
Computing Term Similarity by Knowledge from Big Data

Peipei Li #∗1, Haixun Wang ∗2, Kenny Q. Zhu †3, Zhongyuan Wang ∗2, Xindong Wu #4

#Hefei University of Technology
1v-pli@microsoft.com

4xwu@uvm.edu
∗Microsoft Research Asia

2{haixunw,zhy.wang}@microsoft.com
†Shanghai Jiao Tong University

3kzhu@cs.sjtu.edu.cn

ABSTRACT
Computing semantic similarity between two terms is essen-
tial for a variety of text analytics and understanding appli-
cations. However, existing approaches are more suitable for
semantic similarity between words rather than the more gen-
eral multi-word expressions (MWEs), and they do not scale
very well. Therefore, we propose a lightweight and effective
approach for semantic similarity using a large scale semantic
network automatically acquired from billions of web docu-
ments. Given two terms, we map them into the concept
space, and compare their similarity there. Furthermore, we
introduce a clustering approach to orthogonalize the concept
space in order to improve the accuracy of the similarity mea-
sure. Extensive studies demonstrate that our approach can
accurately compute the semantic similarity between terms
with MWEs and ambiguity, and significantly outperforms
12 competing methods.

1. INTRODUCTION
Measuring semantic similarity between terms is a funda-

mental problem in lexical semantics [11] and it finds many
applications in web and document search, question and an-
swer systems, and other text analytics and text understand-
ing scenarios. By terms, we mean either single words or
multi-word expressions (MWEs). We say two terms are se-
mantically similar, if their meanings are close, or the con-
cept or object that they represent share many common at-
tributes. For example, “emerging markets” and “develop-
ing countries” are similar because their semantic contents
(the subset of countries) are very similar. Another example,
“Google” and “Microsoft” are similar because they are both
software companies. However, “car” and “journey” are not
semantically similar but related because “car” is a transport
means for the activity “journey”. Specifically, semantic sim-
ilarity is defined by some measure of distance between two
terms on an isA taxonomy. It is clear that “car” and “jour-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ney” are quite far away from each other in an isA taxonomy
from WordNet as shown in Figure 1. Semantic similarity is a
more specific relationship and is much harder to model than
relatedness (which can be modeled by term co-occurrence).

Figure 1: A fragment from WordNet showing se-
mantic distance between “car” and “journey”

Recent work on term similarity can be roughly classified
into two main categories: knowledge based and corpus based.
Knowledge based approaches rely on handcrafted resources
such as thesauri, taxonomies or encyclopedias, as the context
of comparison. Most work in this space [20, 22, 5] depends
on the semantic isA relations in WordNet [18] which is a
manually curated lexicon and taxonomy. Corpus based ap-
proaches work by extracting the contexts of the terms from
large corpora and then inducing the distributional proper-
ties of words or n-grams. Corpus can be anything from web
pages, web search snippets to other text repositories.

One significant challenge faced by the knowledge-based
methods is the limited coverage of taxonomies such as Word-
Net (with 155,287 words at last count). It does not cover
many proper nouns (e.g., “Microsoft” or “Google”), or very
popular senses (e.g., Apple the company or Jaguar the car
make). Another major restriction of WordNet is that it pri-
marily covers single words with only a handful of phrases
or multi-word expressions. For example, it does not know
“General Electric” or “emerging markets”. For example, the

similarity between “General Electric” and “GE” completely
fail even though they are exactly the same thing.
Corpus-based approaches also face several serious limita-

tions. First, such measures are biased because of the index-
ing and ranking mechanisms used in search engines. For ex-
ample when querying the term “date” or “range” on Google,
none of the first 100 results has anything to do with fruits (a
sense for date) or cooking stoves (a sense for range), because
these are rare senses of the two terms. With such search re-
sults, it is not surprising that a corpus-base method would
think “asian pear” and “date” share very little commonal-
ity. Second, some search-result oriented similarity methods
require interaction with the search engine which has high
communication overhead and high index costs, and are not
suitable for online applications. Third, statistical distribu-
tion based on words or n-grams in the context ignores the
fact that i) the semantic units can be MWEs and not words,
let alone n-grams; and ii) many words or phrases are am-
biguous in meaning. Finally, corpus-based methods focus on
surrounding context of a term or the co-occurrence of two
terms within a neighborhood, both of which are more suit-
able to the calculation of semantic relatedness rather than
similarity. Under this approach, “car” and “journey” would
have high semantic relatedness because they co-occur very
frequently on web texts.
In this paper, we propose a light-weight but effective frame-

work for computing semantic similarity between a pair of
terms using a large scale, general purpose isA network ob-
tained from a web corpus. Below is a small sample of results:

• High similarity (synonyms): 〈general electric, ge〉

• High similarity (ambiguous terms): 〈microsoft, apple〉,
〈orange, red〉

• Low similarity (though share same hypernyms inWord-
Net): 〈music, lunch〉, 〈banana, beef〉

• Low similarity (related but not similar): 〈apple, ipad〉,
〈car, journey〉

The main contributions of this paper are:

• Our approach has better coverage. The semantic net-
work behind this approach is one order of magnitude
larger thanWordNet in terms of the number of hypern-
ym-hyponym relations. Our approach computes simi-
larity between almost any two known noun-based MWEs.

• Our approach produces more meaningful similarity. Un-
like corpus-based methods which can confuse similar-
ity with relatedness, this approach calculates similar-
ity by relations induced from an isA semantic network.
It also seeks to disambiguate terms and thus excludes
noises from irrelevant senses from the probability dis-
tributions.

• Our approach is lightweight. The most expensive clus-
tering algorithm is performed offline. The remaining
similarity function can be efficiently computed online.
On average, it takes merely 65 milliseconds to compute
the similarity for a pair of terms.

