of overlap of two sets A and B

jaccard(A,B) = |A ∩ B| / |A ∪ B|

jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

 A and B don’t have to be the same size.

 Always assigns a number between 0 and 1.

Ch. 6
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QUIZ: JACCARD COEFFICIENT

 What is the query-document match score that the 

Jaccard coefficient computes for each of the two 

documents below?

 Query: ides of march

 Document 1: caesar died in march

 Document 2: the long march

Ch. 6
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ISSUES WITH JACCARD FOR SCORING

 It doesn’t consider term frequency (how many 

times a term occurs in a document)

 Rare terms in a collection are more informative 

than frequent terms. Jaccard doesn’t consider 

this information

 We need a more sophisticated way of normalizing 

for length

 Later in this lecture, we’ll use 

 . . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for 

length normalization.

| B A|/| B A| 

Ch. 6
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RECALL: BINARY TERM-DOCUMENT

INCIDENCE MATRIX

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈
{0,1}

|V|

Sec. 6.2
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TERM-DOCUMENT COUNT MATRICES

 Consider the number of occurrences of a term in 

a document: 

 Each document is a count vector in ℕv: a column 

below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2
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BAG OF WORDS MODEL

 Vector representation doesn’t consider the 

ordering of words in a document

 John is quicker than Mary and Mary is quicker 

than John have the same vectors

 This is called the bag of words model.

 In a sense, this is a step back: The positional 

index was able to distinguish these two 

documents.

 We will look at “recovering” positional 

information later in this course.

 For now: bag of words model 38



TERM FREQUENCY TF

 The term frequency tft,d of term t in document d is 

defined as the number of times that t occurs in d.

 We want to use tf when computing query-

document match scores. But how?

 Raw term frequency is not what we want:

 A document with 10 occurrences of the term is more 

relevant than a document with 1 occurrence of the 

term.

 But not 10 times more relevant.

 Relevance does not increase proportionally with 

term frequency.
NB: frequency = count in IR 39



LOG-FREQUENCY WEIGHTING

 The log frequency weight of term t in d is

 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

 Score for a document-query pair: sum over terms t

in both q and d:

 score

 The score is 0 if none of the query terms is present 

in the document.



 +

=
otherwise 0,

0   tfif, tflog  1
  

10 t,dt,d

t,dw

 
+=

dqt dt ) tflog  (1 ,

Sec. 6.2
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DOCUMENT FREQUENCY

 Rare terms are more informative than frequent terms

 Recall stop words

 Consider a term in the query that is rare in the 

collection (e.g., arachnocentric)

 A document containing this term is very likely to be 

relevant to the query arachnocentric

→ We want a high weight for rare terms like 

arachnocentric.

Sec. 6.2.1
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DOCUMENT FREQUENCY, CONTINUED

 Frequent terms are less informative than rare 
terms

 Consider a query term that is frequent in the 
collection (e.g., high, increase, line)

 A document containing such a term is more likely 
to be relevant than a document that doesn’t

 But it’s not a sure indicator of relevance.

 In general, we want high positive weights for a 
term that appears many times in a doc

 But lower weights for a frequent term than for 
rare terms.

 We will use document frequency (df) to capture 
this.

Sec. 6.2.1
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IDF WEIGHT

 dft is the document frequency of t: the number of 

documents that contain t

 dft is an inverse measure of the informativeness of t

 dft  N (total number of docs)

 We define the idf (inverse document frequency) of t

by

 We use log (N/dft) instead of N/dft to “dampen” the effect 

of idf.

)/df( log  idf 10 tt N=

It turns out the base of the log is insignificant.

Sec. 6.2.1
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IDF EXAMPLE, SUPPOSE N = 1 MILLION

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df( log  idf 10 tt N=
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QUIZ: IDF

 Why is the idf of a term in a document always 

finite?

45
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EFFECT OF IDF ON RANKING

 Does idf have an effect on ranking for one-term 

queries, like

 iPhone?

 idf has no effect on ranking one term queries

 idf affects the ranking of documents for queries with 

at least two terms

 For the query capricious person, idf weighting makes 

occurrences of capricious count for much more in the 

final document ranking than occurrences of person.

46



COLLECTION VS. DOCUMENT FREQUENCY

 The collection frequency of t is the number of 

occurrences of t in the collection, counting multiple 

occurrences.

 Example:

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1
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QUIZ: COLLECTION FREQUENCY

 Which word is a better search term (and should 

get a higher weight), and why?

48

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760



TF-IDF WEIGHTING

 The tf-idf weight of a term is the product of its tf weight 

and its idf weight.

 Best known weighting scheme in information retrieval

 Note: the “-” in tf-idf is a hyphen, not a minus sign!

 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a 

document

 Increases with the rarity of the term in the collection

Sec. 6.2.2
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SCORE FOR A DOCUMENT GIVEN A QUERY

q is a multi-term query.

There are many variants

 How “tf” is computed (with/without logs)

 Whether the terms in the query are also 

weighted

 … 

 

Score(q,d) = tf.idft,d
t qd



Sec. 6.2.2
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BINARY → COUNT → WEIGHT MATRIX

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 

vector of tf-idf weights ∈ R|V|

Sec. 6.3
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DOCUMENTS AS VECTORS

 So we have a |V|-dimensional vector space

 Terms are axes of the space

 Documents are points or vectors in this space

 Very high-dimensional: tens of millions of 

dimensions when you apply this to a web search 

engine

 These are very sparse vectors - most entries are 

zero.

