
OUTLINE

• Documents

• Terms
• General + Non-English

• English

• Skip pointers

• Phrase queries

1

Phrase queries
• We want to answer a query such as [stanford university] – as a

phrase.

• Thus The inventor Stanford Ovshinsky never went to university

should not be a match.

• The concept of phrase query has proven easily understood by

users.

• About 10% of web queries are phrase queries.

• Consequence for inverted index: it no longer suffices to store

docIDs in postings lists.

• Two ways of extending the inverted index:

• biword index

• positional index

2

Biword indexes

• Index every consecutive pair of terms in the text as a phrase.

• For example, “Friends, Romans, Countrymen” would generate two

biwords: “friends romans” and “romans countrymen”

• Each of these biwords is now a vocabulary term.

• Two-word phrases can now easily be answered.

3

Longer phrase queries

• A long phrase like “stanford university palo alto” can be

represented as the Boolean query “STANFORD UNIVERSITY”

AND “UNIVERSITY PALO” AND “PALO ALTO”

• We need to do post-filtering of hits to identify subset that actually

contains the 4-word phrase.

4

Extended biwords
• Parse each document and perform part-of-speech tagging

• Classify the terms into (say) nouns (N) and articles/prepositions

(X), and others...

• Now deem any string of terms of the form NX*N to be an

extended biword (actually a proper noun)

• Examples: catcher in the rye

N X X N

king of Denmark

N X N

• Include extended biwords in the term vocabulary

• Queries are processed accordingly

5

Issues with biword indexes

Why are biword indexes rarely used?

• False positives

• Index blowup due to very large term vocabulary

Quiz: Can you provide one example of false positive when using a

biword index?

6

Positional indexes

• Positional indexes are a more efficient alternative to biword indexes.

• Postings lists in a nonpositional index: each posting is just a docID

• Postings lists in a positional index: each posting is a docID and a list

of positions

7

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

TO, 993427:

‹ 1: ‹7, 18, 33, 72, 86, 231›;

2: ‹1, 17, 74, 222, 255›;

4: ‹8, 16, 190, 429, 433›;

5: ‹363, 367›;

7: ‹13, 23, 191›; . . . ›

BE, 178239:

‹ 1: ‹17, 25›;

4: ‹17, 191, 291, 430, 434›;

5: ‹14, 19, 101›; . . . ›

Document 4 is a match!
8

Quiz: Positional index

What is the time complexity of doing

a phrasal query of length K on a

positional index of D documents with

max document length of L, and a

dictionary of size V?

Proximity search

• We just saw how to use a positional index for phrase searches.

• We can also use it for proximity search.

• For example: employment /4 place

• Find all documents that contain EMPLOYMENT and PLACE

within 4 words of each other.

• Employment agencies that place healthcare workers are seeing

growth is a hit.

• Employment agencies that have learned to adapt now place

healthcare workers is not a hit.

9

Proximity search

• Use the positional index

• Simplest algorithm: look at cross-product of positions of (i)

EMPLOYMENT in document and (ii) PLACE in document

• Very inefficient for frequent words, especially stop words

• Note that we want to return the actual matching positions, not

just a list of documents.

• This is important for dynamic summaries etc.

10

“Proximity” intersection

11

Combination scheme

• Biword indexes and positional indexes can be profitably

combined.

• Many biwords are extremely frequent: Michael Jackson, Britney

Spears etc.

• For these biwords, increased speed compared to positional

postings intersection is substantial.

• Combination scheme: Include frequent biwords as vocabulary

terms in the index. Do all other phrases by positional intersection.

• Williams et al. (2004) evaluate a more sophisticated mixed

indexing scheme. Faster than a positional index, at a cost of 26%

more space for index.

12

“Positional” queries on Google

• For web search engines, positional queries are much more

expensive than regular Boolean queries.

• Why are they more expensive than regular Boolean queries?

• Can you demonstrate on Google that phrase queries are more

expensive than Boolean queries?

• Let’s look at some examples of phrase queries.