The rest of the paper is organized as follows. Section 2
introduces the preliminaries of Probase, our isA semantic

network. Section 3 describes a basic algorithm for comput-
ing term similarity using Probase. Section 4 proposes an im-
portant refinement to the basic algorithm which addresses
several key challenges faced by the basic approach. Section 5
gives some experimental results that compare our approach
with a whole list of other previous approaches both using
knowledge and using external corpora. Finally we discuss
some related work in Section 6 and conclude in Section 7.

2. SEMANTIC NETWORK AND SYNSETS
To compute the similarity between two terms, we com-

pute the similarity between their contexts. The context that
we use in this paper comes from a large-scale, probabilis-
tic semantic network, known as Probase [26]. Besides other
knowledge, Probase contains isA relations between concepts,
sub-concepts, and entities, which is called ΓisA in this paper.
For example, “Microsoft is a company”. Here “company” is
a concept and “Microsoft” is an entity. We refer to concepts
and entities collectively as terms in this paper. Probase has
the following important properties:

• Probase introduces a very large concept space with
over 2.7 million concepts;

• It is not a tree structured taxonomy, but a network:
An entity or concept may have many super-concepts.
The benefit is that such links are data driven rather
than handcrafted.

• Each isA relation (e isA c) is associated with condi-
tional probabilities P (e|c) and P (c|e) (a.k.a. typicality
scores).

Before we deal with similarity between any two terms, we
first look at terms that have the same meaning. Intuitively,
they should have the highest similarity. A single term may
have many surface forms:

synonyms: “GE”and“General Electric”; “corporation”,“firm”,
and “company”;

spelling styles: “2d barcode” vs. “2d bar code” and “ac-
complished artist” vs. “accomplished artiste’;

singular/plural forms: “shoe” vs. “shoes”;

We address this issue in two steps. First, we use sources
such as Wikipedia Redirects, Wikipedia Internal Links, and
synonym data set in WordNet to group terms that are syn-
onyms. Second, we use the edit distance function to evaluate
the distance between terms as follows.

dislex(t1, t2) =
EditDistance(t1, t2)

MaxLength(t1, t2)

If dislex(t1, t2) < ϕ, the two terms in the current pair are
ones with very similar surface forms, and we group them to-
gether. In this paper, we set ϕ to 0.05 according to empirics,
which enables high accuracy (95%) for identifying synony-
mous pairs.

At this point, all lexically similar or synonymous terms
are grouped into a cluster which is analogous to the notion
of “synset” in WordNet. As a result, the isA pairs between
terms are also mapped logically into isA relations between
synsets. The set of all synsets is called Γssyn which pro-
vides a mapping between any Probase term, to its synset

and hence all the other terms in that synset. When com-
puting the semantic similarity between two terms which be-
long to the same synset, e.g., General Electric and GE, the
similarity is set to the highest score, namely 1.

3. BASIC APPROACH
This section presents the basic framework of computing

semantic similarity between two terms. In nutshell, given
a pair of terms 〈t1, t2〉, we first determine the type of the
terms, i.e., whether they are concepts or entities, and then
obtain the contexts of t1 and t2, i.e., T (t1) and T (t2), and
finally compute the similarity between the two contexts.

sim(t1, t2) = sim(T (t1), T (t2)) (1)

where sim(c1, c2) is a similarity function for contexts.

3.1 Type Checking
Type checking requires the following data from the se-

mantic network: 1) the entity and concept sets; 2) the isA
relations between terms and their frequencies in corpus. If
the given pair of terms has an isA relation, then the hyper-
nym term is said to be a concept term while the hyponym
term is an entity term. Otherwise, we decide the type of
each term individually: t is a concept if its frequency as a
concept is larger than its frequency as an entity; it is an
entity otherwise.

3.2 Context Representation
We extract the context of a term according to its type

and its position in the semantic network. If the term is a
concept, its context is all the entities that it subsumes; if it
is an entity, its context is all the concepts that it belongs to.
Furthermore, we transform the context into a vector Ic or
Ie, where each element is the typicality score between the
term and a term in the context:

Ic = 〈w′
1, · · · , w

′
k〉 (2)

where w′
i = p(ei|c), p(ei|c) is the typicality of score for c and

entity ei, that is, how typical ei is among all the entities c
subsumes.

Ie = 〈w1, · · · , wk〉 (3)

where wi = p(ci|e), and p(ci|e) is the typicality of score for
e and concept ci, that is, how typical ci is among all the
concepts e belongs to.

3.3 Context Similarity
We use the cosine similarity function 1 to evaluate the

similarity between two contexts, i.e.,

sim(T (t1), T (t2)) = cosine(T (t1), T (t2)) (4)

The complete algorithm for the basic approach is shown
in Algorithm 1. We set top K = 5 by the empirical study.

3.4 Discussion

1Our experiments reveal that the cosine function outper-
forms other similarity/distance evaluation functions, such
as Jaccard, JaccardExtended, Jensen-Shannon and the
smoothed KL divergence.

