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PLAN

¢ Last lecture:
� Dictionary data structures
� Tolerant retrieval

¢ Wildcards
¢ Spell correction
¢ Soundex

¢ This time:
� Index construction
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INDEX CONSTRUCTION

¢How do we construct an index?
¢What strategies can we use with 

limited main memory?

Ch. 4
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HARDWARE BASICS

¢ Many design decisions in information retrieval 
are based on the characteristics of hardware

¢ We begin by reviewing hardware basics

Sec. 4.1
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HARDWARE BASICS

¢ Access to data in memory is much faster than 
access to data on disk.

¢ Disk seeks: No data is transferred from disk 
while the disk head is being positioned.

¢ Therefore: Transferring one large chunk of data 
from disk to memory is faster than transferring 
many small chunks.

¢ Disk I/O is block-based: Reading and writing of 
entire blocks (as opposed to smaller chunks).

¢ Block sizes: 8KB to 256 KB.

Sec. 4.1
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HARDWARE BASICS

¢ Servers used in IR systems now typically have 
several GB of main memory, sometimes 
hundreds of GB. 

¢ Available disk space is several (2–3) orders of 
magnitude larger.

¢ Fault tolerance is very expensive: It’s much 
cheaper to use many regular machines rather 
than one fault tolerant machine. (redundancy)

Sec. 4.1
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HARDWARE ASSUMPTIONS FOR THIS
LECTURE

symbol statistic value
s average seek time 5 ms = 5 x 10−3 s
b transfer time per byte 0.02 µs = 2 x 10−8 s

processor’s clock rate 109 s−1

p low-level operation 0.01 µs = 10−8 s
(e.g., compare & swap a word)
size of main memory several GB
size of disk space 1 TB or more

Sec. 4.1
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RCV1: OUR COLLECTION FOR THIS
LECTURE

¢ Shakespeare’s collected works definitely aren’t 
large enough for demonstrating many of the 
points in this course.

¢ The collection we’ll use isn’t really large enough 
either, but it’s publicly available and is at least a 
more plausible example.

¢ As an example for applying scalable index 
construction algorithms, we will use the Reuters 
RCV1 collection.

¢ This is one year of Reuters newswire (Aug 1996 
to Aug 1997)

Sec. 4.2
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A REUTERS RCV1 DOCUMENT

Sec. 4.2
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REUTERS RCV1 STATISTICS
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)
avg. # bytes per token 4.5
(without spaces/punct.)
avg. # bytes per term 7.5
# of tokens 100,000,000

Quiz: Why is the avg. # bytes per term larger
than the # bytes per token?

Sec. 4.2
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¢ Documents are parsed to extract words and 
these are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

RECALL INDEX CONSTRUCTION
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2
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Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

KEY STEP

¢ After all documents have 
been parsed, the inverted 
file is sorted by terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2
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SCALING INDEX CONSTRUCTION

¢ In-memory index construction does not scale
� Can’t stuff entire collection into memory, sort, then 

write back
¢ How can we construct an index for very large 

collections?
¢ Taking into account the hardware constraints we 

just learned about . . .
¢ Memory, disk, speed, etc.

Sec. 4.2

13



SORT-BASED INDEX CONSTRUCTION

¢ As we build the index, we parse docs one at a time.
� While building the index, we cannot easily exploit 

compression tricks  (you can, but much more complex)
¢ The final postings for any term are incomplete until the 

end.
¢ At 12 bytes per non-positional postings entry (termid, 

docid, freq), demands a lot of space for large collections.
¢ T = 100,000,000 records in the case of RCV1

� So … we can do this in memory in 2023, but typical 
collections are much larger.  E.g., the New York Times 
provides an index of >150 years of newswire

¢ Thus: We need to store intermediate results on disk.

Sec. 4.2
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SORT USING DISK AS “MEMORY”?
¢ Can we use the same index construction 

algorithm for larger collections, but by using disk 
instead of memory?

¢ No: Sorting T = 100,000,000 records on disk is too 
slow – too many disk seeks.

¢ We need an external sorting algorithm.

Sec. 4.2
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BOTTLENECK

¢ Parse and build postings entries one doc at a 
time

¢ Now sort postings entries by term (then by doc 
within each term)

¢ Doing this with random disk seeks would be too 
slow – must sort T=100M records

Quiz: If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?

