OUTLINE

Documents

Terms

- General + Non-English

- English

Skip pointers

Phrase queries

Phrase queries

We want to answer a query such as [stanford university] — as a
phrase.

Thus The inventor Stanford Ouvshinsky never went to university
should be a match.

The concept of phrase query has proven easily understood by
users.

About 10% of web queries are phrase queries.

Consequence for inverted index: it no longer suffices to store
docIDs 1n postings lists.

Two ways of extending the inverted index:
* biword index

* positional index

Biword indexes

- Index every consecutive pair of terms in the text as a phrase.

* For example, “ ”would generate two
° (13 » (13 »
biwords: and

* Each of these biwords is now a vocabulary term.

« Two-word phrases can now easily be answered.

Longer phrase queries

* A long phrase like “ »san be
represented as the Boolean query b
AND “ » AND «)

* We need to do post-filtering of hits to identify subset that actually
contains the 4-word phrase.

Extended biwords

* Parse each document and perform part-of-speech tagging

* (Classify the terms into (say) nouns (N) and articles/prepositions
(X), and others...

 Now deem any string of terms of the form NX*N to be an
extended biword (actually a proper noun)

 Examples: catcher in the rye
N X X N
king of Denmark
N X N
* Include extended biwords in the term vocabulary

* Queries are processed accordingly

Issues with biword indexes

Why are biword indexes rarely used?
* False positives

* Index blowup due to very large term vocabulary

Positional indexes

* Positional indexes are a more efficient alternative to biword indexes.
e Postings listsin a index: each posting 1s just a doclD

* Postings lists in a index: each posting is a docID and

Positional indexes: Example

Query: “to, be, org not, to; beg”
TO, 993427:
«1: <7, 18, 33, 72, 86, 231»;
2: <1, 17, 74, 222, 255;

4: <8, 16, 190, 429, 433: What is the time complexity of doing

a phrasal query of length K on a

91 ¢363, 36'; positional index of D documents with
7:¢13,23,19D; .. .» max document length of L, and a
BE, 178239: dictionary of size V?
«1: A7, 25»;

4: «17, 191, 291, 430, 434>;
5:«14, 19, 101>, .. .»

Document 4 is a match!

Proximity search

* We just saw how to use a positional index for phrase searches.
* We can also use it for proximity search.

* For example: employment /4 place

 Find all documents that contain EMPLOYMENT and PLACE
within 4 words of each other.

 Employment agencies that place healthcare workers are seeing
growth 1s a hit.

 Employment agencies that have learned to adapt now place
healthcare workers 1s not a hit.

Proximity search

* Use the positional index

« Simplest algorithm: look at cross-product of positions of (1)
EMPLOYMENT in document and (11) PLACE in document

* Very inefficient for frequent words, especially stop words

* Note that we want to return the actual matching positions, not
just a list of documents.

* This 1s important for dynamic summaries etc.

“Proximity” intersection

PoOSITIONALINTERSECT(py, pa. k)
1 answer «— ()

2 while py # NIL and pp # NIL

3 do if doclD(p1) = doclD(pz)

4 then / — ()

5 pp1 — positions(p)

6 pp2 «— positions(pz)

7 while pp, # NIL

8 do while pp> # NIL

9 do if |pos(pp1) — pos(pp2)| = k
10 then Ann(/. pos(ppa))
11 else if pos(pp,) = pos(pp;)
12 then break
13 pp2 +— next(pps)
14 while | # {) and [/[0] — pos(pp,) = k
15 do DeLETE(/[0])
16 for each ps = [
17 do ApD(answer, (doclD(p1). pos(pp1). ps))
18 pp1 — next{pp1)
19 p1 — next(pi)
20 pz — next(pz)
21 else if doclD(p,) < doclD(ps)
22 then py — next(p)
23 else p> — next(p:)

24 return answer

Combination scheme

Biword indexes and positional indexes can be profitably
combined.

Many biwords are extremely frequent: Michael Jackson, Britney
Spears etc.

For these biwords, increased speed compared to positional
postings intersection is substantial.

Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional intersection.

Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of 26%
more space for index.

