.‘Q INDEX COMPRESSION (1)




PREVIOUSLY...

Heap’s law

Zipf law
Dictionary-as-a-string
Blocking



FRONT CODING

Front-coding:

Sorted words usually have long common prefix — store
differences only

(for last k-1 1n a block of k)
S8automataS8automate9automaticlOautomation

—>s8automattal 0el2dic3Cion

Extra length
beyond automat.

Encodes automat

Begins to resemble general string compression.



QUIZ (FRONT CODING)

o What does the following code decode 1nto?

Tliber*ty20al30ates50alize




RCV1 DICTIONARY COMPRESSION
SUMMARY

W

Fixed width
Dictionary-as-String with pointers to every term 7.6
Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9




POSTINGS COMPRESSION

The postings file 1s much larger than the
dictionary, factor of at least 10.

Key consideration: store each posting compactly.
A posting for our purposes is a doclD.

For Reuters (800,000 documents), we would use
32 bits per docID when using 4-byte integers.

Alternatively, we can use log, 800,000 = 20 bits
per doclD.

Our goal: use far fewer than 20 bits per doclD.



POSTINGS: TWO CONFLICTING FORCES

A term like arachnocentric occurs in maybe
one doc out of a million — we would like to store
this posting using log, 1M ~ 20 bits.
A term like the occurs in virtually every doc, so
20 bits/posting 1s too expensive.

Prefer 0/1 bitmap vector in this case



POSTINGS FILE ENTRY

We store the list of docs containing a term in
increasing order of doclD.

computer: 33,47/154,159,202 ...

Consequence:/i@es to store gaps.

33,14,101513 ...

Hope: most gaps can be encoded/stored with far
fewer than 20 bits.



THREE POSTINGS ENTRIES

encoding  postings list

THE doclDs . 283042 283043 283044 283045
gaps 1 1
COMPUTER doclDs " 283047 283154 283159 283202
gaps 107 43
ARACHNOCENTRIC doclDs 252000 500100

gaps 252000 248100




VARIABLE LENGTH ENCODING
Aim:

For arachnocentric, we will use ~20 bits/gap entry.
For the, we will use ~1 bit/gap entry.
If the average gap for a term 1s GG, we want to use
~log,G bits/gap entry.

Key challenge: encode every integer (gap) with
about as few bits as needed for that integer.

This requires a variable length encoding

Variable length codes achieve this by using short
codes for small numbers



VARIABLE BYTE (VB) CODES

For a gap value G, we want to use close to the
fewest bytes needed to hold log, G bits

Begin with one byte to store G and dedicate 1 bit
1n 1t to be a continuation bit ¢

If G <127, binary-encode it in the 7 available bits
and set ¢ =1 (indicating the last byte)

Else encode G’s lower-order 7 bits and then use
additional bytes to encode the higher order bits
using the same algorithm

At the end set the continuation bit of the last
(lowest) byte to 1 (¢ =1) — and for the other bytes
c = 0.



824 - 0b1100111000

EXAMPLE
gaps ) 214577
VB code 00000110 10000101 00001101

10111000 00001100

10110001

Postings stored as the byte concatenation
00000TT101011T10001000010T00001T01000011001011000T

A\

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.




OTHER VARIABLE UNIT CODES

Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).

Variable byte alignment wastes space if you have
many small gaps — nibbles do better in such cases.

Variable byte codes:
Used by many commercial/research systems

Good low-tech blend of variable-length coding and
sensitivity to computer memory alighment matches (vs.
bit-level codes, which we look at next).
There 1s also recent work on word-aligned codes that
pack a variable number of gaps into one word



QUIZ: NIBBLES

What 1s the disadvantage of using smaller
alignment units such as nibbles (4 bits) in VB
encoding?



UNARY CODE

Represent n as n 1s with a final O.

Unary code for 31s 1110.

Unary code for 40 1s
11111111111111111111111111111111111111110.

Unary code for 80 1is:

i11ii11i1111111111111111 11111111 1111111111
111111111111111111111111111111111111110

This doesn’t look promising, but....



(GAMMA CODES

We can compress better with bit-level codes
The Gamma code 1s the best known of these.

Represent a gap G as a pair length and offset

offset 1s G in binary, with the leading bit cut off
For example 13 — 1101 — 101

length 1s the length of offset
For 13 (offset 101), this 1s 3.

We encode length with unary code: 1110.