Sec. 4.2
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BSBI: BLOCKED SORT-BASED INDEXING
(SORTING WITH FEWER DISK SEEKS)

¢ 12-byte (4+4+4) records (termid, docid, freq).
¢ These are generated as we parse docs.
¢ Must now sort 100M such 12-byte records by term.
¢ Define a Block ~10M such records

� Can easily fit a couple into memory.
� Will have 10 such blocks to start with.

¢ Basic idea of algorithm:
� Accumulate postings for each block, sort, write to disk.
� Then merge the blocks into one long sorted order.

Sec. 4.2
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Sec. 4.2
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SORTING 10 BLOCKS OF 10M RECORDS

¢ First, read each block and sort within: 
� Quicksort takes 2N ln N expected steps
� In our case 2*10M ln 10M steps

¢ Exercise: estimate total time to read each block 
from disk and quicksort it.

¢ 10 times this estimate – gives us 10 sorted runs
of 10M records each.

¢ Done straightforwardly, need 2 copies of data on 
disk
� But can optimize this

Sec. 4.2

19Quiz: Why do we need 2 copies of data on the disk?



Sec. 4.2

20



HOW TO MERGE THE SORTED RUNS?
¢ Can do binary merges, with a merge tree of 

log210 = 4 layers.
¢ During each layer, read into memory runs in 

blocks of 10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2
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HOW TO MERGE THE SORTED RUNS?
¢ But it is more efficient to do a multi-way (in 

stead of binary) merge, where you are reading 
from all blocks simultaneously

¢ Providing you read decent-sized chunks of each 
block into memory and then write out a decent-
sized output chunk, then you’re not killed by disk 
seeks

¢ Typically there’s an input buffer and output 
buffer; write out to disk when the buffer is full.

Sec. 4.2
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REMAINING PROBLEM WITH SORT-BASED
ALGORITHM

¢ Our assumption was: we can keep the dictionary in 
memory.

¢ We need the dictionary (which grows dynamically) 
in order to implement a term to termID mapping.

¢ Actually, we could work with term,docID postings 
instead of termID,docID postings . . .

¢ . . . but then intermediate files become very large. 
(We would end up with a scalable, but very slow 
index construction method.)

Sec. 4.3
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SPIMI: 
SINGLE-PASS IN-MEMORY INDEXING

¢ Key idea 1: Generate separate dictionaries for 
each block – no need to maintain term-termID 
mapping across blocks.

¢ Key idea 2: Don’t sort. Accumulate postings in 
postings lists as they occur.

¢ With these two ideas we can generate a complete 
inverted index for each block.

¢ These separate indexes can then be merged into 
one big index.

Sec. 4.3
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SPIMI-INVERT

Merging of blocks is analogous to BSBI.

Sec. 4.3
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SPIMI: COMPRESSION

¢ Compression makes SPIMI even more efficient.
� Compression of terms
� Compression of postings

¢ See next lecture

Sec. 4.3
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DISTRIBUTED INDEXING

¢ For web-scale indexing (don’t try this on your PC!):
must use a distributed computing cluster

¢ Individual machines are fault-prone
� Can unpredictably slow down or fail

¢ How do we exploit such a pool of machines?

Sec. 4.4
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WEB SEARCH ENGINE DATA CENTERS

¢ Web search data centers (Google, Bing, Baidu) 
mainly contain commodity machines.

¢ Data centers are distributed around the world.
¢ Estimate: Google ~2.5 million servers, 7.2 million 

processors/cores (Gartner 2016)

Sec. 4.4
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MASSIVE DATA CENTERS

¢ If in a non-fault-tolerant system with 1000 nodes, 
each node has 99.9% uptime, what is the uptime 
of the system?

¢ Answer: 37% (0.999^1000)

Sec. 4.4
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QUIZ: FAILED SERVERS

Suppose a server will fail after 4 years. For 
an installation of 1 million servers, what is 
the average time interval between machine 
failures?
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DISTRIBUTED INDEXING

¢ Maintain a master machine directing the 
indexing job – considered “failsafe”.

¢ Break up indexing into sets of (parallel) tasks.
¢ Master machine assigns each task to an idle 

machine from a pool.

Sec. 4.4
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PARALLEL TASKS

¢ We will use two sets of parallel tasks
� Parsers
� Inverters

¢ Break the input document collection into splits
¢ Each split is a subset of documents 

(corresponding to blocks in BSBI/SPIMI)

Sec. 4.4
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PARSERS

¢ Master assigns a split to an idle parser machine
¢ Parser reads a document at a time and emits 

(term, doc) pairs
¢ Parser writes pairs into j partitions
¢ Each partition is for a range of terms’ first letters

� (e.g., a-f, g-p, q-z) – here j = 3.
¢ Now to complete the index inversion

Sec. 4.4
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INVERTERS

¢ An inverter collects all (term,doc) pairs (= 
postings) for one term-partition.

