
INDEX CONSTRUCTION
1

PLAN

¢ Last lecture:
� Dictionary data structures
� Tolerant retrieval

¢ Wildcards
¢ Spell correction
¢ Soundex

¢ This time:
� Index construction

a-hu
hy-m

n-z

mo

on

among

$m mace

abandon

amortize

madden

among

2

INDEX CONSTRUCTION

¢How do we construct an index?
¢What strategies can we use with

limited main memory?

Ch. 4

3

HARDWARE BASICS

¢ Many design decisions in information retrieval
are based on the characteristics of hardware

¢ We begin by reviewing hardware basics

Sec. 4.1

4

HARDWARE BASICS

¢ Access to data in memory is much faster than
access to data on disk.

¢ Disk seeks: No data is transferred from disk
while the disk head is being positioned.

¢ Therefore: Transferring one large chunk of data
from disk to memory is faster than transferring
many small chunks.

¢ Disk I/O is block-based: Reading and writing of
entire blocks (as opposed to smaller chunks).

¢ Block sizes: 8KB to 256 KB.

Sec. 4.1

5

HARDWARE BASICS

¢ Servers used in IR systems now typically have
several GB of main memory, sometimes
hundreds of GB.

¢ Available disk space is several (2–3) orders of
magnitude larger.

¢ Fault tolerance is very expensive: It’s much
cheaper to use many regular machines rather
than one fault tolerant machine. (redundancy)

Sec. 4.1

6

HARDWARE ASSUMPTIONS FOR THIS
LECTURE

symbol statistic value
s average seek time 5 ms = 5 x 10−3 s
b transfer time per byte 0.02 µs = 2 x 10−8 s

processor’s clock rate 109 s−1

p low-level operation 0.01 µs = 10−8 s
(e.g., compare & swap a word)
size of main memory several GB
size of disk space 1 TB or more

Sec. 4.1

7

RCV1: OUR COLLECTION FOR THIS
LECTURE

¢ Shakespeare’s collected works definitely aren’t
large enough for demonstrating many of the
points in this course.

¢ The collection we’ll use isn’t really large enough
either, but it’s publicly available and is at least a
more plausible example.

¢ As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

¢ This is one year of Reuters newswire (Aug 1996
to Aug 1997)

Sec. 4.2

8

A REUTERS RCV1 DOCUMENT

Sec. 4.2

9

REUTERS RCV1 STATISTICS
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)
avg. # bytes per token 4.5
(without spaces/punct.)
avg. # bytes per term 7.5
of tokens 100,000,000

Quiz: Why is the avg. # bytes per term larger
than the # bytes per token?

Sec. 4.2

10

¢ Documents are parsed to extract words and
these are saved with the Document ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

RECALL INDEX CONSTRUCTION
Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2

11

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

KEY STEP

¢ After all documents have
been parsed, the inverted
file is sorted by terms.

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2

12

SCALING INDEX CONSTRUCTION

¢ In-memory index construction does not scale
� Can’t stuff entire collection into memory, sort, then

write back
¢ How can we construct an index for very large

collections?
¢ Taking into account the hardware constraints we

just learned about . . .
¢ Memory, disk, speed, etc.

Sec. 4.2

13

SORT-BASED INDEX CONSTRUCTION

¢ As we build the index, we parse docs one at a time.
� While building the index, we cannot easily exploit

compression tricks (you can, but much more complex)
¢ The final postings for any term are incomplete until the

end.
¢ At 12 bytes per non-positional postings entry (termid,

docid, freq), demands a lot of space for large collections.
¢ T = 100,000,000 records in the case of RCV1

� So … we can do this in memory in 2023, but typical
collections are much larger. E.g., the New York Times
provides an index of >150 years of newswire

¢ Thus: We need to store intermediate results on disk.

Sec. 4.2

14

SORT USING DISK AS “MEMORY”?
¢ Can we use the same index construction

algorithm for larger collections, but by using disk
instead of memory?

¢ No: Sorting T = 100,000,000 records on disk is too
slow – too many disk seeks.

¢ We need an external sorting algorithm.

Sec. 4.2

15

BOTTLENECK

¢ Parse and build postings entries one doc at a
time

¢ Now sort postings entries by term (then by doc
within each term)

¢ Doing this with random disk seeks would be too
slow – must sort T=100M records

Quiz: If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?