“Positional” queries on Google

For web search engines, positional queries are much more
expensive than regular Boolean queries.

Let’s look at some examples of phrase queries.

Go gle "New York University" § Q

All Images Maps News Videos Maore Settings Tools
< About 118,000,000 results (1.35 seconds) >
NYU

hitps:/fwww.nyu. edu/ = .
Founded in 1831 te enlarge the scope of higher education: includes thirteen scheols, colleges, and
divisions at five major centers in Manhattan.

Results from nyu.edu Q,

Undergraduate Admissions Academic Programs
How to Apply - A= . PO PR
Programs - Aid

Ll

GO gle New York University § Q

Admissions
Undergraduate A

Graduate Admig All Images Maps MNews Videos More Settings Tools

Graduate Al

At the graduate @1.040.0%. 000 results (1.17 seco@

school has its of

NYU

hitps:/f/www.nyu edu/ «
Founded in 1831 to enlarge the scope of higher education: includes thirteen schools, colleges, and
divisions at five major centers in Manhattan.

Results from nyu.edu Q
Undergraduate Admissions Graduate Admissions

How to Apply - Majors and At the graduate level, each NY'U
Programs - Aid and Costs - ... school has its own, separate
Admissions About NYU

Undergraduate Admissions - About NYU. In 1831, Albert Gallatin,
Graduate Admissions - Fall in NY the distinguished ...

Visit NYU NYU Stern

Visit NYU Because Seeing is Explore the NYU Stemn School of

Believing ... of the NYU ... Business and learn more about ...

Take-away

* Understanding of the basic unit of classical information
retrieval systems: and : What 1s a
document, what 1s a term?

* Tokenization: how to get from raw text to words (or
tokens)

* More complex indexes: skip pointers and phrases

Resources

=Chapter 1 and 2 of IIR

sResources at https://tartarus.org/martin/PorterStemmer/

»Porter stemmer

https://tartarus.org/martin/PorterStemmer/

. DICTIONARY & TOLERANT
Q@ RETRIEVAL

THIS LECTURE

Dictionary data structures

“Tolerant” retrieval
Wild-card queries
Spelling correction
Soundex

DICTIONARY DATA STRUCTURES FOR

INVERTED INDEXES

The dictionary data structure stores the term

vocabulary, document frequency, pointers to each

postings list ...

BRuUTUS —

CAESAR —

CALPURNIA | —

. g
"

dictionary

21 4| 11|31 |45 | 173 | 174
2|1 4 51 616 | 57 | 132
31 | 54 | 101

postings

A NAIVE DICTIONARY

An array of struct:

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
char[20] 1int Postings *

How do we store a dictionary in memory efficiently?

How do we quickly look up elements at query time?

DICTIONARY DATA STRUCTURES

Two main choices:
Hashtables
Trees

Some IR systems use hashtables, some trees

HASHTABLES

Each vocabulary term 1s hashed to an integer
(We assume you’ve seen hashtables before)

Pros:
Lookup 1s faster than for a tree: O(1)

Cons:
No easy way to find minor variants:
judgment/judgement
No prefix search

If vocabulary keeps growing, need to occasionally do
the expensive operation of rehashing everything

Due to bucket overflow!

TREE: BINARY TREE

TREE: B-TREE

a-hu n-z

. Definition: Every internal node has a number of children
in the interval [a,b] where a, b are appropriate natural
numbers, e.g., [2,4].

- The range has to do with the size of a disk block or
memory page, which stores one node

TREES

Simplest: binary tree
More usual: B-trees

Trees require a standard ordering of characters
and hence strings ... but we typically have one

Pros:

Solves the prefix problem (terms starting with Ayp)
Cons:

Slower: O(log M) [and this requires tree]

Rebalancing binary trees is expensive
But B-trees mitigate the rebalancing problem

WILD-CARD QUERIES: *

mon*: find all docs containing any word beginning
with “mon”.

Easy with binary tree (or B-tree) lexicon: retrieve all
words In range: mon <= w < moo
*mon: find words ending in “mon”: harder

Maintain an additional B-tree for terms backwards.
Can retrieve all words in range: nom <= w < non.