¢ Sorts and writes to postings lists

Sec. 4.4

34



DATA FLOW

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Partitions Reduce
phase

Sec. 4.4
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MAPREDUCE

¢ The index construction algorithm we just 
described is an instance of MapReduce.

¢ MapReduce (Dean and Ghemawat 2004) is a 
robust and conceptually simple framework for 
distributed computing …

¢ … without having to write code for the 
distribution part.

¢ They describe the Google indexing system (ca. 
2002) as consisting of a number of phases, each 
implemented in MapReduce.

Sec. 4.4
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MAPREDUCE

¢ Index construction was just one phase.
¢ Another phase: transforming a term-partitioned 

index into a document-partitioned index.
� Term-partitioned: one machine handles a subrange of 

terms
� Document-partitioned: one machine handles a 

subrange of documents
¢ As we’ll discuss in the web part of the course, 

most search engines use a document-partitioned 
index … better load balancing, etc.

Sec. 4.4
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SCHEMA FOR INDEX CONSTRUCTION IN
MAPREDUCE

¢ Schema of map and reduce functions
map: input → list(k, v)     
reduce: (k,list(v)) → output

¢ Instantiation of the schema for index 
construction
map: collection → list(termID, docID)
reduce: (<termID1, list(docID)>, <termID2, list(docID)>, 
…) → (postings list1, postings list2, …)

Sec. 4.4
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EXAMPLE FOR INDEX CONSTRUCTION

¢ Map:
d1 : C came, C c’ed. 
d2 : C died. →
<C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>, <died,d2>

¢ Reduce:
(<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>)  →  
(<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>, <c’ed,(d1:1)>)

39



DYNAMIC INDEXING

¢ Up to now, we have assumed that collections are 
static.

¢ They rarely are: 
� Documents come in over time and need to be 

inserted.
� Documents are deleted and modified.

¢ This means that the dictionary and postings lists 
have to be modified:
� Postings updates for terms already in dictionary
� New terms added to dictionary

Sec. 4.5
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SIMPLEST APPROACH

¢ Maintain “big” main index
¢ New docs go into “small” auxiliary index
¢ Search across both, merge results
¢ Deletions

� Invalidation bit-vector for deleted docs
� Filter docs output on a search result by this 

invalidation bit-vector
¢ Periodically, re-index into one main index

Sec. 4.5
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ISSUES WITH MAIN AND AUXILIARY
INDEXES

¢ Problem of frequent merges – you touch stuff a 
lot

¢ Poor performance during merge
¢ Actually:

� Merging of the auxiliary index into the main index is 
efficient if we keep a separate file for each postings list.

� Merge is the same as a simple append.
� But then we would need a lot of files – inefficient for OS.

¢ Assumption for the rest of the lecture: The index 
is one big file.

¢ In reality: Use a scheme somewhere in between 
(e.g., split very large postings lists, collect all 
postings lists of length 1 in one file etc.)

Sec. 4.5
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LOGARITHMIC MERGE

¢ Logarithmic merging amortizes the cost of merging 
indexes over time.
¢→ Users see smaller effect on response times.

¢ Maintain a series of indexes, each twice as large as 
the previous one
� At any time, some of these powers of 2 are instantiated

¢ Keep smallest (Z0) in memory
¢ Larger ones (I0, I1, …) on disk
¢ If Z0 gets too big (> n), write to disk as I0
¢ . . . or merge with I0 (if I0 already exists) and write 

merger to I1 etc.

Sec. 4.5
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Sec. 4.5
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LOGARITHMIC MERGE

¢ Auxiliary and main index: index construction 
time is O(T2) as each posting is touched in each 
merge.