Sec. 4.2

16

BSBI: BLOCKED SORT-BASED INDEXING
(SORTING WITH FEWER DISK SEEKS)

¢ 12-byte (4+4+4) records (termid, docid, freq).
¢ These are generated as we parse docs.
¢ Must now sort 100M such 12-byte records by term.
¢ Define a Block ~10M such records

� Can easily fit a couple into memory.
� Will have 10 such blocks to start with.

¢ Basic idea of algorithm:
� Accumulate postings for each block, sort, write to disk.
� Then merge the blocks into one long sorted order.

Sec. 4.2

17

Sec. 4.2

18

(1)

(2)

(3)

SORTING 10 BLOCKS OF 10M RECORDS

¢ First, read each block and sort within:
� Quicksort takes 2N ln N expected steps
� In our case 2*10M ln 10M steps

¢ Exercise: estimate total time to read each block
from disk and quicksort it.

¢ 10 times this estimate – gives us 10 sorted runs
of 10M records each.

¢ Done straightforwardly, need 2 copies of data on
disk
� But can optimize this

Sec. 4.2

19Quiz: Why do we need 2 copies of data on the disk?

Sec. 4.2

20

HOW TO MERGE THE SORTED RUNS?
¢ Can do binary merges, with a merge tree of

log210 = 4 layers.
¢ During each layer, read into memory runs in

blocks of 10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Sec. 4.2

21

(1)

(2)

(3)

HOW TO MERGE THE SORTED RUNS?
¢ But it is more efficient to do a multi-way (in

stead of binary) merge, where you are reading
from all blocks simultaneously

¢ Providing you read decent-sized chunks of each
block into memory and then write out a decent-
sized output chunk, then you’re not killed by disk
seeks

¢ Typically there’s an input buffer and output
buffer; write out to disk when the buffer is full.

Sec. 4.2

22

REMAINING PROBLEM WITH SORT-BASED
ALGORITHM

¢ Our assumption was: we can keep the dictionary in
memory.

¢ We need the dictionary (which grows dynamically)
in order to implement a term to termID mapping.

¢ Actually, we could work with term,docID postings
instead of termID,docID postings . . .

¢ . . . but then intermediate files become very large.
(We would end up with a scalable, but very slow
index construction method.)

Sec. 4.3

23

SPIMI:
SINGLE-PASS IN-MEMORY INDEXING

¢ Key idea 1: Generate separate dictionaries for
each block – no need to maintain term-termID
mapping across blocks.

¢ Key idea 2: Don’t sort. Accumulate postings in
postings lists as they occur.

¢ With these two ideas we can generate a complete
inverted index for each block.

¢ These separate indexes can then be merged into
one big index.

Sec. 4.3

24

SPIMI-INVERT

Merging of blocks is analogous to BSBI.

Sec. 4.3

25

SPIMI: COMPRESSION

¢ Compression makes SPIMI even more efficient.
� Compression of terms
� Compression of postings

¢ See next lecture

Sec. 4.3

26

DISTRIBUTED INDEXING

¢ For web-scale indexing (don’t try this on your PC!):
must use a distributed computing cluster

¢ Individual machines are fault-prone
� Can unpredictably slow down or fail

¢ How do we exploit such a pool of machines?

Sec. 4.4

27

WEB SEARCH ENGINE DATA CENTERS

¢ Web search data centers (Google, Bing, Baidu)
mainly contain commodity machines.

¢ Data centers are distributed around the world.
¢ Estimate: Google ~2.5 million servers, 7.2 million

processors/cores (Gartner 2016)

Sec. 4.4

28

MASSIVE DATA CENTERS

¢ If in a non-fault-tolerant system with 1000 nodes,
each node has 99.9% uptime, what is the uptime
of the system?

¢ Answer: 37% (0.999^1000)

Sec. 4.4

29

QUIZ: FAILED SERVERS

Suppose a server will fail after 4 years. For
an installation of 1 million servers, what is
the average time interval between machine
failures?

30

DISTRIBUTED INDEXING

¢ Maintain a master machine directing the
indexing job – considered “failsafe”.

¢ Break up indexing into sets of (parallel) tasks.
¢ Master machine assigns each task to an idle

machine from a pool.

Sec. 4.4

31

PARALLEL TASKS

¢ We will use two sets of parallel tasks
� Parsers
� Inverters

¢ Break the input document collection into splits
¢ Each split is a subset of documents

(corresponding to blocks in BSBI/SPIMI)

Sec. 4.4

32

PARSERS

¢ Master assigns a split to an idle parser machine
¢ Parser reads a document at a time and emits

(term, doc) pairs
¢ Parser writes pairs into j partitions
¢ Each partition is for a range of terms’ first letters

� (e.g., a-f, g-p, q-z) – here j = 3.
¢ Now to complete the index inversion

Sec. 4.4

33

INVERTERS

¢ An inverter collects all (term,doc) pairs (=
postings) for one term-partition.

