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Abstract—This paper studies the problem of automatic de-
tection of false rumors on Sina Weibo, the popular Chinese mi-
croblogging social network. Traditional feature-based approaches
extract features from the false rumor message, its author, as well
as the statistics of its responses to form a flat feature vector.
This ignores the propagation structure of the messages and has
not achieved very good results. We propose a graph-kernel based
hybrid SVM classifier which captures the high-order propagation
patterns in addition to semantic features such as topics and
sentiments. The new model achieves a classification accuracy of
91.3% on randomly selected Weibo dataset, significantly higher
than state-of-the-art approaches. Moreover, our approach can be
applied at the early stage of rumor propagation and is 88%
confident in detecting an average false rumor just 24 hours after

the initial broadcast. 1

I. INTRODUCTION

Microblogging has taken over the Internet as one of the
most popular forms of online social networking. Twitter [1],
or the Chinese equivalent, Sina Weibo [2], allows users to
instantly broadcast short messages of up to 140 characters with
optional images and other meta data to all their followers.
Such messages maybe reposted with or without comments
by the followers and thus get transmitted throughout the
social network. Many of the microblogs carry unconfirmed
and uncertain information, and when they get spread around
quickly, they become rumors.

There is no uniform definition of rumors according to social
scientists. In our work, a rumor is defined as an unverified or
unconfirmed statement or report circulating in a community
[3]. By this definition, a stand-alone microblog which has not
been spread around is not a rumor. Breaking news such as
celebrity getting married that gets spread wildly online is not
a rumor either, because it is factual information. Discussions
about personality by horoscope signs are considered rumors
because there is no way to confirm their truthfulness. Some
rumors eventually are verified to be false; these are called
false rumors in this paper. These rumors are created either
intentionally or unintentionally, but carry false or even mali-
cious information and spread widely in the community. For
instance, some “urban legends” such as “Coke can dissolve
a tooth overnight” are considered false rumors here because
they are spread widely in the community and proven to be
false eventually. Recent past has witnessed many incidents of
online false rumors causing massive public panic and social
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unrest. On April 23, 2013, a false rumor on Twitter about an
explosion in Whitehouse injurying President Obama sent the
Dow down 140 points within a few minutes. In March, 2011,
after the Japanese Fukushima nuclear disaster, a Sina Weibo
post claimed that increased consumption of iodized salt can
protect human from nuclear radiation and this message caused
millions of people to raid the supermarkets around China to
buy salt and even soy sauce. Because of these and many
other similar damaging incidents, automatic detection of false
rumors on social network has recently gathered substantial
research interest and is also the goal of this paper.

While some researchers have worked previously on Twitter
(see Section V), this paper focuses on false rumor detection
on Sina Weibo, for which only limited research has been done
[4], [5], [6]. Automatic detection of false rumors is generally a
hard problem, because without proper background knowledge
or concrete, official evidence against, even human being cannot
distinguish between the false rumor and other messages.

脏猫吃臭鱼：全球发出警示！请传出去！隐翅虫，在你身上

时绝对不要打，她身上有毒液，接触到皮肤，就死定了！ 跟

你的孩子、朋友讲，万一身上有这虫，用嘴巴轻轻吹走就好。

绝对不要用手打。医生特别提醒，市民遇到毒隐翅

虫，千万不能拍打！@城市直通车官方微博 @丛熊

壮 @DLTV2生活频道 @海力网 @新青年网站

Fig. 1: False rumor about Rove Beetle

温州都市报  【遇到这种虫子千万别用手拍】温州市区一学

校近日出现隐翅虫，附一医医生介绍，该虫不会蜇人，但是它

体内有毒液，打死后毒液流出来，会迅速导致人体皮肤起泡、

化脓，并且成片扩展，越抓越严重。不小心沾染上毒

隐翅虫的毒液，可用肥皂水或4%苏打溶液或10%氨水

反复清洗皮肤，并尽快到正规医院接受治疗。

Fig. 2: Normal message about Rove Beetle

Consider the following two postings from Sina Weibo
(translated from the original messages in Figure 1 and Figure
2):