Sec. 6.3
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QUERIES AS VECTORS

 Key idea 1: Do the same for queries: represent 

them as vectors in the space

 Key idea 2: Rank documents according to their 

proximity to the query in this space

 proximity = similarity of vectors

 proximity ≈ inverse of distance

 Recall: We do this because we want to get away 

from the you’re-either-in-or-out Boolean model.

 Instead: rank more relevant documents higher 

than less relevant documents

Sec. 6.3
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FORMALIZING VECTOR SPACE PROXIMITY

 First cut: distance between two points

 ( = distance between the end points of the two 

vectors)

 Euclidean distance?

 Euclidean distance is a bad idea . . .

 . . . because Euclidean distance is large for 

vectors of different lengths.

Sec. 6.3
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WHY DISTANCE IS A BAD IDEA

The Euclidean 

distance between q

and d2 is large even 

though the

distribution of terms 

in the query q and the 

distribution of

terms in the 

document d2 are

very similar.

Sec. 6.3
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FROM EUCLIDEAN TO ANGLE DISTANCE

 Thought experiment: take a document d and 

append it to itself. Call this document d′.

 “Semantically” d and d′ have the same content

 The Euclidean distance between the two 

documents can be quite large

 The angle between the two documents is 0, 

corresponding to maximal similarity.

 Key idea: Rank documents according to angle 

with query.

Sec. 6.3
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FROM ANGLES TO COSINES

 The following two notions are equivalent.

 Rank documents in decreasing order of the angle 

between query and document

 Rank documents in increasing order  of 

cosine(query,document)

 Cosine is a monotonically decreasing function for 

the interval [0o, 180o]

Sec. 6.3
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FROM ANGLES TO COSINES

Sec. 6.3
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 But how – and why – should we be computing cosines?



LENGTH NORMALIZATION

 A vector can be (length-) normalized by dividing 

each of its components by its length – for this we 

use the L2 norm:

 Dividing a vector by its L2 norm makes it a unit 

(length) vector (on surface of unit hypersphere)

 Effect on the two documents d and d′ (d appended 

to itself) from earlier slide: they have the same 

unit vectors after length-normalization.

 Long and short documents now have comparable 

weights

=
i ixx 2

2



Sec. 6.3
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COSINE(QUERY,DOCUMENT)





==

==•=
•

=
V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos( 











Dot product Unit vectors

q
i
is the tf-idf weight of term i in the query

d
i
is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.

Sec. 6.3
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COSINE FOR LENGTH-NORMALIZED

VECTORS

 For length-normalized vectors, cosine similarity is 

simply the dot product (or scalar product):

for q, d length-normalized.

 

cos(q ,d ) = q • d = qidi
i=1

V



62



COSINE SIMILARITY ILLUSTRATED
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COSINE SIMILARITY AMONGST 3 DOCUMENTS

 How similar are 

the novels?

 SaS: Sense and 

Sensibility

 PaP: Pride and 

Prejudice

 WH: Wuthering 

Heights

64

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

Term frequencies (counts)

Note: To simplify this example, we don’t do idf

weighting.



3 DOCUMENTS EXAMPLE CONTD.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length 

normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈

0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0 ≈ 0.94

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Sec. 6.3
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QUIZ: NOVELS

We can see that

cos(SaS,PaP) > cos(SaS,WH)

Why?
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COMPUTING COSINE SCORES

Sec. 6.3
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TF-IDF WEIGHTING HAS MANY VARIANTS

‘n’, ‘l’, ‘a’, ‘t’, ‘p’, etc. are acronyms for weight schemes.

Quiz: Why is the base of the log in idf insignificant?

Sec. 6.4
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WEIGHTING MAY DIFFER IN QUERIES VS

DOCUMENTS

 Many search engines allow for different weightings 

for queries vs. documents

 SMART Notation: denotes the combination in use in 

an engine, with the notation ddd.qqq, using the 

acronyms from the previous table

 A very standard weighting scheme is: lnc.ltc

 Document: logarithmic tf (l as first character), no idf

and cosine normalization

 Query: logarithmic tf (l in leftmost column), idf (t in 

second column), no normalization …

A bad idea?

Sec. 6.4
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TF-IDF EXAMPLE: LNC.LTC

Term Query Document Prod

tf-

raw

tf-wt df idf tfidf

wt

n’liz

e

tf-raw tf-wt tfidf

wt

n’liz

e

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc vector length =

 

12 + 02 +12 +1.32 1.92

Sec. 6.4
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SUMMARY – VECTOR SPACE RANKING

 Represent the query as a weighted tf-idf vector

 Represent each document as a weighted tf-idf vector

 Compute the cosine similarity score for the query 

vector and each document vector

 Rank documents with respect to the query by score

 Return the top K (e.g., K = 10) to the user
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RESOURCES FOR TODAY’S LECTURE

 IIR 6.2 – 6.4.3

 http://www.miislita.com/information-retrieval-

tutorial/cosine-similarity-tutorial.html

 Term weighting and cosine similarity tutorial for 

SEO folk!

Ch. 6
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