¢ Sorts and writes to postings lists

Sec. 4.4

34

DATA FLOW

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Partitions Reduce
phase

Sec. 4.4

35

MAPREDUCE

¢ The index construction algorithm we just
described is an instance of MapReduce.

¢ MapReduce (Dean and Ghemawat 2004) is a
robust and conceptually simple framework for
distributed computing …

¢ … without having to write code for the
distribution part.

¢ They describe the Google indexing system (ca.
2002) as consisting of a number of phases, each
implemented in MapReduce.

Sec. 4.4

36

MAPREDUCE

¢ Index construction was just one phase.
¢ Another phase: transforming a term-partitioned

index into a document-partitioned index.
� Term-partitioned: one machine handles a subrange of

terms
� Document-partitioned: one machine handles a

subrange of documents
¢ As we’ll discuss in the web part of the course,

most search engines use a document-partitioned
index … better load balancing, etc.

Sec. 4.4

37

SCHEMA FOR INDEX CONSTRUCTION IN
MAPREDUCE

¢ Schema of map and reduce functions
map: input → list(k, v)
reduce: (k,list(v)) → output

¢ Instantiation of the schema for index
construction
map: collection → list(termID, docID)
reduce: (<termID1, list(docID)>, <termID2, list(docID)>,
…) → (postings list1, postings list2, …)

Sec. 4.4

38

EXAMPLE FOR INDEX CONSTRUCTION

¢ Map:
d1 : C came, C c’ed.
d2 : C died. →
<C,d1>, <came,d1>, <C,d1>, <c’ed, d1>, <C, d2>, <died,d2>

¢ Reduce:
(<C,(d1,d2,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>) →
(<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>, <c’ed,(d1:1)>)

39

DYNAMIC INDEXING

¢ Up to now, we have assumed that collections are
static.

¢ They rarely are:
� Documents come in over time and need to be

inserted.
� Documents are deleted and modified.

¢ This means that the dictionary and postings lists
have to be modified:
� Postings updates for terms already in dictionary
� New terms added to dictionary

Sec. 4.5

40

SIMPLEST APPROACH

¢ Maintain “big” main index
¢ New docs go into “small” auxiliary index
¢ Search across both, merge results
¢ Deletions

� Invalidation bit-vector for deleted docs
� Filter docs output on a search result by this

invalidation bit-vector
¢ Periodically, re-index into one main index

Sec. 4.5

41

ISSUES WITH MAIN AND AUXILIARY
INDEXES

¢ Problem of frequent merges – you touch stuff a
lot

¢ Poor performance during merge
¢ Actually:

� Merging of the auxiliary index into the main index is
efficient if we keep a separate file for each postings list.

� Merge is the same as a simple append.
� But then we would need a lot of files – inefficient for OS.

¢ Assumption for the rest of the lecture: The index
is one big file.

¢ In reality: Use a scheme somewhere in between
(e.g., split very large postings lists, collect all
postings lists of length 1 in one file etc.)

Sec. 4.5

42

LOGARITHMIC MERGE

¢ Logarithmic merging amortizes the cost of merging
indexes over time.
¢→ Users see smaller effect on response times.

¢ Maintain a series of indexes, each twice as large as
the previous one
� At any time, some of these powers of 2 are instantiated

¢ Keep smallest (Z0) in memory
¢ Larger ones (I0, I1, …) on disk
¢ If Z0 gets too big (> n), write to disk as I0
¢ . . . or merge with I0 (if I0 already exists) and write

merger to I1 etc.

Sec. 4.5

43

Sec. 4.5

44

LOGARITHMIC MERGE

¢ Auxiliary and main index: index construction
time is O(T2) as each posting is touched in each
merge.