¢ Logarithmic merge: Each posting is merged O(log 
T) times, so complexity is O(T log T)

¢ So logarithmic merge is much more efficient for 
index construction

¢ But query processing now requires the merging 
of O(log T) indexes
� Whereas it is O(1) if you just have a main and 

auxiliary index

Sec. 4.5
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FURTHER ISSUES WITH MULTIPLE INDEXES

¢ Collection-wide statistics are hard to maintain
¢ E.g., when we spoke of spell-correction: which of 

several corrected alternatives do we present to 
the user?
� We said, pick the one with the most hits

¢ How do we maintain the top ones with multiple 
indexes and invalidation bit vectors?
� One possibility: ignore everything but the main index 

for such ordering
¢ Will see more such statistics used in results 

ranking

Sec. 4.5
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DYNAMIC INDEXING AT SEARCH ENGINES

¢ All the large search engines now do dynamic 
indexing

¢ Their indices have frequent incremental changes
� News items, blogs, new topical web pages

¢ Volodymyr Zelenskyy, …

¢ But (sometimes/typically) they also periodically 
reconstruct the index from scratch
� Query processing is then switched to the new index, 

and the old index is deleted

Sec. 4.5
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Sec. 4.5
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OTHER SORTS OF INDEXES

¢ Positional indexes
� Same sort of sorting problem … just larger

¢ Building character n-gram indexes:
� As text is parsed, enumerate n-grams.
� For each n-gram, need pointers to all dictionary 

terms containing it – the “postings”.
� Note that the same “postings entry” will arise 

repeatedly in parsing the docs – need efficient 
hashing to keep track of this.
¢ E.g., that the trigram uou occurs in the term deciduous

will be discovered on each text occurrence of deciduous
¢ Optimization: only process each term once

Why?

Sec. 4.5
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RESOURCES FOR TODAY’S LECTURE

¢ Chapter 4 of IIR
¢ MG Chapter 5
¢ Original publication on MapReduce: Dean and 

Ghemawat (2004)
¢ Original publication on SPIMI: Heinz and Zobel

(2003)

Ch. 4
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INDEX COMPRESSION
51



TODAY

¢Collection statistics in more detail (with 
RCV1)
� How big will the dictionary and postings be?

¢Dictionary compression
¢Postings compression

Ch. 5
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WHY COMPRESSION (IN GENERAL)?
¢ Use less disk space

� Saves a little money
¢ Keep more stuff in memory

� Increases speed
¢ Increase speed of data transfer from disk to 

memory
� [read compressed data + decompress] is faster than     

[read uncompressed data]
� Premise: Decompression algorithms are fast

¢ True of the decompression algorithms we use

Ch. 5
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WHY COMPRESSION FOR INVERTED
INDEXES?
¢ Dictionary

� Make it small enough to keep in main memory
� Make it so small that you can keep some postings 

lists in main memory too
¢ Postings file(s)

� Reduce disk space needed
� Decrease time needed to read postings lists from disk
� Large search engines keep a significant part of the 

postings in memory.
¢ Compression lets you keep more in memory

¢ We will devise various IR-specific 
compression schemes

Ch. 5
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RECALL REUTERS RCV1
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)
avg. # bytes per token 4.5
(without spaces/punct.)
avg. # bytes per term 7.5
non-positional postings 100,000,000

Sec. 5.1
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LOSSLESS VS. LOSSY COMPRESSION

¢ Lossless compression: All information is preserved.
� What we mostly do in IR.

¢ Lossy compression: Discard some information
¢ Several of the preprocessing steps can be viewed as 

lossy compression: case folding, stop words, 
stemming, number elimination.

¢ Later: Prune postings entries that are unlikely to 
turn up in the top k list for any query.
� Almost no-loss for top k list.

Sec. 5.1
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VOCABULARY VS. COLLECTION SIZE

¢ How big is the term vocabulary?
� That is, how many distinct words are there?

¢ Can we assume an upper bound?
� Not really: At least 7020 = 2123 different words of 

length 20
� 70 different characters incl. digits, punctuations and 

accents
¢ In practice, the vocabulary will keep growing 

with the collection size
� Especially with Unicode J

Sec. 5.1
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VOCABULARY VS. COLLECTION SIZE

¢ Heaps’ law: M = kTb
¢ M is the size of the vocabulary, T is the number of 

tokens in the collection
¢ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5
¢ In a log-log plot of vocabulary size M vs. T, Heaps’ 

law predicts a line with slope about ½
� It is the simplest possible relationship between the two 

in log-log space
� An empirical finding (“empirical law”)

Sec. 5.1
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Heaps’ law for Reuters
Vocabulary size M as a
function of collection size
T (number of tokens) for
Reuters-RCV1. 

For these data, the dashed line
log10M = 0.49 ∗ log10 T + 1.64 
is the best least squares fit.

Thus, M = 101.64T0.49

and k = 101.64 ≈ 44 and
b = 0.49.



