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Abstract

We present a framework for the parallelization of depth-
first combinatorial search algorithms on a network of com-
puters. Our architecture is intended for a distributed setting
and uses a work stealing strategy coupled with a small num-
ber of primitives for the processors (which we call work-
ers) to obtain new work and to communicate to other work-
ers. These primitives are a minimal imposition and integrate
easily with constraint programming systems. The main con-
tribution is an adaptive architecture which allows work-
ers to incrementally join and leave and has good scaling
properties as the number of workers increases. Our empiri-
cal results illustrate that near-linear speedup for backtrack
search is achieved for up to 61 workers. It suggests that
near-linear speedup is possible with even more workers.
The experiments also demonstrate where departures from
linearity can occur for small problems, and also for prob-
lems where the parallelism can itself affect the search as in
branch and bound.

1. Introduction

Search problems, such as those from constraint and com-
binatorial problems, involve large amounts of computation
and are natural candidates for parallelization. Most of the
work in parallel search [5] assumes a parallel computer with
a fixed number of CPUs. Karp and Zhang [8] have shown
that linear speedup for backtrack enumeration search is the-
oretically possible using an idealized PRAM model with a
fixed number of processors. The Cilk programming model
[3] shows that for multi-threaded computation on shared
memory parallel computers, greedy randomized work steal-
ing can theoretically achieve near linear speedup. Simi-
lar randomized stealing strategies are also implemented in
many other systems. An important drawback for much of

the theoretical work is that the idealized assumptions do not
lead to scalable systems.

Today, the most cost effective and largest available com-
puting resources are usually with networked computing,
e.g. a Beowulf cluster consists of a collection of work-
station/PC class machines connected using a fast network.
Distributed computation running across the Internet, e.g.
SETI@home or distributed.net, can potentially achieve
peak parallelism of tens of thousands of machines. We call
this inexpensive approach to parallel computing “commod-
ity parallelism”. Among the top 500 supercomputer sites in
the world, many of the new entrants are simply large PC
clusters.

Early work on distributed search includes the Dis-
tributed Implementation of Backtracking (DIB) in [4],
which presented a message-passing based distributed back-
tracking implementation. Stack splitting, receiver-initiated
load balancing and a redundancy-based fault tolerance were
adopted in the DIB. The method was distributed but the ex-
perimental results show saturation in execution time with
just 16 CPU’s. Along such lines, a number of other sys-
tems have been built, including Atlas [1], Satin [12], Javelin
[9], etc. These systems are high-level distributed program-
ming environment suitable for wide-area networks or grids.
Many also inherit the spawn/sync divide-and-conquer pro-
gramming style from Cilk.

There is also a wealth of empirical work using parallel
logic programming and constraint programming systems.
OR-parallel logic programming gives a language approach
for parallel search. In the distributed setting, PALS [13]
is an OR-parallel logic programming system for Beowulf
clusters. A comprehensive survey of parallel logic program-
ming including OR-parallelism can be found in [6]. [11]
gives empirical results for a distributed search engine in Oz
but only on a 3 node cluster. A significant difference with
our paper is that in much of the parallel and distributed work
in logic and constraint programming, the important issue of
scalability to large numbers of compute nodes is not ad-



dressed nor is there analysis of the speedup.
Our goal is to exploit the cheap compute resources of

commodity parallel hardware for depth first based con-
straint search. This necessitates a distributed collection of
computers which we call workers connected by a network.
The number of available workers is meant to be dynamic
(growing/shrinking over time), e.g. sharing a cluster among
a few parallel compute jobs. We want a solution which
can scale to potentially (very) large number of workers and
thus avoid maintaining global information about all work-
ers. This is in contrast with the earlier randomized load bal-
ancing schemes for parallel programming which use a cen-
tralized repository to store and manage all workers. Further-
more, because of the distributed dynamic worker setting,
we want solutions which only need limited connectivity be-
tween the workers.

It is difficult to be able to obtain linear speedup for dis-
tributed search in the general case as the number of workers
increases. We show rather that with our architecture, there
is a region of near linear speedup as long as the amount of
work in the problem is very much larger than the number
of workers together with the communication costs. As the
number of workers further increases, the overhead of dis-
tribution becomes too high for the problem and can lead
to slowdown. This result seems reasonable given the dis-
tributed nature of the workers. Our preliminary experimen-
tal results support this analysis and show that using 61
workers in a 64 node cluster, good linear speedup is ob-
tained. We also show that scalability is reduced for op-
timization problems with branch and bound search since
load balancing is more difficult and overheads increase.
In summary, our search architecture gives a scalable, lan-
guage neutral, constraint-based search architecture which
can achieve good theoretical and practical speedup on cost
effective parallelism computing such as networked clusters.