• Dirty Cat Eats Foul Fish: Global warning! Please repost!
You should never crush a rove beetle if it lands on your
skin. Rove beetles contain venom which kills people for sure
if it contacts skin! Tell your children and friends that it’s
better to just gently blow the rove beetle away if it lands on
your skin. Doctors specially warn that if you come across



a rove beetle, never smash it with hands! @AccessCity
@CongXiongzhuang @DLTVLivingChannel @hiliziWebsite
@NewYouthWeb

• Wenzhou City News: [Don’t crush this beetle with hands
when you see it] Rove beetles have been discovered in
a school of Wenzhou. According to a doctor, rove beetle
doesn’t bite human beings, but once the venom in its body
comes in contact with human skin, it can quickly cause
blistering and festering, spreading to other areas and getting
worse if you scratch it. If you ever touch the venom of rove
beetle, please clean the skin repeatedly with soap water, 4%
baking soda solution or 10% ammonia, and seek help at a
local hospital immediately.

Both messages quote the words of doctors, include vivid
photos, and have comparable number of reposts, which makes
them hardly distinguishable. The first message even mentioned
a few prominent organizational users with the “@” sign, which
appears to be official. However, the first posting is a false
rumor while the second is not. The truth is, venom of rove
beetle does not kill people but can result in skin infection.
Such knowledge is hard to come by for average people, which
explains why some innocent people repost false rumors and
inadvertently help their spread. The detection task is even
harder for computers, because the two messages contain very
similar keywords such as “rove beetle”, “crush”, “venom”,
“skin” and “doctor”. Existing natural language processing
techniques can easily confuse the two messages due to their
similarities.

One way to understand the difference between these two
messages is by looking at the message propagation structures.
Figure 3 and Figure 4 illustrate the initial parts of the propa-
gation graphs for the above examples. Each node in the graph
(denoted by rounded box) represents either an opinion leader
or a normal user. We will define opinion leader and normal
user in III-A. Each node includes the username and his or her
message (either the original message or the repost message).
Furthermore, the node for an opinion leader also carries the
number of followers and friends, number of reposts. It can
be seen that the false rumor (Figure 3) is first posted by a
normal user, then reposted and supported by some opinion
leaders and finally reposted by a large number of normal
users. On the contrary, the normal message (Figure 4) is
posted by an opinion leader and reposted directly by many
normal users. This subtle difference of propagation structure
is the primary inspiration of this paper. Besides the overall
propagation structure, there are other hints in Figure 3 that
suggest it is a false rumor: some normal users expressed their
doubts or dispproval in their responses (highlighed in red
color). Such signals can be picked up by high level semantic
analysis of each individial response.

Much of the previous work on false rumor detection
focuses on extracting large number of lexical and semantic
features from the original message and responses, and learn
a model from labeled data [7], [8]. While they do consider
the relationships among a thread of messages, they limit
themselves to a flat summary of statistics about the message
propagation patterns, such as the total number of reposts,
depths and degrees of the propagation tree, etc. They do this
for the convenience of constructing feature vectors for machine
learning. Such an approach is over-simplistic because it ignores
the internal graphical structure of the message transmission as

well as the differences among the users along that structure.
Our key insight is that most false rumors can be identified
not only by what the false rumor says, but also by the way
people respond to it and who these people are. The propagation
patterns, combined with the topics of the thread and the
sentiment of the responses, can give strong indications whether
the original message is the truth or fiction.

The main contributions of this paper are summarized
below:

• We model the pattern of message propagation as a tree,
which not only reflects the relation among reposts and
their authors but also the temporal behavior and the
sentiment of reposts. The tree can be simplified to
adapt to the space and time requirement of the system
(Section III-A).