QUIZ: ENUMERATION

From the last slide, how can we enumerate
all terms satistying the wild-card query

de*cy ?

QUERY PROCESSING

At this point, we have an enumeration of all terms
1n the dictionary that match the wild-card query.

We still have to look up the postings for each
enumerated term.

E.g., consider the query:
se*ate AND fil*er

This may result in the execution of many Boolean
AND queries.

B-TREES HANDLE *’S AT THE END OF A
QUERY TERM

How can we handle *’s in the middle of query
term?

co*tion
We could look up co* AND *tion in a B-tree and
Iintersect the two term sets

Expensive
The solution: transform wild-card queries so that
the *’s occur at the end

This gives rise to the Index.

PERMUTERM INDEX

For term hello, index under:
hello$, ello$h, lloShe, loShel, o$Shell, $hello

where $ 1s a special symbol (end of a term).

Queries:
X lookup on X$ X* lookup on $X*
X lookup on X$ *X* lookup on X*
X*Y lookup on Y$X*

—_

Query = hel*o
X=hel, Y=0
Lookup o$ hel*

QUIZ: PERMUTERM

Using PermuTerm Index, how do we
answer query “*tion*” ?

How do we answer query X*Y*Z?

PERMUTERM QUERY PROCESSING

Rotate query wild-card to the right
Now use B-tree lookup as before.
Permuterm problem: =~ quadruples lexicon size

—
Empirical observation for English.

BIGRAM (K-GRAM) INDEXES

Enumerate all k-grams (sequence of & chars)
occurring in any term

e.g., from text “April is the cruelest month” we
get the 2-grams (bigrams)

$a,ap,pr,ri,il,1$,%i,is,s$,%t,th,he,e$,$c,
cr,ru,

ue,el,le,es,st,t$, m,mo,on,nt,h
$isa spemal word boundary symbol

Maintain a second inverted index from bisrams to
dictionary terms that match each bigram.

BIGRAM INDEX EXAMPLE

The k-gram index finds terms based on a query
consisting of k-grams (here £=2).

$m m——>| mace— madden------- -

mo | n——>| among— amortize-————-- -

on| m——— > along among-—----- o

PROCESSING WILD-CARDS

Query mon* can now be run as
$m AND mo AND on

Gets terms that match and AND them.
But we would enumerate moon.
Must post-filter these terms against query.

Surviving enumerated terms are then looked up
1n the term-document inverted index.

Fast, space efficient (compared to permuterm).

PROCESSING WILD-CARD QUERIES

As before, we must execute a Boolean query for each
enumerated, filtered term.

Wild-cards can result 1n expensive query execution
(very large disjunctions...)

pyth* AND prog*
If you encourage “laziness” people will respond!

| | [Search }

Type your search terms, use ™ if you need to.
E.g., Alex* will match Alexander.

SPELL CORRECTION

Two principal uses
Correcting document(s) being indexed

Correcting user queries to retrieve “right” answers

Two main flavors:

Isolated word
Check each word on its own for misspelling
Will not catch typos resulting in correctly spelled words
e.g., from — form

Context-sensitive

Look at surrounding words,
e.g., I flew form Heathrow to Narita.

DOCUMENT CORRECTION

Especially needed for OCR’ed documents
Correction algorithms are tuned for this: rn vs. m

Can use domain-specific knowledge

E.g., OCR can confuse O and D more often than it would
confuse O and I (adjacent on the QWERTY keyboard, so
more likely interchanged in typing).

But also: web pages and even printed material
have typos (some docs ASR’ed)

Goal: the dictionary contains fewer misspellings

But often we don’t change the documents and
instead fix the query-document mapping

QUIZ: MISSPELLINGS

Suggest reasons for the following misspellings:

acwulre (acquire)
ornit (omit)
section (sanction)

QUERY MIS-SPELLINGS

Our principal focus here

E.g., the query Alanis Morisett

We can either

Retrieve documents indexed by the correct spelling,

OR

Return several suggested alternative queries with

the correct spelling
o Did you mean ... ¢

Google

Alanis Morisett

B News [Images [Videos

About 7,710,000 results (0.462 seconds)

Alanis Morissette

Canadian-American musician 3

Showing results for Alanis Morissette
Search instead for Alanis Morisett

M Books

ISOLATED WORD CORRECTION

Fundamental premise — there i1s a lexicon from
which the correct spellings come

Two basic choices for this

A standard lexicon such as

Webster’s English Dictionary

An “Industry-specific” lexicon — hand-maintained
The lexicon of the indexed corpus

E.g., all words on the web

All names, acronyms etc.