2. Constraints and search

A (combinatorial) search problem P can be expressed in
a general form as a 4-tuple: (V, D, C, O) where V is a set of
variables over the domain D , C is a set of constraints which
are relations over those variables, and O is an optional ob-
jective function defined on V (in case P is an optimization
problem). A solution of P is a valuation for V which satisfy
the constraints C . A special case is an optimization prob-
lem where the solution has the additional property that the
value of the objective function is minimal (or maximal). The
search problem is to find either some or all solutions of P.

Consider a constraint store C, the solution space can be
split in two by posting two constraints, c1 and ¬c1, which
creates two new subproblems, c∧c1 and c∧¬c1 (see figure
1). Each subproblem is independently solvable and more
specific than the original because of the added constraints.

The subproblems can be further split recursively until the
problem is solved. A problem is solved when the desired
valuation is found or we determine that C is unsatisfiable. In
general the splitting could be k-way, without loss of gener-
ality, we will only consider binary splitting here. The split-
ting process can be simply represented as a binary constraint
search tree where the nodes represent the constraint store
and the edges identify the splitting constraint.
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Figure 1. Frontier of constraint search tree

One can see that the constraint search tree is a gener-
alized representation of the search space. In general, the
method to choose the specific constraints c1,c2, · · · , is left
unspecified. In our distributed search, just as in sequential
depth-first based search, the splitting choices can be gener-
ated dynamically which means the search tree is determined
at runtime. Note that the shape of the search tree will be dif-
ferent with different choices. The typical search heuristics
used for sequential constraint programs can be used. During
distributed search, workers can even use different solvers,
choices and heuristics.

The search progress is characterized by the current
search tree, which is the set of nodes that have been ex-
plored so far. The leaf nodes of the current search tree, col-
lectively known as the frontier, consists of closed nodes, as-
signed nodes, and free nodes. Closed nodes correspond to
subproblems that have been solved. Assigned nodes cor-
respond to subproblems that have been assigned to some
computing agent and is currently being actively worked
on, hence they are the “live” nodes. Free nodes corre-
spond to subproblems that are not assigned to any work-
ers. The frontier covers the whole search problem, which
means when all the frontier nodes are solved, the whole
problem is also solved. The frontier can grow, when an as-
signed node is split to become a new assigned node and a
free node. It also shrinks when all the child nodes of a par-
ent node are closed, and the parent nodes becomes the
closed node.



2.1. Search engines

Our framework supports depth first based search engines
with the following program structure:

1. steal a subproblem c – a subproblem can be a subtree
of the assigned node of a given worker, which would be
a local steal, or it could have finished searching its as-
signed node and needs to steal c from another worker,
which would be a global steal.

2. if c is sufficiently small, then directly solve c sequen-
tially;

3. otherwise, make a splitting constraint c1, spawn the
new subproblem c∧ c1 (which then becomes a candi-
date for stealing by this or another worker) and con-
tinue working on the other subproblem c∧¬c1.

4. goto 1.

This framework has a very close correspondence to a se-
quential depth first search. Consider a backtracking depth
first based search engine. Splitting the problem is simply
pushing the alternative choice on the stack – this corre-
sponds to a spawn. When a subproblem is finished, back-
tracking happens, which pops the stack – this corresponds
to a local steal. So if there is only one worker, the dis-
tributed search can be reduced to a backtracking one. How-
ever, non-backtracking implementations such as constraint
store copying together with recomputation are also possible
[10]. The main difference with sequential search is that dis-
tributed search with multiple workers will also have global
steals which will reduce the number of subproblems to be
stolen locally.

There are two more important operations: publish and
done. The publish operation is used in optimization to
distribute new bounds to all the workers. The done oper-
ation informs the system that a solution is found and op-
tionally to terminate the caller. It should be obvious that
this scheme integrates very easily with most constraint pro-
gramming systems

3. Architecture

The central element of the distributed search is an ar-
chitecture for managing the workers. It consists of a dis-
tinguished master and a varying number of workers and a
work-stealing algorithm. We assume that the masters and
workers are connected by a network but do not share any
memory. The master does not employ any centralized data
structures to maintain a list of all the workers. So the frame-
work is completely distributed.

The master serves as the entry point for a worker to join
a computation. It has a known address so that any poten-
tial worker can contact it. We assume that apart from an
initialization phase, the master is not a bottleneck because

multiple global steals do not happen every often. The mas-
ter maintains a queue to serialize the requests. We assume
that workers and the master share a common constraint for-
mat for receiving the subproblems. However, it is not neces-
sary for workers to be running the same search program as
long as it is a correct depth first based one using the frame-
work for the common problem.