• We propose a random walk graph kernel to model the
similarity of propagation trees. Results suggest that
the propagation of false rumors can be distinguished
from other messages (Section III-B).

• We combine the graph kernel and a radial basis
function kernel, together with other novel features to
build a hybrid SVM classifier (Section III-C and Sec-
tion III-D). Our experiments show the hybrid model
achieves significant better classification accuracy of
91.3% than those reported in previous work and can
be used for the early detection of false rumors (Section
IV).

II. PROBLEM DEFINITION

Sina Weibo is a social network in which a user can follow
some other users (called friends), and be followed by some
other users (called followers). A follower receives messages
posted by his or her friends and can respond by reposting to
the messages.

We model the Weibo data as a forest W of message
propagation trees. A propagation tree T = 〈V, E〉 is akin to a
message thread on forums or bulletin boards. Each node m in
V represents a text message posted on Weibo which contains
140 Chinese or Latin characters. m is associated with meta
data 〈u, t, c, i〉, where u is the creator of the message, t
is the time stamp of the message, c is the type of client from
which the message is sent (e.g., web, mobile, etc.), and i is the
set of optional images which are posted along with the text.
The user information u contains additional attributes of the
user such as gender, number of friends and followers, number
of messages posted in the past, last time of post, etc. The root
node of a tree is called “original message”, while all the other
nodes in the tree are called “reposts”, as they are the responses
to either the original message or other reposts. If there is a
directed edge from m1 to m2, then m2 is a response to m1.
For example, the following is the initial part of a thread where
m1 is the original message, and “//@user1” means a response
to user1.

- m1 (user1): When a rove beetle is on your skin, don’t crush
it or your skin will fester.

- m2 (user2): Really? I never saw it before! //@user1

- m3 (user3): Thanks for the warning. //@user1



Dirty Cat Eats Foul Fish
Followers: 82     Friends: 107

Directly repost: 83 

#Warning, please repost!# You should never 

crush a rove beetle if it lands on your skin...

hilizi Website
Followers: 116086    Friends: 697

Secondary repost: 37 

Really? It is horrible, everybody be careful!

Normal User
Please retweet it!

DLTV Living Channel
Followers: 41720 Friends: 1131

Secondary repost: 9 

Access City
Followers: 48126     Friends: 312

Secondary repost: 48 

[surprise]

Zhengzezhengtianze
Followers: 3378 Friends: 145

Secondary repost: 2 

Everyone watch out!

Beauty Car Clubhouse
Followers: 702  Friends: 280

Secondary repost: 4 

Oh my god!

Normal User

Moive Elsewhere
Followers: 975    Friends: 251

Secondary repost: 3 

Britain Tour Guide Yu 
Followers: 72501  Friends: 234

Secondary repost: 11 

Oh my god!

Normal User
It is indeed horrible.

Normal User

Normal User
[surprise] Normal User

Horrible!

Normal User
[surprise]

Normal User
Someone please rufute this rumor! 

Normal User
Everyone be careful! Remember what it looks like.

Normal User
I have heared this before.

Normal User
OMG! I should watch out!

Normal User
This is a false rumor! 

Normal User
No matter it is true or not, everyone should be careful!

Normal User
Is it true? There are always many bugs in summer!

Normal User
I hope there is no bugs in my home.Normal User

Everyone should know it!

Normal User
I have seen this before!

Normal User
[sickness]

Fig. 3: Fragment of false rumor propagation graph

Wenzhou City News
Followers: 208230     Friends: 298

Directly repost: 96 

#Don't crush it with hands!# Rove beetles have 

been discovered in a school of Wenzhou...

Chashan Forum
Followers: 25007     Friends: 1552

Secondary repost: 37 

Watch out..

Community of Wendu
Followers: 12592 Friends: 533

Secondary repost: 2 

Luchen Forum
Followers: 23057     Friends: 1748

Secondary repost: 2 

Normal User
[tears][tears][tears] Normal User

Disgusting beetle!