13

14

Take-away

• Understanding of the basic unit of classical information

retrieval systems: words and documents: What is a

document, what is a term?

• Tokenization: how to get from raw text to words (or

tokens)

• More complex indexes: skip pointers and phrases

15

Resources

▪Chapter 1 and 2 of IIR

▪Resources at https://tartarus.org/martin/PorterStemmer/

▪Porter stemmer

16

https://tartarus.org/martin/PorterStemmer/

DICTIONARY & TOLERANT

RETRIEVAL
17

THIS LECTURE

Dictionary data structures

“Tolerant” retrieval

 Wild-card queries

 Spelling correction

 Soundex

Ch. 3

18

DICTIONARY DATA STRUCTURES FOR

INVERTED INDEXES

 The dictionary data structure stores the term

vocabulary, document frequency, pointers to each

postings list … in what data structure?

Sec. 3.1

19

A NAÏVE DICTIONARY

 An array of struct:

char[20] int Postings *

20 bytes 4/8 bytes 4/8 bytes

 How do we store a dictionary in memory efficiently?

 How do we quickly look up elements at query time?

Sec. 3.1

20

DICTIONARY DATA STRUCTURES

 Two main choices:

 Hashtables

 Trees

 Some IR systems use hashtables, some trees

Sec. 3.1

21

HASHTABLES

 Each vocabulary term is hashed to an integer

 (We assume you’ve seen hashtables before)

 Pros:

 Lookup is faster than for a tree: O(1)

 Cons:

 No easy way to find minor variants:

 judgment/judgement

 No prefix search [tolerant retrieval]

 If vocabulary keeps growing, need to occasionally do

the expensive operation of rehashing everything

 Due to bucket overflow!

Sec. 3.1

22

Root

a-m n-z

a-hu hy-m n-sh si-z

TREE: BINARY TREE

Sec. 3.1

23

TREE: B-TREE

 Definition: Every internal node has a number of children

in the interval [a,b] where a, b are appropriate natural

numbers, e.g., [2,4].

 The range has to do with the size of a disk block or

memory page, which stores one node

a-hu

hy-m

n-z

Sec. 3.1

24

TREES

 Simplest: binary tree

 More usual: B-trees

 Trees require a standard ordering of characters

and hence strings … but we typically have one

 Pros:

 Solves the prefix problem (terms starting with hyp)

 Cons:

 Slower: O(log M) [and this requires balanced tree]

 Rebalancing binary trees is expensive

 But B-trees mitigate the rebalancing problem

Sec. 3.1

25

WILD-CARD QUERIES: *

 mon*: find all docs containing any word beginning

with “mon”.

 Easy with binary tree (or B-tree) lexicon: retrieve all

words in range: mon <= w < moo

 *mon: find words ending in “mon”: harder

 Maintain an additional B-tree for terms backwards.

Can retrieve all words in range: nom <= w < non.

Sec. 3.2

26

QUIZ: ENUMERATION

From the last slide, how can we enumerate

all terms satisfying the wild-card query

de*cy ?

27

QUERY PROCESSING

 At this point, we have an enumeration of all terms

in the dictionary that match the wild-card query.

 We still have to look up the postings for each

enumerated term.

 E.g., consider the query:

se*ate AND fil*er

This may result in the execution of many Boolean

AND queries.

Sec. 3.2

28

B-TREES HANDLE *’S AT THE END OF A

QUERY TERM

 How can we handle *’s in the middle of query

term?

 co*tion

 We could look up co* AND *tion in a B-tree and

intersect the two term sets

 Expensive

 The solution: transform wild-card queries so that

the *’s occur at the end

 This gives rise to the Permuterm Index.

Sec. 3.2

29

PERMUTERM INDEX

 For term hello, index under:

 hello$, ello$h, llohe, lohel, o$hell, $hello

where $ is a special symbol (end of a term).

 Queries:

 X lookup on X$ X* lookup on $X*

 *X lookup on X$* *X* lookup on X*

 X*Y lookup on Y$X*

Query = hel*o

X=hel, Y=o

Lookup o$hel*

Sec. 3.2.1

30

QUIZ: PERMUTERM

1. Using PermuTerm Index, how do we

answer query “*tion*” ?