Algorithm 1 Basic Approach

Input: 〈t1, t2〉: a pair of terms;
ΓisA: the semantic network of isA relationship;
Γssyn: the synset data set in ΓisA;

Output: a similarity score of 〈t1, t2〉;
1: if t1 and t2 belong to the same synset according to Γssyn

then
2: Let sim(t1, t2)← 1 and return sim(t1, t2);
3: end if
4: Judge the type for each term;
5: if 〈t1, t2〉 is a concept pair then
6: Collect all entities of ti from ΓisA as the context and

generate the entity vector Itic (i ∈ {1, 2}) as defined in
Eq. (2);

7: return sim(It1c , It2c) by comparing the context vectors
It1c and It2c in Eq. (4);

8: end if
9: if 〈t1, t2〉 is an entity pair then
10: Collect all concepts of ti from ΓisA as the context and

generate the concept vector Itie (i ∈ {1, 2}) as defined
in Eq. (3);

11: return sim(It1e , It2e) by comparing the context vectors
It1e and It2e in Eq. (4);

12: end if
13: if 〈t1, t2〉 is a concept-entity pair then
14: Collect top K concepts of the entity term ti from ΓisA

as the context Cti(i ∈ {1, 2});
15: for each concept cx in Cti (cx 6= tj , 1 ≤ x ≤ K) do
16: simcx ← get the semantic similarity between cx

and tj by repeating this algorithm iteratively;
17: end for
18: return maxcx∈Cti {simcx};
19: end if

Our preliminary evaluation shows that the basic approach
works reasonably well for many pairs of terms, but for am-
biguous terms with multiple senses such as apple and orange,
the result is less satisfactory.

Table 1: Impact of Ambiguity on Similarity
Pair Similarity Score

〈microsoft, google〉 0.993
〈apple, pear〉 0.916
〈apple,microsoft〉 0.378
〈orange, red〉 0.491

For example, as shown in Table 1, the basic approach
decides that 〈microsoft, google〉 and 〈apple, pear〉 are quite
similar whereas 〈apple,microsoft〉 and 〈orange, red〉 are not,
because “apple” and “orange” have multiple senses. The
dominant senses of “apple” and “orange” are a fruit, and
we can see when we are comparing similarity using non-
dominant senses, the results are less satisfactory.

4. REFINED APPROACH
The baseline approach introduced in Section 3 is not sen-

sitive to different senses of a term. A simple solution is to
use an existing knowledge database containing sense labels
of terms such as the glosses in WordNet. But none of the
handcrafted knowledge bases has the sufficient data cover-
age. Instead we propose the following refined approach.

Given a term, we define its concept context as the entire set
of concepts that the term belongs to in Probase. We perform
automatic sense disambiguation by concept clustering. We
then prune irrelevant clusters as an optimization. Finally, we
define the similarity of two terms as the highest similarity
between any sense of the first term and any sense of the
second term. Next we present this approach in details.

4.1 Concept Clustering
To identify multiple senses of a term automatically, we

first use a k-Medoids clustering algorithm on the concept
context of the term, and then we select the center concept
in each cluster to represent a sense of this term. Figure 2(a)
shows the concept context of the term “apple”, and Fig-
ure 2(b) shows the clustered concepts. It is clear that each
cluster represents a sense of the term.

apple

food
snack

healthy snack

fruit

seasonal fruit

tree fruit

company

manufacturer

large company

fruit tree

tree

deciduous tree
apple

fruit

company

seasonal fruit

food

fruit tree

manufacturer

snack

healthy snack

tree fruit

large company

tree

deciduous tree

(a) (b)

Figure 2: The concept context of “apple”

In the following, we define the distance measure and present
the clustering algorithm.

4.1.1 Clustering Algorithm
We first define the semantic distance between two con-

cepts c1 and c2 as

dsem(c1, c2) = 1− cosine(Ic1 , Ic2) (5)

where Ici represents the vector of entity distributions of con-
cept ci as defined in Eq. (2).
Our algorithm is a modified k-Medoids clustering algo-

rithm that partitions concepts according to their entity dis-
tributions. Good initial centers are essential for the success
of partitioning clustering algorithms such as K-Medoids. In-
stead of using random initial centers, we identify good initial
centers incrementally by a refined method from Moore [19].
The first medoid is randomly selected among all candidate
points (concepts). Then we select the point that has the
maximum of the minimum of the distances from each of the
existing medoids to be the next medoid, i.e.,

m = {mi|max
cj
{min

i
{dsem(mi, cj)}} > α} (6)

where cj indicates the jth point in the candidate points, mi

indicates the ith medoid in existing medoids. This process
continues until we do not find any medoids satisfying Eq.
(6). In this case, we get k medoids at iteration 0: M0 =
{m0

1, ...,m
0
k}. Clearly, the value of k is determined by the

threshold α. The larger the threshold of α, the small the
value of k. Since experiments show that the numbers of
clusters do not vary much with α between 0.7 to 0.8, we set
α = 0.7 as an optimal value.

With k medoids in the tth iteration, we assign each can-
didate concept ci ∈ C to its closest medoid m∗ ∈ M t =
{mt

1, ...,m
t
k}, namely, a medoid m∗ with the minimum se-

mantic distance from ci:

m∗ = argmin
mt

j
∈Mt

dsem(ci,m
t
j) (7)

When we assign all candidate concepts to the corresponding
clusters, we can update the medoid with the most centrally
located concept in each cluster. To find such a center con-
cept, we first compute the average distance of a cluster Ci

in terms of the semantic distance in Eq. (5) as

mt+1
i = argmin

cy∈Ci

∑

cx∈Ci

dsem(cx, cy)

|Ci|

 (8)

The clustering process iterates until the following objective
function reaches minimum.

F (W,M) =

k
∑

i=1

n
∑

j=1

wijdsem(mi, cj) (9)

where w ij ∈{0, 1},
∑k

i=1
wij = 1, 0<

∑n

j=1
wij < n, k (< n)

is a known number of centers, n is the count of objects
(concepts) to cluster. W = [wij] is a k × n binary matrix,
M = [m1, . . . ,mk] is a set of cluster medoids and mi is the
ith cluster medoid.