¢ Logarithmic merge: Each posting is merged O(log
T) times, so complexity is O(T log T)

¢ So logarithmic merge is much more efficient for
index construction

¢ But query processing now requires the merging
of O(log T) indexes
� Whereas it is O(1) if you just have a main and

auxiliary index

Sec. 4.5

45

FURTHER ISSUES WITH MULTIPLE INDEXES

¢ Collection-wide statistics are hard to maintain
¢ E.g., when we spoke of spell-correction: which of

several corrected alternatives do we present to
the user?
� We said, pick the one with the most hits

¢ How do we maintain the top ones with multiple
indexes and invalidation bit vectors?
� One possibility: ignore everything but the main index

for such ordering
¢ Will see more such statistics used in results

ranking

Sec. 4.5

46

DYNAMIC INDEXING AT SEARCH ENGINES

¢ All the large search engines now do dynamic
indexing

¢ Their indices have frequent incremental changes
� News items, blogs, new topical web pages

¢ Volodymyr Zelenskyy, …

¢ But (sometimes/typically) they also periodically
reconstruct the index from scratch
� Query processing is then switched to the new index,

and the old index is deleted

Sec. 4.5

47

Sec. 4.5

48

OTHER SORTS OF INDEXES

¢ Positional indexes
� Same sort of sorting problem … just larger

¢ Building character n-gram indexes:
� As text is parsed, enumerate n-grams.
� For each n-gram, need pointers to all dictionary

terms containing it – the “postings”.
� Note that the same “postings entry” will arise

repeatedly in parsing the docs – need efficient
hashing to keep track of this.
¢ E.g., that the trigram uou occurs in the term deciduous

will be discovered on each text occurrence of deciduous
¢ Optimization: only process each term once

Why?

Sec. 4.5

49

RESOURCES FOR TODAY’S LECTURE

¢ Chapter 4 of IIR
¢ MG Chapter 5
¢ Original publication on MapReduce: Dean and

Ghemawat (2004)
¢ Original publication on SPIMI: Heinz and Zobel

(2003)

Ch. 4

50

INDEX COMPRESSION
51

TODAY

¢Collection statistics in more detail (with
RCV1)
� How big will the dictionary and postings be?

¢Dictionary compression
¢Postings compression

Ch. 5

52

WHY COMPRESSION (IN GENERAL)?
¢ Use less disk space

� Saves a little money
¢ Keep more stuff in memory

� Increases speed
¢ Increase speed of data transfer from disk to

memory
� [read compressed data + decompress] is faster than

[read uncompressed data]
� Premise: Decompression algorithms are fast

¢ True of the decompression algorithms we use

Ch. 5

53

WHY COMPRESSION FOR INVERTED
INDEXES?
¢ Dictionary

� Make it small enough to keep in main memory
� Make it so small that you can keep some postings

lists in main memory too
¢ Postings file(s)

� Reduce disk space needed
� Decrease time needed to read postings lists from disk
� Large search engines keep a significant part of the

postings in memory.
¢ Compression lets you keep more in memory

¢ We will devise various IR-specific
compression schemes

Ch. 5

54

RECALL REUTERS RCV1
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)
avg. # bytes per token 4.5
(without spaces/punct.)
avg. # bytes per term 7.5
non-positional postings 100,000,000

Sec. 5.1

55

LOSSLESS VS. LOSSY COMPRESSION

¢ Lossless compression: All information is preserved.
� What we mostly do in IR.

¢ Lossy compression: Discard some information
¢ Several of the preprocessing steps can be viewed as

lossy compression: case folding, stop words,
stemming, number elimination.

¢ Later: Prune postings entries that are unlikely to
turn up in the top k list for any query.
� Almost no-loss for top k list.

Sec. 5.1

56

VOCABULARY VS. COLLECTION SIZE

¢ How big is the term vocabulary?
� That is, how many distinct words are there?

¢ Can we assume an upper bound?
� Not really: At least 7020 = 2123 different words of

length 20
� 70 different characters incl. digits, punctuations and

accents
¢ In practice, the vocabulary will keep growing

with the collection size
� Especially with Unicode J

Sec. 5.1

57

VOCABULARY VS. COLLECTION SIZE

¢ Heaps’ law: M = kTb
¢ M is the size of the vocabulary, T is the number of

tokens in the collection
¢ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5
¢ In a log-log plot of vocabulary size M vs. T, Heaps’

law predicts a line with slope about ½
� It is the simplest possible relationship between the two

in log-log space
� An empirical finding (“empirical law”)

Sec. 5.1

58

Heaps’ law for Reuters
Vocabulary size M as a
function of collection size
T (number of tokens) for
Reuters-RCV1.

For these data, the dashed line
log10M = 0.49 ∗ log10 T + 1.64
is the best least squares fit.

Thus, M = 101.64T0.49

and k = 101.64 ≈ 44 and
b = 0.49.