2. How do we answer query X*Y*Z?

31

PERMUTERM QUERY PROCESSING

 Rotate query wild-card to the right

 Now use B-tree lookup as before.

 Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

Sec. 3.2.1

32

BIGRAM (K-GRAM) INDEXES

 Enumerate all k-grams (sequence of k chars)

occurring in any term

 e.g., from text “April is the cruelest month” we

get the 2-grams (bigrams)

 $ is a special word boundary symbol

 Maintain a second inverted index from bigrams to

dictionary terms that match each bigram.

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,

cr,ru,

ue,el,le,es,st,t$, m,mo,on,nt,h

Sec. 3.2.2

33

BIGRAM INDEX EXAMPLE

 The k-gram index finds terms based on a query

consisting of k-grams (here k=2).

mo

on

among

$m mace

along

amortize

madden

among

Sec. 3.2.2

34

PROCESSING WILD-CARDS

 Query mon* can now be run as

 $m AND mo AND on

 Gets terms that match and AND them.

 But we would enumerate moon.

 Must post-filter these terms against query.

 Surviving enumerated terms are then looked up

in the term-document inverted index.

 Fast, space efficient (compared to permuterm).

Sec. 3.2.2

35

PROCESSING WILD-CARD QUERIES

 As before, we must execute a Boolean query for each
enumerated, filtered term.

 Wild-cards can result in expensive query execution
(very large disjunctions…)

 pyth* AND prog*

 If you encourage “laziness” people will respond!

 Which web search engines allow wildcard queries?

Search

Type your search terms, use ‘*’ if you need to.

E.g., Alex* will match Alexander.

Sec. 3.2.2

36

SPELL CORRECTION

 Two principal uses

 Correcting document(s) being indexed

 Correcting user queries to retrieve “right” answers

 Two main flavors:

 Isolated word

 Check each word on its own for misspelling

 Will not catch typos resulting in correctly spelled words

 e.g., from → form

 Context-sensitive

 Look at surrounding words,

 e.g., I flew form Heathrow to Narita.

Sec. 3.3

37

DOCUMENT CORRECTION

 Especially needed for OCR’ed documents

 Correction algorithms are tuned for this: rn vs. m

 Can use domain-specific knowledge

 E.g., OCR can confuse O and D more often than it would

confuse O and I (adjacent on the QWERTY keyboard, so

more likely interchanged in typing).

 But also: web pages and even printed material

have typos (some docs ASR’ed)

 Goal: the dictionary contains fewer misspellings

 But often we don’t change the documents and

instead fix the query-document mapping

Sec. 3.3

38

QUIZ: MISSPELLINGS

 Suggest reasons for the following misspellings:

 acwuire (acquire)

 ornit (omit)

 section (sanction)

39

QUERY MIS-SPELLINGS

 Our principal focus here

 E.g., the query Alanis Morisett

 We can either

 Retrieve documents indexed by the correct spelling,

OR

 Return several suggested alternative queries with

the correct spelling

 Did you mean … ?

Sec. 3.3

40

ISOLATED WORD CORRECTION

 Fundamental premise – there is a lexicon from

which the correct spellings come

 Two basic choices for this

 A standard lexicon such as

 Webster’s English Dictionary

 An “industry-specific” lexicon – hand-maintained

 The lexicon of the indexed corpus

 E.g., all words on the web

 All names, acronyms etc.

 (Including the mis-spellings)

Sec. 3.3.2

41

ISOLATED WORD CORRECTION

 Given a lexicon and a character sequence Q,

return the words in the lexicon closest to Q

 What’s “closest”?

 We’ll study several alternatives

 Edit distance (Levenshtein distance)

 Weighted edit distance

 n-gram overlap

Sec. 3.3.2

42

EDIT DISTANCE

 Given two strings S1 and S2, the minimum number

of operations to convert one to the other

 Operations are typically character-level

 Insert, Delete, Replace, (Transposition)

 E.g., the edit distance from dof to dog is 1

 From cat to act is 2 (Just 1 with transpose.)

 from cat to dog is 3.