We use Eq. (8) to calculate the medoid set M . When M
is computed, to minimize F (W,M), W is given by

wij =

1 if dsem(mi, cj) < dsem(mh, cj)

(1 ≤ h ≤ k, h 6= i)

0 otherwise

(10)

The convergence condition is that F (W t,M t+1)−F (W t,M t)
is less than a threshold δ (e.g., 10−5). The minimization of
F with the above constraints is an undecidable constrained
nonlinear optimization problems. A partial optimization for
M and W is shown in Algorithm 2.

Algorithm 2 Concept Clustering

Input: C = {c1, ...cj , ...}: the concept set;
α: the threshold in the limit of initial medoid count;
T : the maximum iteration count;
ΓisA: the semantic network of isA relationship;

Output: k clusters {C1, ..., Ck};
1: Initialize the iteration time t = 0;
2: Generate an initial medoid set M t = [mt

1,m
t
2, · · · ,m

t
k]

incrementally by Eq. 6;
3: Assign each concept ci to a cluster C∗ with a medoid

m∗ satisfying Eq. (7);
4: Update the weight matrix W t in Eq. (10) to make sure

F (W t,M t) is minimum;
5: Update cluster medoids in M t+1 with the most centrally

located point in each cluster corresponding to Eq. (8);
6: Calculate F (W t,M t+1) in Eq. (9);
7: if F (W t,M t+1)-F (W t,M t) > δ and t < T then
8: Let t = t+1 and go to Step 3;
9: end if
10: return clusters {C1, ..., Ck};

4.1.2 Offline Concept Clustering
The k-Medoids clustering algorithm has a time complex-

ity of O(kn2), where k is the number of centers and n is
the number of objects (concepts) to cluster. This is not ac-
ceptable if the number of pairs is large. To improve the
efficiency, we cluster all concepts in the semantic network
offline, and then during online calculation, each concept in
a term’s context can be quickly mapped to an offline cluster
which acts as synset, and this effectively reduces the online
clustering complexity to O(n).

c1

em

c2

e2

c3

e3

cn

e1 em-1

cn-1

Figure 3: A concept-entity bipartite graph

To cluster the concepts in the semantic network, we use
the entity distributions to represent the concepts and eval-
uate their similarities by Eq. (5). According to the isA
relationships between concepts and entities in ΓisA, we can
construct a bipartite graph between concepts and entities
(Figure 3) and cluster the concepts based on this graph.
The basic idea is that if two concepts share many entities,
they are similar to each other. From this bipartite graph,
we represent each concept ci as an L2-normalized vector as
shown in Eq. (2), where each dimension corresponds to an
entity in the graph.
Even though the number of concept and entity nodes may

be large, the graph is actually very sparse. For example, a
concept is connected with an average number of 5.72 entities
in ΓisA. Each entity is also connected to a couple of concepts
on average. Therefore, for a concept c, the average size of
Sc, the set of concepts which share at least one entity with
c, is small. To find the closest cluster to c, we only need
to check the clusters which contain at least one concept in
Sc. Since each concept belongs to only one cluster in our
method, the average number of clusters to be checked is
small. Furthermore, edges in the graph with low weights
(i.e., low typicality scores) are likely to be noises and can be
ignored.

4.2 The Max-Max Similarity Function
In the basic approach, we compute the similarity of two

terms by the cosine similarity between their contexts. In the
refined approach, we use a new similarity function known as
max-max similarity which is useful in identifying rare senses
of terms with small sized clusters. Let C = {C1, C2, ..., Ck}
be clusters of all concepts in ΓisA, C

t1 and Ct2 be the sets of
concepts that two terms belong to respectively. According
to the cluster information in C, we divide Ct1 and Ct2 into
small clusters Ct1 = {Ct1

1 , ..., Ct1
m} and Ct2 = {Ct2

1 , ..., Ct2
n }

by comparing Ct1 ∩ C and Ct2 ∩ C respectively. We then
compute the similarity between the contexts of each cluster
pair and get the semantic similarity between two terms as:

sim(T (t1), T (t2)) = max
x,y
{cosine(Ct1

x , Ct2
y)} (11)

where 1 ≤ x ≤ m and 1 ≤ y ≤ n.

With all concepts clustered offline and the new similarity
function based on concept clusters, the refined algorithm is
given in Algorithm 3.

Algorithm 3 Refined Approach

Input: 〈t1, t2〉: a pair of terms;
ΓisA: the semantic network of isA relationship;
Γssyn: the synset data set in ΓisA;
Γcluster: clusters of all concepts in ΓisA;

Output: a similarity score of 〈t1, t2〉;
1: Install the synset checking and type checking as Steps

1-4 in Algorithm 1;
2: if 〈t1, t2〉 is a concept pair then
3: return sim(It1c , It2c) as Steps 6-7 in Algorithm 1;
4: end if
5: if 〈t1, t2〉 is an entity pair then
6: sim1 ← sim(It1e , It2e) as Steps 10-11 in Algorithm 1;
7: Find clusters of contexts Ct1 and Ct2 from Γcluster;
8: sim2 ← sim(Ct1 , Ct2) computed in Eq. (11);
9: return max(sim1, sim2);
10: end if
11: if 〈t1, t2〉 is a concept-entity pair then
12: Collect all concepts of the entity term ti from ΓisA as

the context Cti(i ∈ {1, 2});
13: Find clusters of contexts Cti from Γcluster;
14: for each cluster Cx in Cti do
15: Select topK concepts to represent ti, namely CK

x =
{cy|cy 6= tj , cy ∈ Cx, 1 ≤ y ≤ K};

16: for each concept cy in CK
x do

17: simcy ← get the semantic similarity between cy
and tj by repeating this algorithm iteratively;

18: end for
19: simCx ← maxcy∈CK

x
{simcy};

20: end for
21: return max{simCx |Cx ∈ Cti};
22: end if

4.3 Optimization by Cluster Pruning
The cluster-based refined approach improves the quality of

similarity remarkably from the basic algorithm. But there
are two problems. First, the max-max similarity function
tends to boost the probability of picking a less dominant
sense of a term because it is easier for small clusters to look
similar by the cosine similarity and hence dominate the max-
max similarity score. However, many small clusters in C
are usually noises. This leads to incorrect similarity results.
Second, with the current concept clustering algorithm, some
terms can have both a general sense and a more specific
sense. For example, the term “lunch” has a specific sense
called“dish”and a more general (and also vague) sense called
“activity”. We know “activity” is more general because it is
a super-concept of “dish” in ΓisA. Such general senses poses
problems because they make almost unrelated terms similar.
For example, the term “music” also has the “activity” sense
and thus is deemed similar to “lunch”.