Gamma code of 13 1s the concatenation of length
and offset: 1110101



(GAMMA CODE EXAMPLES

© A~ WO N P+, O

13
24
511
1025

0

10

10
110
1110
1110
11110

111111110
11111111110

1

00

001

101

1000
11111111
0000000001

none
0
10,0
10,1
110,00
1110,001
1110,101

11110,1000
111111110,11111111

11111111110,0000000001




(GAMMA CODE PROPERTIES

G is encoded using 2 [ log G| + 1 bits
Length of offset is | log G bits
Length of length is | log G|+ 1 bits

All gamma codes have an odd number of bits
Almost within a factor of 2 of best possible, log, G

Gamma code 1s uniquely prefix-decodable, like
VB

Gamma code can be used for any distribution

Gamma code 1s parameter-free



GAMMA SELDOM USED IN PRACTICE

Machines have word boundaries — 8, 16, 32, 64
bits
Operations that cross word boundaries are slower

Compressing and manipulating at the
oranularity of bits can be slow

Variable byte encoding 1s aligned and thus
potentially more efficient

Regardless of efficiency, variable byte 1s
conceptually simpler at little additional space
cost



RCV1 COMPRESSION

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k =4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

postings, y—encoded 101.0



INDEX COMPRESSION SUMMARY

We can now create an index for highly efficient
Boolean retrieval that 1s very space efficient

Only 4% of the total size of the collection

Only 10-15% of the total size of the text in the
collection

However, we’ve 1gnored positional information

Hence, space savings are less for indexes used in
practice

But techniques substantially the same.



RESOURCES FOR TODAY'S LECTURE

IIR 5
MG 3.3, 3.4.

F. Scholer, H.E. Williams and J. Zobel. 2002.
Compression of Inverted Indexes For Fast Query
Evaluation. Proc. ACM-SIGIR 2002.

Variable byte codes
V. N. Anh and A. Moffat. 2005. Inverted Index

Compression Using Word-Aligned Binary Codes.
Information Retrieval 8: 151-166.

Word aligned codes



MORE RESOURCES

K. Kukich. Techniques for automatically
correcting words in text. ACM Computing
Surveys 24(4), Dec 1992.

Dean, Jeffrey, and Sanjay Ghemawat.
MapReduce: simplified data processing on
large clusters, OSDI (4) (2004).



SCORING, TERM
WEIGHTING & VECTOR
Q@ SPACE MODEL




RECAP OF LAST LECTURE

Collection and vocabulary statistics: Heaps’ and Zipf's laws
Dictionary compression for Boolean indexes
Dictionary string, blocks, front coding
Postings compression: Gap encoding, prefix-unique codes
Variable-Byte and Gamma codes

collection (text, xml markup etc) 3,600.0 MB
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

postings, y-encoded 101.0



OUTLINE

Ranked retrieval
Scoring documents
Term frequency
Collection statistics
Weighting schemes
Vector space scoring



RANKED RETRIEVAL

Thus far, our queries have all been Boolean.
Documents either match or don’t.

Also good for applications: Applications can easily
consume 1000s of results.

Not good for the majority of users.

Most users incapable of writing Boolean queries (or
they are, but they think it’s too much work).



PROBLEM WITH BOOLEAN SEARCH:
FEAST OR FAMINE

Boolean queries often result in either too few (=0)
or too many (1000s) results.

Query 1: “standard user dlink 650” — 200,000
hits
Query 2: “standard user dlink 650 no card
found”: 0 hits
It takes a lot of skill to come up with a query that
produces a manageable number of hits.

AND gives too few; OR gives too many



RANKED RETRIEVAL MODELS

Rather than a set of documents satisfying a
query expression, In , the system
returns an ordering over the (top) documents in
the collection for a query

: Rather than a query language
of operators and expressions, the user’s query is
just one or more words 1n a human language

In principle, these are two separate choices here,
but 1n practice, ranked retrieval has normally
been associated with free text queries and vice
versa



FEAST OR FAMINE: NOT A PROBLEM IN
RANKED RETRIEVAL

Google Resul t Impressions Percentage

1 2,834.806 34.35%
When a system produces a ranked ﬁ el e
result set, large result sets are not an = 42706 1142

638,106

issue s | 1stpame o
Indeed, the size of the result set is not ~ ° | 94% *=7 5%
an issue s | s
We just show the top £ (= 10) results : il
We don’t overwhelm the user e —

12 69,778 a.85%

s | 2nd PEGE o7

Premise: the ranking algorithm works | goy 8=  osn
15 39,635 0.48%
16 32,168 0.39%
17 26,933 a33%
18 23,131 a.28%

19 22.027 27
20 23,953 a29%



SCORING AS THE BASIS OF RANKED
RETRIEVAL

o We wish to return the documents 1n an order
most likely to be useful to the searcher

o How can we rank-order the documents in the
collection with respect to a query?

o Assign a score — say in [0, 1] — to each document

o This score measures how well document and
query “match”.