QUIZ: VOCABULARY SIZE

¢ Looking at a collection of web pages, you find
that there are 4000 different terms in the first
10,000 tokens and 40,000 different terms in the
first 1,000,000 tokens.

¢ Assume a search engine indexes a total of
3,000,000 (3× 106) pages, 300 tokens per page
on average

¢ What is the size of the vocabulary of the indexed
collection as predicted by Heaps’ law?

Sec. 5.1

60

ZIPF’S LAW

¢ Heaps’ law gives the vocabulary size in collections.
¢ We also study the relative frequencies of terms.
¢ In natural language, there are a few very frequent

terms and many, many very rare terms.
¢ Zipf’s law: The ith most frequent term has frequency

proportional to 1/i .
¢ cfi ∝ 1/i = K/i where K is a normalizing constant
¢ cfi is collection frequency: the number of occurrences

of the term ti in the collection.

Sec. 5.1

61

ZIPF CONSEQUENCES

¢ If the most frequent term (the) occurs cf1 times
� then the second most frequent term (of) occurs cf1/2

times
� the third most frequent term (and) occurs cf1/3 times …

¢ Equivalent: cfi = K/i where K is a normalizing
factor, so
� log cfi = log K - log i
� Linear relationship between log cfi and log i

¢ Another power law relationship

Sec. 5.1

62

ZIPF’S LAW FOR REUTERS RCV1

Sec. 5.1

63

COMPRESSION

¢ Now, we will consider compressing the space for
the dictionary and postings
� Basic Boolean index only
� No study of positional indexes, etc.
� We will consider compression schemes

Ch. 5

64

WHY COMPRESS THE DICTIONARY?
¢ Search begins with the dictionary
¢ We want to keep it in memory
¢ Memory footprint competition with other

applications
¢ Embedded/mobile devices may have very little

memory
¢ Even if the dictionary isn’t in memory, we want it

to be small for a fast search startup time
¢ So, compressing the dictionary is important

Sec. 5.2

65

DICTIONARY STORAGE - FIRST CUT

¢ Array of fixed-width entries
� ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2

66

FIXED-WIDTH TERMS ARE WASTEFUL

¢ Most of the bytes in the Term column are wasted
– we allot 20 bytes for 1 letter terms.
� And we still can’t handle

supercalifragilisticexpialidocious or
hydrochlorofluorocarbons.

¢ Written English averages ~4.5 characters/word.
� Exercise: Why is/isn’t this the number to use for

estimating the dictionary size?
¢ Ave. dictionary word in English: ~8 characters

� How do we use ~8 characters per dictionary term?
¢ Short words dominate token counts but not term

average.

Sec. 5.2

67

COMPRESSING THE TERM LIST:
DICTIONARY-AS-A-STRING

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

nStore dictionary as a (long) string of characters:
nPointer to next word shows end of current word
nHope to save up to 60% of dictionary space.

Sec. 5.2

68

SPACE FOR DICTIONARY AS A STRING

¢ 4 bytes per term for Freq.
¢ 4 bytes per term for pointer to Postings.
¢ 3 bytes per term pointer
¢ Avg. 8 bytes per term in term string
¢ 400K terms x 19 Þ 7.6 MB (against 11.2MB for

fixed width)

ü Now avg. 11
ý bytes/term,
þ not 20.

Sec. 5.2

69

BLOCKING

¢ Store pointers to every kth term string.
� Example below: k=4.

¢ Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

ü Save 9 bytes
ý on 3
þ pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2

70

NET

¢ Example for block size k = 4
¢ Where we used 3 bytes/pointer without blocking

� 3 x 4 = 12 bytes,
now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Sec. 5.2

71

QUIZ: LARGE OR SMALL?
¢ What’s the pros and cons for a Large K and a

Small K?

--- Write down at least 1 pro and 1 con.

Sec. 5.2

72

DICTIONARY SEARCH WITHOUT
BLOCKING

¢ Assuming each dictionary
term equally likely to
appear in query (not
really so in practice!),
average number of
comparisons =
(1+2·2+4·3+4)/8 ~2.6

Sec. 5.2

Exercise: What if the frequencies
of query terms were non-uniform
but known, how would you
structure the dictionary search
tree?

73

DICTIONARY SEARCH WITH BLOCKING

¢ Binary search down to 4-term block;
� Then linear search through terms in block.

¢ Blocks of 4 (binary tree), avg. = (1+2·2+2·3+2·4+5)/8
= 3 compares

Sec. 5.2

74