To overcome these problems, we adopt an optimization
technique called cluster pruning after concept clustering.
First, to reduce the negative impact from noisy clusters,
we prune away those clusters with only one member or with
very small combined weight. The weights of clusters are
computed below. Let the concept clusters of the term t
be Ct = {Ct

1, ..., C
t
m}, the weight of each cluster Ct

x is

wx/
∑

x wx, where wx =
∑

ci∈Ct
x
p(ci|t) and 1 ≤ x ≤ m.

Second, to avoid the impact from the vague senses, we prune
the clusters whose senses are super-concepts of other senses
according to the isA relationships in ΓisA. For example, Fig-
ure 4 shows a hierarchical isA relationships of senses after
clustering concept contexts of two terms “lunch” and “mu-
sic”. Because the senses “Activity”, “Cost”, “Interest” and
“Art” are the super-concepts of the senses “Dish” and “Mul-
timedia”, we only keep specific senses like “Dish” and “Mul-
timedia” and remove the rest.

Dish

Activity Cost

isA isA

InterestActivity

isA

Multimedia

Art

isA

isA

Vague (general) senses

specific senses

lunch music

c1 c2 cm c'1 c'2 c'n

ClusteringClustering

Figure 4: Illustration to vague and specific senses of
terms lunch and music

5. EXPERIMENTS
In this section, we first outline the experimental setup, and

then compare the effectiveness of the online and the offline
variant of our approach, and also compare our approaches
(basic, refined and refined with pruning) with 12 competing
methods on three benchmark data sets. Finally, we evaluate
the efficiency of our approaches.

5.1 Experiment Setup
We use three data sets in the following experiments, in-

cluding two well-known benchmark data sets for word simi-
larity and one labeled data set for evaluating MWEs which
is created by us. Table 2 shows the descriptions and some
examples in each of the three data sets. M&C data set is a
subset of Rubenstein-Goodenough’s [23] and consists of 28
word pairs. WordSim203 is a subset from WordSim353[1],
and has been used as a similarity testing data set by Agirre
et. al.[7] It contains 203 pairs which are considered more
similar than related. Because there are no benchmark data
for the semantic similarity between MWEs, we labeled 300
pairs (known as WP) with both words and MWEs. Our
labeled data consist of three categories: 100 concept-entity
pairs, 100 concept-concept pairs and 100 entity-entity pairs.
These 300 pairs contain 84 word pairs and 216 MWE pairs,
in which 71 MWE pairs are in WordNet the remaining are
not. Five native speakers of English labeled these pairs ac-
cording to the label classes, and the labels are then trans-
lated into numerical similarity scores in Table 3. These
scores are averaged to produce the final rating for each pair.
All experiments are performed on an Intel Core 2 Duo

2.66GHz PC with 4G physical memory, running Windows 7
Enterprise. All timing results are averaged over 10 runs. All

competing methods involved in this section are summarized
in Table 4. We implemented Sán method and while adopt-
ing the existing implementation [2] of other methods. To
evaluate the effectiveness of each method, we compute the
Pearson Correlation Coefficient (PCC in short) to measure
the agreement between the machine rating (computed by
the semantic similarity measurement approaches) and the
human ratings over the data sets as follows, where X is the
machine ratings while Y is the human ratings:

ρ =

∑n

i=1
(Xi − X̄)(Yi − Ȳ)

√

∑n

i=1
(Xi − X̄)2

√

∑n

i=1
(Yi − Ȳ)2

Table 2: Data Sets Used in Experiments
M&C WordSim203 similarity Our labeled data

data set[17] [7](WS in short) (WP in short)

Type

Words Words Words & MWEs
#Pairs

28 203 300
Examples

〈lobster, food〉 〈lobster, wine〉 〈animal, poodle〉
〈chord, smile〉 〈professor, doctor〉 〈microsoft, apple〉

〈shell, exxon
〈bird, cock〉 〈tiger, jaguar〉 mobil corp.〉
〈crane, 〈caged animal,

implement〉 〈precedent,information〉 game animal〉

Table 3: Label Classes and Similarity Scores
Label Classes Similarity Score

Very similar 1
Fairly similar 0.75
Don’t know 0.5

Fairly different 0.25
Very different 0

Table 4: Competing Methods (IC = Information
Content, LCA = Least Common Ancestor)
Approach Description

Hungarian (Hun) [3] string-based
Tray (Tra)[4] string-based+WordNet
Rada (Rad) [20] path-based (WordNet)
Hirst (Hir) [14] lexical chain-based (WordNet)
Do [13] lexical chain-based (WordNet)
Resnik (Res)[22] IC of LCA +WordNet
Jcn [15] IC of LCA + the term + WordNet
Lin [16] IC of LCA + the term + WordNet
Sánchez (Sán)[24] IC of leaves and parents + WordNet
Banerjee (Ban)[9] glosses-based (WordNet)
Agirre (Agi)[5] personalized PageRank (WordNet)
Bollegala (Bol)[10] search-snippet-based
Basic Our basic approach
RC Our refined approach
RCP Our refined approach with pruning