The master maintains the search problem definition – the
root node c of the search tree. As workers join the computa-
tion, they are connected through the master to form a worker
tree. The master also records the solutions found, propa-
gates bounds for optimization problems and terminates the
entire computation.
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Figure 2. Structure of the worker

A worker which joins a search problem performs
three operations: exploring the search tree; sharing work
with other workers; and updating the system with solu-
tions and new bounds for the objective function when
they are found. A worker is divided into two pro-
cesses or threads: a wrapper and a search engine (Fig.
2). The wrapper is the component of the framework re-
sponsible for dealing with work stealing and communica-
tion with the master and other workers while the search
engine is the user search program which uses the frame-
work’s primitives. Interaction between the wrapper and
search engine is meant to be small but does constitute over-
head.

Each worker manages its remaining subproblems with a
freenode stack. New subproblems are generated using some
depth first computation on this worker. A spawn operation
pushes a freenode (representing a new subproblem which
has not been searched) on the stack. When a worker steals,
and its own stack is nonempty, it removes the most recently
generated subproblem from the stack. As this operation is



local to the worker, it encounters little overhead compared
to global communication costs. We discuss later what hap-
pens if a steal returns a subproblem from another worker.

Since the master records the final solution to the original
problem, the workers must report their (possibly non-final)
solutions to the master from time to time. Depending on
whether it is a single-solution, all-solution or best-solution
mode, the master stores the solutions accordingly.

To prevent the master or any worker from being a com-
munication bottleneck, and to allow for the coordination of
a potentially large number of workers, we arrange the mas-
ter and workers in a balanced worker tree where the weight
on an edge records the number of nodes in the subtree from
that edge. In this paper, we assume without loss of general-
ity a binary worker tree. Initially, the worker tree has only
one master node as its root, and the two edges going out of
the root have zero weight. A worker is inserted into the tree
by following an edge with smaller (or equal) weight unless
it arrives at a node with a zero weight edge. The new worker
is then inserted at that edge. During the insertion process,
the weights of the affected edges are incremented by one ac-
cordingly. Traversal down the tree involves message passing
between a parent node and one of its children. The result-
ing worker tree is a perfectly weight-balanced tree, where
the weight of left subtree and the weight of right subtree
differ by at most one. The height of such a worker tree of
p workers is bounded by dlog(p)e. Notice that a balanced
worker tree is constructed purely by using message passing
and local worker operations. When the number of workers
becomes fixed, this tree becomes static, and no further in-
sertion cost will be incurred.

To report a new bound, a worker uses the publish primi-
tive. The master will receive the solution in O(log(p)) time
after the message propagates up in the worker tree. Some
sequential search algorithms such as branch-and-bound ex-
pedite the search process by introducing bounds and con-
stantly updating them so that parts of the search tree can be
pruned off. We have thus made publish a broadcast com-
mand. This is implemented by a flooding mechanism. A
worker who receives a bound from one of its channels will
record the bound and forward it to all other channels only
if the bound is better than its local bound. This way, a pub-
lish of a bound takes O(log(p)) time to reach every worker
in the system. The updated bound is available to the search
engine when a spawn or a local steal occurs.

3.1. Global work stealing algorithm

We now introduce a global work stealing algorithm
which works using the balanced worker tree. The global
steal strategy is to use a heuristic to steal the largest amount
of work – this is intended to ensure good work balanc-
ing between the workers. The master first forwards the re-

quest down the worker tree to all workers. Each worker
estimates the amount of work which would be avail-
able if its oldest subproblem is stolen. A simple estimate is
the height of the search tree represented by that subprob-
lem. For example, this could be estimated as the number
of non-ground variables. A more sophisticated strat-
egy would factor in the cardinality of the variable domains.
The workers at the leaves of the worker tree report their ad-
dress and work estimate back to their parents. An internal
worker node chooses between the work estimates of it-
self and its children and propagates this up.

Eventually the master gets the best estimate with the ad-
dress of the worker. It then instructs the “thief” to steal the
top freenode directly from that worker. The total global steal
time is then O(log(p)). In contrast, shared-memory archi-
tecture such as Cilk can achieve constant time global steal-
ing, at the expense of scalability.

We can show the following result for the search time Tp

for p workers using the global work stealing algorithm.

Theorem 1 Consider the execution of the greedy global
steal algorithm for parallel depth-first search on arbitrary
search tree with work T1, height h, and message passing
cost u per message. The execution time on p workers is
Tp = O(T1/p+uhp log p).

The details of the analysis are omitted for lack of space.

4. Experimental results

We present some preliminary experimental results on a
prototype implementation of our search framework. The ex-
periments were run on a 64-node cluster of PCs running
Linux. Each node of the cluster consists of two 1.4GHz In-
tel PIII CPU’s with 1GB of memory. The nodes are con-
nected by Myrinet as well as Gigabit Ethernet. As processor
affinity cannot be specified in this version of Linux, we have
used only up to 61 nodes, which leaves one node for the
master and two spare nodes. The cluster is non-dedicated
and as such it is not the case that all nodes run at the same
speed due to interference from other jobs.