 Generally found by dynamic programming.

 See http://www.let.rug.nl/kleiweg/lev/ for a nice

example plus an applet.

Sec. 3.3.3

43

http://www.let.rug.nl/kleiweg/lev/

QUIZ: EDIT DISTANCE

 Considering only insertion, deletion and

replacement, what is the edit distance:

1) gap → apply

2) goat → toad

3) sonne → sony

44

WEIGHTED EDIT DISTANCE

 As above, but the weight of an operation depends

on the character(s) involved

 Meant to capture OCR or keyboard errors

Example: m more likely to be mis-typed as n than as

q

 Therefore, replacing m by n is a smaller edit distance

than by q

 This may be formulated as a probability model:

P(n | m)

 Requires weight matrix as input

 Modify dynamic programming to handle weights

Sec. 3.3.3

45

USING EDIT DISTANCES

 Given query, first enumerate all character

sequences within a preset (weighted) edit

distance (e.g., 2)

 Intersect this set with list of “correct” words

 Show terms you found to user as suggestions

 Alternatively,

 We can look up all possible corrections in our

inverted index and return all docs … slow

 We can run with a single most likely correction

 The second alternative disempowers the user, but

saves a round of interaction with the user

Sec. 3.3.4

46

EDIT DISTANCE TO ALL DICTIONARY

TERMS?

 Given a (mis-spelled) query – do we compute its

edit distance to every dictionary term?

 Expensive and slow

 Alternative?

 generate everything up to edit distance k and then

intersect.

 Fine for distance 1; okay for distance 2.

 How do we cut down the set of candidate

dictionary terms?

 One possibility is to use n-gram overlap for this

 This can also be used by itself for spelling

correction.

Sec. 3.3.4

47

N-GRAM OVERLAP

 Enumerate all the n-grams in the query string as

well as in the lexicon

 Use the n-gram index (recall wild-card search) to

retrieve all lexicon terms matching any of the

query n-grams

 Threshold by number of matching n-grams

 Variants – weight by keyboard layout, etc.

Sec. 3.3.4

48

EXAMPLE WITH TRIGRAMS

 Suppose the text is november

 Trigrams are nov, ove, vem, emb, mbe, ber.

 The query is december

 Trigrams are dec, ece, cem, emb, mbe, ber.

 So 3 trigrams overlap (of 6 in each term)

 The amount overlap indicates the similarity

between query and the text

 How can we turn this into a normalized measure

of overlap?

Sec. 3.3.4

49

ONE OPTION – JACCARD COEFFICIENT

 A commonly-used measure of overlap

 Let X and Y be two sets; then the J.C. is

 Equals 1 when X and Y have the same elements

and zero when they are disjoint

 X and Y don’t have to be of the same size

 Always assigns a number between 0 and 1

 Now threshold to decide if you have a match

 E.g., if J.C. > 0.8, declare a match

YXYX  /

Sec. 3.3.4

50

lore

lore

MATCHING TRIGRAMS

 Consider the query lord – we wish to identify

words matching 2 of its 3 bigrams (lo, or, rd)

lo

or

rd

alone sloth

morbid

border card

border

ardent

Standard postings “merge” will enumerate …

Adapt this to using Jaccard (or another) measure.

Sec. 3.3.4

51

CONTEXT-SENSITIVE SPELL CORRECTION

 Text: I flew from Heathrow to Narita.

 Consider the phrase query “flew form

Heathrow”

 We’d like to respond

Did you mean “flew from Heathrow”?

because no docs matched the query phrase.

Sec. 3.3.5

52

CONTEXT-SENSITIVE CORRECTION

 Need surrounding context to catch this.

 First idea: retrieve dictionary terms close (in
weighted edit distance) to each query term

 Now try all possible resulting phrases with one
word “corrected” at a time

 flew from heathrow

 fled form heathrow

 flea form heathrow

 Hit-based spelling correction: Suggest the
alternative that has lots of hits.