QUERY-DOCUMENT MATCHING SCORES

We need a way of assigning a score to a
query/document pair

If the query term does not occur in the document:
score should be 0

We will look at a number of alternatives for this.



TAKE 1: JACCARD COEFFICIENT

Recall from last lecture: A commonly used
measure of overlap of two sets A and B

A and B don’t have to be the same size.
Always assigns a number between 0 and 1.



QUIZ: JACCARD COEFFICIENT

What 1s the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

Query: ides of march

Document 1: caesar died in march

Document 2: the long march




ISSUES WITH JACCARD FOR SCORING

It doesn’t consider (how many
times a term occurs in a document)

Rare terms 1n a collection are more informative
than frequent terms. Jaccard doesn’t consider
this information

We need a more sophisticated way of normalizing
for length

Later in this lecture, we'lluse |ANB|/\|AUB|

...1nstead of |ANB|/|A U B| (Jaccard) for
length normalization.




RECALL: BINARY TERM-DOCUMENT
INCIDENCE MATRIX

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector &
{0, 1}V



TERM-DOCUMENT COUNT MATRICES

Consider the number of occurrences of a term 1n

a document:

Each document 1s a lcount vector

below
Antony and Cleopatra | Julius Caesar

Antony 157 73

Brutus 4 157

Caesar 232 227
Calpurnia 0 10
Cleopatra 57 0

mercy 2 0

worser 2 0

The Tempest
0

kR W O O O O

Hamlet

0

R O O O N -

in NV: a column

Othello

R O1 O O +—» O

Macbeth

o r O O +—» O



BAG OF WORDS MODEL

Vector representation doesn’t consider the
ordering of words in a document

John 1s quicker than Mary Mary 1s quicker
than John

This 1s called the bag of words model.

We will look at “recovering” positional
information later in this course.

For now: bag of words model



TERM FREQUENCY TF

o The term frequency tf, ; of term ¢ in document d 1s
defined as the number of times that ¢ occurs in d.

o We want to use tf when computing query-
document match scores. But how?

o Raw term frequency is not what we want:

» A document with 10 occurrences of the term 1s more
relevant than a document with 1 occurrence of the
term.

» But not 10 times more relevant.

o Relevance does not increase proportionally with

term frequency.
NB: frequency = count in IR @




LOG-FREQUENCY WEIGHTING

The log frequency weight of term t 1n d 1s

Wi

B {1+ log,, tf,,, iftf,, >0
4=

0, otherwise
0—-0,1—-1,2—1.3,10— 2, 1000 — 4, etc.

Score for a document-query pair: sum over terms ¢
1n both g and d:

score  — Zteqm (1+logtf, ;)

The score 1s O 1f none of the query terms 1s present
1n the document.



DOCUMENT FREQUENCY

Rare terms are more informative than frequent terms
Recall stop words

A document containing this term is very likely to be
relevant to the query arachnocentric



DOCUMENT FREQUENCY, CONTINUED

Frequent terms are less informative than rare
terms

Consider a query term that is frequent in the
collection (e.g., high, increase, line)

A document containing such a term is more likely
to be relevant than a document that doesn’t

But 1t’s not a sure indicator of relevance.

In general, we want high positive weights for a
term that appears many times in a doc

But lower weights for a frequent term than for
rare terms.

We will use document frequency (df) to capture
this.



IDF WEIGHT

df, 1s the document frequency of ¢: the number of
documents that contain ¢

df, 1s an inverse measure of the informativeness of ¢
df, < N (total number of docs)

We define the 1df (inverse document frequency) of ¢

>y idf, =log,, (N/df,)

We use log (IV/df)) instead of N/df, to “dampen” the effect
of 1df.

It turns out the base of the log is insignificant.