Several binary integer linear programming prob-
lems taken from the MIPLIB [2] and MP-TESTDATA
[7] libraries are used in our experiments. We experi-
ment with all solutions depth first search and also best
solution search. All solutions is used to avoid any ef-
fects such as superlinear speedup which can occur with
being lucky with single solution search because paral-
lel search with different numbers of workers can inves-
tigating the search tree in a different order. For best so-
lution search, two variant of branch and bound (B&B)
are used: (i) the normal case where any new improv-
ing bound found by a worker is propagated through the
worker tree; and (ii) “noshare” where workers do not prop-



agate bounds to other workers and only use bounds found
within their own search. Noshare B&B trades off re-
ducing communication cost with reduced pruning. Since
branch and bound is expected to prune more of the tree
for the same problem, the smaller problem sizes are used
with backtrack search while the larger problems with
branch and bound. A cut-off depth of 15 is used in back-
track search, and 20 in B&B search.

4.1. Experimental Speedup Results
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Figure 3. Speedup of backtrack search
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Figure 4. Speedup of B&B search

The speedup graphs for backtrack and B&B search are
shown in Figures 3 and 4 respectively. The speedup with
backtrack search is consistent with our analysis — near lin-
ear speedup is obtained for large enough problems. The re-
lationship between problem size and speedup is illustrated
in Fig. 3. A large problem (p0033) gives close to linear
speedup even at 61 nodes while small problems with less

variables (stein27 & weing1) depart from linearity at 24
nodes.1

In B&B search, the pruning generally decreases the
search space dramatically (e.g. the search tree size is re-
duced by more than 100 times in B&B for pb2). The rel-
atively small search space means that there is insufficient
parallelism in the problem. This is clearly reflected in Fig.
4, which shows smaller speedups than backtrack search in
Fig. 3, and the speedup lines curve down much earlier.

Some speedup anomalies are observed in Fig. 4. Enigma
does not exhibit any speedup because the bounds and con-
straint satisfiability prunes the problem very early even on 1
worker. Adding more workers only adds to the steal over-
head causing slowdown. The effect of bounds sharing to
speedup is also depicted in Fig. 4 if we compare the curves
of weish14 and weish14-noshare. It is clear that bounds
sharing results in better speedup.

4.2. Experimental work stealing results
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Figure 5. Work stealing over time for weish05

Figures 5 and 6 shows the percentage of steals as a func-
tion of time with both axes normalized to 100% for weish05
(backtrack) and weish14 (B&B). This is meant to illustrate
the effectiveness of the work stealing strategy. The behav-
ior of weish05 (backtrack) can be explained as follows: first
there is a sharp increase in steals as workers do global steals
at the start of computation, followed by a horizontal plateau
with no steals and then a second increase at the end when
the amount of work per worker is decreasing there are more
steals again. So for a large part of the computation only a
small amount of additional work stealing is needed, as in-
dicated by the portion of the graph which is close to hor-
izontal. This means that the overhead incurred for the dis-

1 The worst case size of the search tree may be exponential in the num-
ber of variables, so a small change in the number of variables can sig-
nificant decrease inherent problem parallelism.
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Figure 6. Work stealing over time for weish14

tributed search architecture the major part of the computa-
tion is small.

Where the number of workers is not a power of two, it
can be seen that the second increase in steal rate occurs
earlier as shown for the 24 and 48 worker curves which
are shifted more towards the left. This is because when the
number of workers is not a power of two, some workers re-
ceive less work than others and hence finish earlier which
means they start stealing earlier. In B&B, Fig. 6, steals hap-
pen more frequently since the search may be terminated
earlier by a broadcast bound. Thus instead of a horizontal
plateau there seems to be a slow increase in the number of
steals for weish14. Steals happen more frequently and ear-
lier at the end since the B&B is more unbalanced.

5. Conclusion

We have presented a distributed framework to implement
depth-first search with a general architecture based on con-
straint search trees. In particular, it is easy to employ ei-
ther a simple solver or make use of sophisticated constraint
solvers based on consistency or integer linear programming.
At the heart of our framework is an adaptive architecture
which can deal with a dynamically changing set of work-
ers coming/leaving. Our main result is, under ideal condi-
tions, such an architecture is effectively scalable and is able
to achieve near linear speedup over a useful working range
in the number of workers on problems with sufficient par-
allelism. This result is validated by our experiments which
show that for a range of optimization problems that good
scaling and load balancing is achieved for up to 61 workers.
Thus, we demonstrate empirically that distributed search
scales well to a larger number of workers than recent work
[11, 13], and we provide also theoretical guarantees.
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