Sec. 3.3.5

53

QUIZ: SPELL CORRECTION

 Suppose that for “flew form Heathrow” we

have 4 alternatives for flew, 5 for form and 6 for

heathrow.

How many “corrected” phrases will we enumerate

in this scheme?

Sec. 3.3.5

54

ANOTHER APPROACH

 Break phrase query into a conjunction of biwords

(Previous lecture).

 Look for biwords that need only one term

corrected.

 Enumerate only phrases containing “common”

biwords.

Sec. 3.3.5

55

GENERAL ISSUES IN SPELL CORRECTION

 We enumerate multiple alternatives for “Did you

mean?”

 Need to figure out which to present to the user

 The alternative hitting most docs

 Query log analysis

 More generally, rank alternatives

probabilistically

argmaxcorr P(corr | query)

 From Bayes rule, this is equivalent to

argmaxcorr P(query | corr) * P(corr)

Sec. 3.3.5

Noisy channel Language model

56

SOUNDEX

 Class of heuristics to expand a query into

phonetic equivalents

 Language specific – mainly for names

 E.g., chebyshev → tchebycheff

 Invented for the U.S. census … in 1918

Sec. 3.4

57

SOUNDEX – TYPICAL ALGORITHM

 Turn every token to be indexed into a 4-character

reduced form

 Do the same with query terms

 Build and search an index on the reduced forms

 (when the query calls for a soundex match)

 Details can be found:
http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Sec. 3.4

58

SOUNDEX – TYPICAL ALGORITHM

1. Retain the first letter of the word.

2. Change all occurrences of the following letters
(vowels and alike) to '0' (zero):
'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

3. Change letters to digits as follows (equivalence
classes):

 B, F, P, V → 1

 C, G, J, K, Q, S, X, Z → 2

 D,T → 3

 L → 4

 M, N → 5

 R → 6

Sec. 3.4

59

To be continued...

SOUNDEX (CONTINUED)

4. Retain the first digit if two identical digits are

side-by-side

5. Remove all zeros from the resulting string.

6. Pad the resulting string with trailing zeros and

return the first four positions, which will be of

the form <uppercase letter> <digit> <digit>

<digit>.

E.g., Herman → H06505 → H655.

Will hermann generate the same code?

Sec. 3.4

60

QUIZ: SOUNDEX

 Which of the following is NOT true about soundex:

a) The first letter of the code is capitalized

b) There is no zero’s in the code

c) There are exactly 4 letters in a code

d) All letter except for the first are numerical digits

Sec. 3.3.5

61

SOUNDEX

 Soundex is the classic algorithm, provided by

most databases (Oracle, Microsoft, …)

 How useful is soundex?

 Not very – for information retrieval

 Okay for “high recall” tasks (e.g., Interpol),

though biased to names of certain nationalities

 Zobel and Dart (1996) show that other algorithms

for phonetic matching perform much better in the

context of IR

Sec. 3.4

62

WHAT QUERIES CAN WE PROCESS?

 We have

 Positional inverted index with skip pointers

 Wild-card index

 Spell-correction

 Soundex

 Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

63

RESOURCES

 IIR 3, MG 4.2

 Efficient spell retrieval:

 K. Kukich. Techniques for automatically correcting

words in text. ACM Computing Surveys 24(4), Dec 1992.

 J. Zobel and P. Dart. Finding approximate matches in

large lexicons. Software - practice and experience 25(3),

March 1995. http://citeseer.ist.psu.edu/zobel95finding.html

 Mikael Tillenius: Efficient Generation and Ranking of Spelling

Error Corrections. Master’s thesis at Sweden’s Royal Institute

of Technology. http://citeseer.ist.psu.edu/179155.html

 Nice, easy reading on spell correction:

 Peter Norvig: How to write a spelling corrector

http://norvig.com/spell-correct.html

Sec. 3.5

64

http://citeseer.ist.psu.edu/zobel95finding.html
http://citeseer.ist.psu.edu/179155.html
http://norvig.com/spell-correct.html