5.2 Effectiveness
Figure 5 reports the PCC in our RCP approach with on-

line clustering and offline clustering respectively on the WP
data set. From this figure, we can see that the PCC val-
ues for online clustering and offline clustering differ only

Table 5: Pearson Correlation Coefficient on Three
Data Sets with Word or MWE Pairs (WN: Word-
Net)

Word Pairs MWE Pairs

Words All MWEs MWEs All
Method M&C WS from Word in Not in MWE

WP Pairs WN WN Pairs

Hun -0.20 0.06 0.02 0.04 0.37 0.43 0.36

Tra 0.76 0.59 0.38 0.48 0.39 0.33 0.34

Rad 0.74 0.60 0.40 0.51 0.59 - -

Hir 0.64 0.57 0.45 0.51 0.46 - -

Do 0.68 0.48 0.32 0.42 0.36 - -

Res 0.76 0.67 0.42 0.57 0.74 - -

Jcn 0.85 0.37 0.38 0.28 0.38 - -

Lin 0.82 0.67 0.45 0.58 0.72 - -

Sán 0.87 0.69 0.64 0.66 0.74 - -

Ban 0.78 0.65 0.43 0.56 0.38 - -

Agi 0.80 0.58 0.26 0.34 0.38 - -

Bol 0.83 0.56 0.48 0.52 0.59 0.51 0.50

Basic 0.78 0.58 0.39 0.43 0.31 0.45 0.44

RC 0.89 0.69 0.46 0.49 0.65 0.64 0.60

RCP 0.92 0.73 0.81 0.77 0.82 0.67 0.67

marginally. Therefore, in the following experiments, we use
the offline clustering in our refined approach.
Table 5 compares the PCC of our approaches with that of

12 others. Some of these competing methods (from Rad to
Agi) rely on WordNet and do not recognize MWEs that are
not in WordNet, therefore they are excluded from compari-
son in the experiment on “MWEs Not in WordNet”, marked
with “-”. From the experimental results, we make the fol-
lowing observations.
First, our most advanced approach, RCP, leads the com-

petition against the peers by significant margins in all data
sets, especially in MWE pairs.
Second, in the Hun method, the PCC value is negative,

because it depends only on the surface forms of terms. Most
terms which are semantically similar are not lexically simi-
lar. Thus, some of the computed similarities are incorrect ,
which leads to the negative correlation.
Third, methods based on taxonomy structure, such as

Rad, Hir and Do, generally fare better than pure syntax-
based methods.
Fourth, information content based methods, such as Res,

Jcn, Lin and Sán, generally do better than other WordNet
based methods. Information content based methods effec-
tively combines the knowledge from the taxonomy structure
and external corpora. This has certain advantage but the
coverage of this knowledge is still limited compared to the
knowledge we acquired from the entire web.
Finally, search snippet-based method like Bol works fine

with M&C data sets but fares quite badly elsewhere. This is
because it considers co-occurrences of two terms which pro-
duces more of relatedness than similarity. It works badly
with words in WP because word pairs in WP contain many
ambiguous terms, and many pairs with transitive isA rela-
tionships (e.g., 〈animal, puppy〉 with “dog” being the child
of “animal” and parent of “puppy”) and many pairs with
vague senses (e.g., 〈music, lunch〉 with the vague sense “ac-
tivity”). Co-occurrence alone is not effective on these pairs.
Figure 6 reports the PCC of six approaches which work

with arbitrary MWEs and the experiment is done on all 300
pairs from the WP data set. RCP produces a PCC value of
around 0.7 which is much higher than the other peers.
Figure 7 reports the PCC of our approaches on three types

of pairs in WP. From the experimental results, we can see
that our three approaches have the same PCC value (0.74)
on the concept pairs, because they have the same calculation
mechanism on these pairs. Our methods generally work bet-
ter with concept-entity pairs than entity-entity pairs. The
reason is that concept-entity pairs are similar only if they are
in a hypernym-hyponym relation so the similarity is clearly
defined. In the case of entity-entity pairs, comparing their
concept contexts can be difficult due to i) the ambiguity in
the senses and ii) the noises in the super-concepts which can
be very abstract and vague.

Table 6 shows some examples from each data set along
with the computed similarity scores by the RCP approach.
Human ratings have been uniformly normalized to [0, 1] in
this table. Complete set of results can be found at http:

//adapt.seiee.sjtu.edu.cn/similarity/.

Table 6: Example Pairs and Their Semantic Simi-
larity Scores Computed by RCP Approach

Human Similarity
Pair Rating Score

From M&C Data Set

〈furnace, stove〉 0.778 0.950

〈bird, cock〉 0.763 0.824

〈boy, lad〉 0.940 0.800

〈coast, shore〉 0.925 0.800

〈bird, crane〉 0.743 0.564

〈lobster, food〉 0.223 0.525

〈crane, implement〉 0.420 0.294

〈monk, oracle〉 0.275 0.002

〈journey, car〉 0.290 0.001

〈chord, smile〉 0.033 0.000

From WS Data Set

〈tiger, jaguar〉 0.800 0.979

〈professor, doctor〉 0.662 0.930

〈vodka, brandy〉 0.813 0.929

〈journey, voyage〉 0.929 0.800

〈travel, activity〉 0.500 0.532

〈consumer, energy〉 0.475 0.518

〈man, governor〉 0.525 0.506

〈reason, hypertension〉 0.231 0.036

〈precedent, information〉 0.385 0.011

〈lobster, wine〉 0.570 0.000

From WP Data Set

〈caged animal, game animal〉 0.850 0.996

〈business, restaurant〉 0.550 0.938

〈shell, exxon mobil corp.〉 0.850 0.814

〈animal, poodle〉 0.800 0.720

〈date, asian pear〉 0.500 0.711

〈range, food processor〉 0.750 0.689

〈climacteric fruit, vegetable juice〉 0.600 0.226

〈music, lunch〉 0.100 0.012

〈banana, beef〉 0.350 0.007

〈apple, ipad〉 0.200 0.006

5.3 Efficiency
Figure 8 compares the execution time between online clus-

tering and offline clustering in our refined approach. Offline
clustering, with only a fraction of the cost, is a clear winner.