IDF EXAMPLE, SUPPOSE N = 1 MILLION

calpurnia 1 6
animal 100 4
sunday 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

Idf, =log,, (N/df,)

There is one idf value for each term tin a coIIectioQ




Quiz: IDF

Why is the 1df of a term in a document always
finite?

Idf, =log,, (N/df,)



EFFECT OF IDF ON RANKING

Does 1df have an effect on ranking for one-term
queries, like
1Phone?

1df has on ranking one term queries

1df affects the ranking of documents for queries with
at least two terms

For the query , 1df weighting makes
occurrences of count for much more in the
final document ranking than occurrences of



COLLECTION VS. DOCUMENT FREQUENCY

o The collection frequency of ¢ 1s the number of
occurrences of ¢ in the collection, counting multiple

occurrences.
o Example:
Collection frequency Document frequency
insurance 10440 3997
try 10422 8760




QUIZ: COLLECTION FREQUENCY

Collection frequency Document frequency

insurance 10440 3997
try 10422 8760

o Which word 1s a better search term (and should
get a higher weight), and why?




TEF-IDF WEIGHTING

The tf-1df weight of a term 1s the product of its tf weight
and 1ts 1df weight.

W . = (1+log,, tf, ;) xlog,, (N /df,)

Note: the “-” in tf-1df 1s a hyphen, not a minus sign!

Increases with the number of occurrences within a
document



SCORE FOR A DOCUMENT GIVEN A QUERY

Score(q,d)=),  tfidf,

teqgnNd

q 1s a multi-term query.

There are many variants
How “tf” 1s computed (with/without logs)

Whether the terms in the query are also
welghted



BINARY — COUNT — WEIGHT MATRIX

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV



DOCUMENTS AS VECTORS

o So we have a | V|-dimensional vector space
o Terms are axes of the space
o Documents are points or vectors in this space

o Very high-dimensional: tens of millions of
dimensions when you apply this to a web search
engine

o These are very sparse vectors - most entries are
Z€ero.




QUERIES AS VECTORS

Key idea 1: Do the same for queries: represent
them as vectors 1n the space

Key idea 2: Rank documents according to their
proximity to the query in this space

proximity = similarity of vectors

proximity =~ inverse of distance

Instead: rank more relevant documents higher
than less relevant documents



FORMALIZING VECTOR SPACE PROXIMITY

First cut: distance between two points

( = distance between the end points of the two
vectors)

Euclidean distance 1s a bad 1dea . . .

. . . because Euclidean distance 1s large for
vectors of



WHY DISTANCE IS A BAD IDEA

The Euclidean =~ GOSSIP clo
dlsteilce between g 1, dh
and d, 1s large even

though the

distribution of terms
in the query ¢ and the
distribution of

terms 1n the
document 32 are

JEALOUS

very similar.



FROM EUCLIDEAN TO ANGLE DISTANCE

“Semantically” d and d’' have the same content

The angle between the two documents 1s 0O,
corresponding to maximal similarity.

Rank documents according to angle
with query.



FROM ANGLES TO COSINES

The following two notions are equivalent.

Rank documents in decreasing order of the angle
between query and document

Rank documents in increasing order of
cosine(query,document)

Cosine 1s a monotonically decreasing function for
the 1nterval [0°, 180°]



FROM ANGLES TO COSINES

1

50 uo 150 200 250 300 350

But how — — should we be computing cosines?



LENGTH NORMALIZATION

A vector can be (length-) normalized by dividing
each of 1its components by its length — for this we

use the L, norm: ~
2 X[, = 2%

Effect on the two documents d and d’ (d appended
to itself) from earlier slide: they have the same
unit vectors after length-normalization.



COSINE(QUERY,DOCUMENT)

Dot product Unit vectors
~ . J |
- - V|
. ol ol " 0.d.
cos(q,d)zq E _ q d Z_lch |

cos(g,d) is the cosine similarity of gand d ... or
equivalently, the cosine of the angle between ¢ and &.



e B e Tl B o e L e

The law of cosines generalizes the Pythagorean theorem, which sides a, b, and c.
holds only for right triangles: if the angle y is a right angle (of

measure 90° or% radians), then cos y = 0, and .
Trigonometry

thus the law of cosines reduces to the Pythagorean

Y

theorem:

A =a’+ 1.

The law of cosines is useful for computing the third
side of a triangle when two sides and their enclosed
angle are known, and in computing the angles of a
triangle if all three sides are known.