(Including the mis-spellings)

ISOLATED WORD CORRECTION

Given a lexicon and a character sequence Q,
return the words in the lexicon closest to Q

What's “closest”?

We'll study several alternatives
Edit distance (Levenshtein distance)
Weighted edit distance
n-gram overlap

EDIT DISTANCE

Given two strings S; and S,, the minimum number
of operations to convert one to the other

Operations are typically character-level
Insert, Delete, Replace, (Transposition)

E.g., the edit distance from dof to dog 1s 1

From cat to act is 2 (Just 1 with transpose.)
from cat to dog 1s 3.

Generally found by dynamic programming.

See http://www.let.rug.nl/kleiweg/lev/ for a nice
example plus an applet.

http://www.let.rug.nl/kleiweg/lev/

QUIZ: EDIT DISTANCE

Considering only insertion, deletion and
replacement, what is the edit distance:

1) gap = apply
2) goat = toad

3) sonne = sony

WEIGHTED EDIT DISTANCE

As above, but the weight of an operation depends
on the character(s) involved

Meant to capture OCR or keyboard errors
Example: m more likely to be mis-typed as n than as

q

Therefore, replacing m by n 1s a smaller edit distance
than by q

This may be formulated as a probability model:
P(n | m)

Requires weight matrix as input
Modify dynamic programming to handle weights

USING EDIT DISTANCES

Given query, first enumerate all character
sequences within a preset (weighted) edit
distance (e.g., 2)

Intersect this set with list of “correct” words
Show terms you found to user as suggestions

Alternatively,

We can look up all possible corrections in our
inverted index and return all docs ... slow

We can run with a single most likely correction

The second alternative disempowers the user, but
saves a round of interaction with the user

EDIT DISTANCE TO ALL DICTIONARY
TERMS?

Given a (mis-spelled) query — do we compute its
edit distance to every dictionary term?
Expensive and slow

Alternative?

generate everything up to edit distance k and then
intersect.

Fine for distance 1; okay for distance 2.

How do we cut down the set of candidate
dictionary terms?

One possibility is to use n-gram overlap for this

This can also be used by itself for spelling
correction.

N-GRAM OVERLAP

Enumerate all the n-grams in the query string as
well as 1n the lexicon

Use the n-gram index (recall wild-card search) to

retrieve all lexicon terms matching any of the

query n-grams

Threshold by number of matching n-grams
Variants — weight by keyboard layout, etc.

EXAMPLE WITH TRIGRAMS

Suppose the text is november
Trigrams are nov, ove, vem, emb, mbe, ber.

The query 1s december
Trigrams are dec, ece, cem,|emb, mbe, ber.

So 3 trigrams overlap (of 6 in each term)

The amount overlap indicates the similarity
between query and the text

How can we turn this into a normalized measure
of overlap?

ONE OPTION — JACCARD COEFFICIENT

A commonly-used measure of overlap
Let X and Y be two sets; then the J.C. 1s

X Y|/ XY

Equals 1 when X and Y have the same elements
and zero when they are disjoint

X and Y don’t have to be of the same size
Always assigns a number between 0 and 1

Now threshold to decide if you have a match
E.g.,1f J.C. > 0.8, declare a match

MATCHING TRIGRAMS

o Consider the query lord — we wish to 1dentify
words matching 2 of its 3 bigrams (lo, or, rd)

sloth

lo

or movrbid

rdio——>>| grdent

card

/‘X
Standard postings “merge” will enumerate ...

Adapt this to using Jaccard (or another) measuree

CONTEXT-SENSITIVE SPELL CORRECTION

Text: I flew from Heathrow to Narita.

Consider the phrase query “flew form
Heathrow”™

We'd like to respond
Did you mean “flew from Heathrow’?
because no docs matched the query phrase.