QUIZ: VOCABULARY SIZE

¢ Looking at a collection of web pages, you find 
that there are 4000 different terms in the first 
10,000 tokens and 40,000 different terms in the 
first 1,000,000 tokens.

¢ Assume a search engine indexes a total of 
3,000,000 (3× 106) pages, 300 tokens per page 
on average

¢ What is the size of the vocabulary of the indexed 
collection as predicted by Heaps’ law?

Sec. 5.1
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ZIPF’S LAW

¢ Heaps’ law gives the vocabulary size in collections.
¢ We also study the relative frequencies of terms.
¢ In natural language, there are a few very frequent 

terms and many, many very rare terms.
¢ Zipf’s law: The ith most frequent term has frequency 

proportional to 1/i .
¢ cfi ∝ 1/i = K/i where K is a normalizing constant
¢ cfi is collection frequency: the number of occurrences 

of the term ti in the collection.

Sec. 5.1
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ZIPF CONSEQUENCES

¢ If the most frequent term (the) occurs cf1 times 
� then the second most frequent term (of) occurs cf1/2 

times
� the third most frequent term (and) occurs cf1/3 times … 

¢ Equivalent: cfi = K/i where K is a normalizing 
factor, so
� log cfi = log K - log i
� Linear relationship between log cfi and log i

¢ Another power law relationship

Sec. 5.1
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ZIPF’S LAW FOR REUTERS RCV1

Sec. 5.1
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COMPRESSION

¢ Now, we will consider compressing the space for 
the dictionary and postings
� Basic Boolean index only
� No study of positional indexes, etc.
� We will consider compression schemes

Ch. 5
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WHY COMPRESS THE DICTIONARY?
¢ Search begins with the dictionary
¢ We want to keep it in memory
¢ Memory footprint competition with other 

applications
¢ Embedded/mobile devices may have very little 

memory
¢ Even if the dictionary isn’t in memory, we want it 

to be small for a fast search startup time
¢ So, compressing the dictionary is important

Sec. 5.2
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DICTIONARY STORAGE - FIRST CUT

¢ Array of fixed-width entries
� ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr. 

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2
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FIXED-WIDTH TERMS ARE WASTEFUL

¢ Most of the bytes in the Term column are wasted 
– we allot 20 bytes for 1 letter terms.
� And we still can’t handle 

supercalifragilisticexpialidocious or 
hydrochlorofluorocarbons.

¢ Written English averages ~4.5 characters/word.
� Exercise: Why is/isn’t this the number to use for 

estimating the dictionary size?
¢ Ave. dictionary word in English: ~8 characters

� How do we use ~8 characters per dictionary term?
¢ Short words dominate token counts but not term 

average.

Sec. 5.2
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COMPRESSING THE TERM LIST: 
DICTIONARY-AS-A-STRING

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

nStore dictionary as a (long) string of characters:
nPointer to next word shows end of current word
nHope to save up to 60% of dictionary space.

Sec. 5.2
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SPACE FOR DICTIONARY AS A STRING

¢ 4 bytes per term for Freq.
¢ 4 bytes per term for pointer to Postings.
¢ 3 bytes per term pointer
¢ Avg. 8 bytes per term in term string
¢ 400K terms x 19 Þ 7.6 MB (against 11.2MB for 

fixed width)

ü Now avg. 11
ý bytes/term,
þ not 20.

Sec. 5.2
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BLOCKING

¢ Store pointers to every kth term string.
� Example below: k=4.

¢ Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

ü Save 9 bytes
ý on 3
þ pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2
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NET

¢ Example for block size k = 4
¢ Where we used 3 bytes/pointer without blocking

� 3 x 4 = 12 bytes,
now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Sec. 5.2
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QUIZ: LARGE OR SMALL?
¢ What’s the pros and cons for a Large K and a 

Small K?

--- Write down at least 1 pro and 1 con.

Sec. 5.2

72



DICTIONARY SEARCH WITHOUT
BLOCKING

¢ Assuming each dictionary 
term equally likely to 
appear in query (not 
really so in practice!), 
average number of 
comparisons = 
(1+2·2+4·3+4)/8 ~2.6

Sec. 5.2

Exercise: What if the frequencies 
of query terms were non-uniform 
but known, how would you 
structure the dictionary search 
tree?
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DICTIONARY SEARCH WITH BLOCKING

¢ Binary search down to 4-term block;
� Then linear search through terms in block.

¢ Blocks of 4 (binary tree), avg. = (1+2·2+2·3+2·4+5)/8 
= 3 compares

Sec. 5.2
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