By changing which sides of the triangle play the
roles of a, b, and ¢ in the original formula, the
following two formulas also state the law of cosines:

a® = b + & — 2bccos o
b’ = a® + ¢ — 2accosf.

Though the notion of the cosine was not yet Outline - History - Usage




COSINE FOR LENGTH-NORMALIZED
VECTORS

For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

cos@d)=ged=Y, qd,

for q, d length-normalized.



COSINE SIMILARITY ILLUSTRATED

ot
[ e
/ S @)
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x

OM ~

v(d3)

RICH



COSINE SIMILARITY AMONGST 3 DOCUMENTS

o How similar are
the novels?

o SaS: Sense and
Sensibility

o PaP: Pride and
Prejudice

o WH: Wuthering
Heights

Note: To simplify this example, we don’t do idf

weighting.

I

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)




3 DOCUMENTS EXAMPLE CONTD.

_term | Sas | PaP | WH [ term | SaS | PaP | WH _

affection 3.06 2.76 2.30 affection 0.789 0.832 0.524

jealous 2.00 1.85 2.04  jealous 0.515 0.555 0.465
gossip 1.30 0 1.78  gossip 0.335 0 0.405
wuthering 0 0 2.58  wuthering 0 0 0.588

cos(SaS,PaP) =~
0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0 = 0.94
cos(SaS,WH) = 0.79
cos(PaP,WH) = 0.69




QUIZ: NOVELS

We can see that
cos(SaS,PaP) > cos(SaS,WH)
Why?



COMPUTING COSINE SCORES
COSINESCORE(Qq)

1 float Scores|[N] =0

float Length|N]

for each query term t

do calculate wt 4 and fetch postings list for ¢
for each pair(d,tf; ) in postings list
do Scores|[d]4+ = w¢ g X Wy g

Read the array Length

for each d

do Scores|[d]| = Scores|d]/Length[d]

return Top K components of Scores|]

O O 0 N OO0 BN

 —



TEF-IDF WEIGHTING HAS MANY VARIANTS

Term frequency

Document frequency

MNormalization

n (natural) tfe o n (no) 1 n (none) )
| (logarithm) 1+ log(tf: q) t (idf) log % c (cosine) )
NG T
a (augmented) 0.5+ 0.5 xthr.o p (prob idf)  max{0,log Xy | u (pivoted 1/u
maxr[tim-} ' df; unique} /
b (boolean) L ifthed >0 b (byte size) 1/CharLength”
0 otherwise o1 ’
L (] 1+log(tfe 4)
(log ave)  TiTogtavercaliica)
SV N7 LS S B .
n’, ‘I’, ‘a’, ‘t’, ‘p’, etc. are acronyms for weight schemes.




WEIGHTING MAY DIFFER IN QUERIES VS
DOCUMENTS

o Many search engines allow for different weightings
for queries vs. documents

o SMART Notation: denotes the combination in use in
an engine, with the notation ddd.qqq, using the
acronyms from the previous table

o A very standard weighting scheme is: Inc.ltc

o Document: logarithmic tf (| as first character), no 1df
and cosine normalization 4%

A bad idea?

o Query: logarithmic tf (1 in leftmost column), 1df (t in

second column), no normalization ...




TEF-IDF EXAMPLE: LNC.LTC

Document: car insurance auto insurance
Query: best car insurance

auto
best
car

Insurance

tf-  tf-wt

raw
0 O
1 1
1 1
1 1
Exercise

Doc vector length =/12+ 02+ 1> +1.3% ~1.92

df idf

5000 2.3
50000 1.3
10000 2.0

1000 3.0

tfidf
wit

0
1.3
2.0
3.0

n’liz
e
0
0.34
0.52

0.78

tf-raw

N B O

tf-wit

tfidf

: what is N, the number of docs?

n’liz
e
0.52
0
0.52

0.68

0
0
0.27
0.53



SUMMARY — VECTOR SPACE RANKING

Represent the query as a weighted tf-1df vector

Compute the cosine similarity score for the query
vector and each document vector

Return the top K (e.g., K=10) to the user



RESOURCES FOR TODAY'S LECTURE

olIR 6.2 -6.4.3

o http://www.miislita.com/information-retrieval-
tutorial/cosine-similarity-tutorial.html

» Term weighting and cosine similarity tutorial for

SKEO folk!



http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html