Figure 9 reports the average computation time on a pair
of terms in our approaches compared to the other competi-
tors. On average, RCP takes 65 milliseconds to compute the
similarity of a pair, which is on par with most of the earlier
methods using information content and WordNet. String-
based methods are faster for an obvious reason: they need
not collect any context or model the context. Hir is slow
because it considers the lexical chain in the taxonomy in
the calculation of semantic similarity between terms. Bol

P
C
C

Online vs. offline clustering

M&C WS WP
0.6

0.7

0.8

0.9 RCP_offlineClusering

RCP_onlineClustering

Figure 5: Performance of RCP
with online/offline clustering

Hun Tra Bol Basic RC RCP

On WP data set (300 pairs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
C
C

Figure 6: Performance comparison
on WP

P
C

C

Correlation on different types of pairs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 concept pairs 100 entity pairs 100 concept-entity

Basic

RCP

RC

pairs

Figure 7: Performance comparison
on various types of pairs

lo
g

1
0
(t

im
e
)

(m
il
li
s
e
c
o

n
d

)

Execution time of clustering

online clustering

offline clustering

#concepts of a term (x100)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8: Execution time in on-
line/offline clustering

lo
g

1
0

(T
im

e
)

(m
il

li
S

e
c

o
n

d
s

)

HunTraRadHir Do ResJcnLinSanBanAig BolBasicRCRCP

Average computation time in different methods

-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Figure 9: Computation time in dif-
ferent approaches

Computation time on different types of pairs

T
im
e
(m
il
li
s
e
c
o
n
d
)

on a concept

pair

on an entity

pair

on a concept-

entity pair

0

50

100

150

200

250

300

Basic

RC

RCP

Figure 10: Computation time on
different types of pairs

takes about 60 times longer than RCP because it requires
extracting lexico-syntactic patterns from snippets online.
Figure 10 shows the average computation time on differ-

ent types of pairs using our approaches. RCP costs less than
half the time of RC because due to the pruning. Comput-
ing similarity between concept-entity pairs is more expen-
sive because in order to catch the concept-entity pairs with
potentially transitive isA relationships, e.g., “animal” and
“puppy” (with “dog” being the child of “animal” and parent
of “puppy”), we iteratively check the relations between ev-
ery top ancestor concepts of an entity term and the concept
term in RCP.

6. RELATED WORK
Contrary to the semantic relatedness which represents the

more general relationships such as part-whole and the co-
occurrence, semantic similarity measures the degree of tax-
onomic likeness between concepts and considers relations
such as hyperonymy and synonymy. In this section, we only
discuss previous work on semantic similarity, while most of
them can be adapted or generalized to deal with semantic
relatedness. To compute the semantic similarity between
terms, existing efforts mainly follow two approaches: The
first approach calculates the semantic similarity based on
some distance in a preexisting thesauri, taxonomy or ency-
clopedia, such as WordNet. The second approach computes
similarity by the terms’ context in large text corpora (such
as the search snippets and web documents) and such sim-
ilarities are derived from distributional properties of words
or n-grams in the corpora.

6.1 Knowledge-based Approach
Most methods in this direction use a taxonomy such as

WordNet, which is a tree hierarchy, as the knowledge base
to compute the similarity between terms. The most straight-
forward way to calculating similarity between two terms on
the WordNet is to find the length of the shortest path con-
necting the two terms in the taxonomy graph[20]. This path-

length based approach is very simple, but has a low accuracy
because: i) it relies on the notion that all links in the taxon-
omy represent a uniform distance; ii) it ignores the amount
of information hidden in the concept nodes.

More advanced approaches [22, 15, 16, 25, 24] compute
the similarity between t1 and t2 by the information content
of these terms with respect to the taxonomy structure. The
pioneer work by Resnik [22] suggests that the similarity mea-
sure is the information content of the least common ancestor
node of the two terms in the taxonomy tree. To compute
the information content of a term, it requires a large text
corpus to obtain the occurrences of the term. A limitation
of this method is that the similarities between all children of
a concept are identical, regardless of their individual infor-
mation content. The most recent information content based
approach [24] calculates the information content of term t
by the ratio of the number of hypernyms of t divided by the
number of all descendants of t in WordNet.

Other researchers attempted to apply graph learning algo-
rithms on term similarity computation. Given two terms t1
and t2, Alvarez and Lim [8] build a rooted weighted graph
called Gsim, using the terms hypernyms, other relations,
and descriptive glosses from WordNet, and then calculate
the similarity score by selecting the minimal distance be-
tween any two hypernyms c1 and c2 of t1 and t2 respec-
tively, by random walk. Agirre et. al. subsequently pro-
posed a WordNet-based personalized PageRank algorithm
[6, 5]. It first computes the personalized PageRank of each
word and aggregates into a probability distribution for each
synset. Similarity is then defined by the cosine between two
distributions.

The above knowledge based approaches depend heavily on
the completeness of the underlying taxonomy and the exter-
nal corpora. However, the popular taxonomy like WordNet
does not have the adequate coverage as it cannot keep up
with the development of new terms and phrases everyday.