CONTEXT-SENSITIVE CORRECTION

Need surrounding context to catch this.

First idea: retrieve dictionary terms close (in
welghted edit distance) to each query term

Now try all possible resulting phrases with one
word “corrected” at a time

flew from heathrow
fled form heathrow
flea form heathrow

Hit-based spelling correction: Suggest the
alternative that has lots of hits.

QUIZ: SPELL CORRECTION

Suppose that for “flew form Heathrow” we
have 4 alternatives for flew, 5 for form and 6 for

heathrow.
How many “corrected” phrases will we enumerate
1n this scheme?

ANOTHER APPROACH

Break phrase query into a conjunction of biwords
(Previous lecture).

Look for biwords that need only one term
corrected.

Enumerate only phrases containing “common”
biwords.

GENERAL ISSUES IN SPELL CORRECTION

We enumerate multiple alternatives for “Did you
mean?”’

Need to figure out which to present to the user
The alternative hitting most docs
Query log analysis

More generally, rank alternatives
probabilistically

argmax, .. P(corr | query)

corr
From Bayes rule, this is equivalent to
argmax, .. P(query | corr) * P(corr)

corr

Noisy channel Language model

SOUNDEX

Class of heuristics to expand a query into
equivalents

Language specific — mainly for names
E.g., chebyshev — tchebycheff

Invented for the U.S. census ... 1n 1918

SOUNDEX — TYPICAL ALGORITHM

Turn every token to be indexed into a 4-character
reduced form

Do the same with query terms

Build and search an index on the reduced forms
(when the query calls for a soundex match)

Details can be found:
http://www.creativyst.com/Doc/Articles/Sound Ex1/Sound Ex1.htm#Top

SOUNDEX — TYPICAL ALGORITHM

Retain the first letter of the word.

Change all occurrences of the following letters
(vowels and alike) to '0' (zero):

'A', E', 'I" 'O" 'U" 'H', 'W', 'Y'.
Change letters to digits as follows (equivalence
classes):
B,F,P,V>1
C,G, J,K Q,S, X, Z— 2
D, T —> 3
L—-4
M,N—>5
R—6

To be continued...

SOUNDEX (CONTINUED)

Retain the first digit if two 1dentical digits are
side-by-side

Remove all zeros from the resulting string.

Pad the resulting string with trailing zeros and
return the first four positions, which will be of
the form <uppercase letter> <digit> <digit>
<digit>.

E.g., Herman - H06505 - H655.

/ﬁx
Will hermann generate the same code?

QUIZ: SOUNDEX

Which of the following 1s NOT true about soundex:
The first letter of the code 1s capitalized
There 1s no zero’s in the code
There are exactly 4 letters in a code
All letter except for the first are numerical digits

SOUNDEX

Soundex 1s the classic algorithm, provided by
most databases (Oracle, Microsoft, ...)

How useful 1s soundex?
Not very — for information retrieval

Okay for “high recall” tasks (e.g., Interpol),
though biased to names of certain nationalities

Zobel and Dart (1996) show that other algorithms
for phonetic matching perform much better in the

context of IR

WHAT QUERIES CAN WE PROCESS?
We have

Positional inverted index with skip pointers
Wild-card index

Spell-correction

Soundex

Queries such as
(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

RESOURCES

IIR 3, MG 4.2

Efficient spell retrieval:

K. Kukich. Techniques for automatically correcting
words 1n text. ACM Computing Surveys 24(4), Dec 1992.

J. Zobel and P. Dart. Finding approximate matches in
large lexicons. Software - practice and experience 25(3),
March 1995. http://citeseer.ist.psu.edu/zobel95finding.html
Mikael Tillenius: Efficient Generation and Ranking of Spelling

Error Corrections. Master’s thesis at Sweden’s Royal Institute
of Technology. http://citeseer.ist.psu.edu/179155.html

Nice, easy reading on spell correction:
Peter Norvig: How to write a spelling corrector
http://norvig.com/spell-correct.html

http://citeseer.ist.psu.edu/zobel95finding.html
http://citeseer.ist.psu.edu/179155.html
http://norvig.com/spell-correct.html