The framework proposed in this paper is also knowledge
based, but is more scalable and effective, because i) the

knowledge we use was acquired from the entire Web; and
ii) the clustering algorithm detects the senses of the input
terms and the max-max similarity function effectively picks
the senses that are most suitable given the pair of terms.
The above methods cannot be easily adapted to use Probase
because it is a general network, not a tree structure.

6.2 Corpus-based Approach
In this space, Chen et. al. proposed a double-checking

model using text snippets returned by a Web search engine
to compute semantic similarity between words [12]. The
proposed method uses the occurrences of terms X and Y
in their search snippets to evaluate the semantic similarity.
Recently, Bollegala et.al. proposed a new measure using
page counts and snippets from Web search [10]. The search
engine based methods are more time-consuming because i)
snippets and search results must be obtained online; ii) it
requires parsing of the returned text by the patterns.
Radinsky et. al. proposed a new model, Temporal Seman-

tic Analysis (TSA) [21], which captures the temporal infor-
mation of corpus. TSA uses a more refined representation,
where each concept is no longer scalar, but is instead rep-
resented as time series over a corpus of temporally-ordered
documents. This method can improve the pearson correla-
tion coefficient, but it requires massive historical data.
Most corpus based methods are more suitable for the se-

mantic relatedness not for the semantic similarity because
they make heavy use of the co-occurrence context in the
representation of terms or in similarity functions.

7. CONCLUSIONS
We presented a lightweight, effective approach for seman-

tic similarity between terms with any multi-word expres-
sion. Our clustering-based refined algorithm outperforms
the state-of-the-art methods as well as our basic algorithm
in terms of pearson correlation coefficient on word pairs and
MWE pairs. The method is efficient enough to be applied
on large scale data sets.

8. REFERENCES
[1] http://www.cs.technion.ac.il/~gabr/resources/

data/wordsim353/.

[2] http://wn-similarity.sourceforge.net/.

[3] http://www.math.uwo.ca/~mdawes/courses/344/

kuhn-munkres.html.

[4] http://www.codeproject.com/Articles/11835/

Word-Net-based-semantic-similarity-measurement.

[5] E. Agirre, M. Cuadros, G. Rigau, and A. Soroa.
Exploring knowledge bases for similarity. In
Proceedings of LREC’10, pages 373–377, 2010.

[6] E. Agirre and A. Soroa. Personalizing pagerank for
word sense disambiguation. In Proceedings of
EACL’09, pages 33–41, 2009.

[7] E. Agirre, A. Soroa, E. Alfonseca, K. Hall,
J. Kravalova, and M. Pasca. A study on similarity and
relatedness using distributional and wordnet-based
approaches. In Proceedings of NAACL’09, pages
19–27, 2009.

[8] M. Alvarez and S. Lim. A graph modeling of semantic
similarity between words. In Proceedings of the
Conference on Semantic Computing, pages 355–362,
2007.

[9] S. Banerjee and T. Pedersen. An adapted lesk
algorithm for word sense disambiguation using
wordnet. In Proceedings of CICLING’02, pages
136–145, 2002.

[10] D. Bollegala, Y. Matsuo, and M. Ishizuka. A web
search engine-based approach to measure semantic
similarity between words. IEEE TKDE, 23:977–990,
2011.

[11] A. Budanitsky and G. Hirst. Evaluating
wordnet-based measures of lexical semantic
relatedness. Computational Linguistics, 32:13–47,
2006.

[12] H. Chen, M. Lin, and Y. Wei. Novel association
measures using web search with double checking. In
Proceedings of the COLING/ACL 2006, pages
1009–1016, 2006.

[13] Q. Do, D. Roth, M. Sammons, Y. Tu, and
V. Vydiswaran. Robust, light-weight approaches to
compute lexical similarity. Technical report, 2009.

[14] G. Hirst and D. St-Onge. Lexical chains as
representations of context for the detection and
correction of malapropisms. In WordNet: An
Electronic Lexical Database, pages 305–332, 1998.

[15] J. Jiang and D. Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. In Proceedings
of International Conference on Research in
Computational Linguistics, pages 19–33, 1997.

[16] D. Lin. An information-theoretic definition of
similarity. In Proceedings of ICML’98, pages 296–304,
1998.

[17] G. Miller and W. Charles. Contextual correlates of
semantic similarity. Language and Cognitive Processes,
6:1–28, 1998.

[18] G. A. Miller. WordNet: A lexical database for english.
Commun. ACM, 38(11):39–41, 1995.

[19] A. W. Moore. An intoductory tutorial on kd-trees.
Technical report, 1991.

[20] R. Rada, H. Mili, E. Bichnell, and M. Blettner.
Development and application of a metric on
semanticnets. IEEE Transactions on Systems, Man
and Cybernetics, 9:17–30, 1989.

[21] K. Radinsky, E. Agichtein, E. Gabrilovich, and
S. Markovitch. A word at a time: Computing word
relatedness using temporal semantic analysis. In
Proceedings of WWW’11, pages 337–346, 2011.

[22] P. Resnik. Using information content to evaluate
semantic similarity in a taxonomy. In Proceedings of
IJCAI’95, pages 448–453, 1995.

[23] H. Rubenstein and J. B. Goodenough. Contextual
correlates of synonymy. Communications of the ACM,
8(10):627–633, 1965.

[24] D. Sánchez, M. Batet, and D. Isern. Ontology-based
information content computation. Knowledge-Based
Systems, 24:297–303, 2011.

[25] N. Seco, T. Veale, and J. Hayes. An intrinsic
information content metric for semantic similarity in
wordnet. In Proceedings of ECAI’04, pages 1089–1090,
2004.

[26] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a
probabilistic taxonomy for text understanding. In
Proceedings of SIGMOD’12, pages 481–492, 2012.