Normal User
Don't want to crush it.

Normal User
Horrible!

Normal User
Everyboy wath out!!!

Normal User
I just saw one.

Normal User
There are rove beetles in our school!

Normal User
Everyone be careful!

Fig. 4: Fragment of normal message propagation graph

- m4 (user4): That sounds awful! What is rove beetle? //@us-
er2

- m5 (user5): It’s true. I’ve been bitten once. //@user2

Figure 5 illustrates the corresponding propagation tree.

In this paper, false rumors and normal messages (which are
not false rumors) only refer to the original Weibo messages and
not reposts. An original message is either a false rumor or a
normal message. Our problem is, given a message propagation
tree T =〈V , E〉 as well as the meta data associated with V ,
return whether root(T ) is a false rumor or not.

m1

m2 m3

m4 m5

Fig. 5: A Partial Propagation Tree

III. APPROACH

Our general approach is based on an SVM classifier using a
hybrid kernel function which combines a novel random walk



graph kernel and a normal radial basis function (RBF) [9].
The graph kernel assesses the similarity between different
propagation trees while the RBF kernel computes the distance
between two vectors of both traditional and high level semantic
features. In this section, we will first introduce the labeled
propagation tree structure as well as the random walk kernel,
then present 8 new features used in the RBF kernel, and finally
show how to combined the two kernels into a hybrid SVM
kernel.

A. Propagation tree

For the purpose of the random walk graph kernel, we
enrich the propagation tree in Figure 5 by adding additional
information which represents the type of user of each message
and the opinion and sentiment toward the original message.
The resulting propagation tree2 will be used in the graph kernel
computation.

We divide the users into two types: opinion leaders and
normal users. Opinion leaders are those influential users whose
opinions dominate their followers[10]. A user is considered an
opinion leader if

# of followers

# of friends
> α (1)

where α > 1 and # of followers ≥ 1000. We thus label each
node of the tree as p if it comes from an opinion leader and
n otherwise.

We label the edge from mi to mj , called ej
3, with a triple

vj = (θ(a), θ(d), θ(s)), where a is the approval score of mj ,
which indicates approval or agreement, d is the doubt score of
mj which indicate doubts and suspicion, and s is the overall
sentiment score in mj . We defer the computation of a, d and
s to Section III-C. θ is a damping function defined by

θ(x) = 2−ρtx (2)

where t is the time difference in days between the original
message and mj , and ρ is a parameter between 0 and 1. The
idea is: the sooner a user gives a response, the more intense
the response is. Figure 6 shows such a labeled propagation tree
in which all reposts are sent in the same day as the original
message. Once the triple is extracted from the message,
message id mi can be removed from the nodes for simplicity.

p

p n

n n

(0,1,-1) (0,0,0)

(1,0,1)(0,0,-1)

Fig. 6: Example of Labeled Propagation Tree

2Note that this data structure contains only part of the information con-
tained in the message propagation tree model in Section II. The remaining
information will be used in the RBF kernel.

3Since the parent of mj is unique, ej uniquely identifies the edge between
mj and its parent.

Our intuition is that patterns can be discovered from the
labeled propagation tree, which helps distinguish false rumors
from others. For example, Figure 7 compares the partial
labeled trees rooted from the two messages about rove beetles
in Figure 1 and Figure 2. Despite the lexical similarity of
the two original messages, the false rumor (a) is reposted and
supported by many opinion leaders at first before normal users
take over the propagation; conversely the normal message (b)
is initially reposted by a majority of normal users. This shows
that the influence of multiple opinion leaders can quickly create
a “hype” which is followed by ordinary users.

n

p

(1.2,0,-1)

n

(a)

n

(-1,0,-2.5)

p

(1,0,1)

p

(1,0,1)

n

(0.5,0,-1)

n n n

(1,0,-1.5) (1,0,0.5) (0,-1,1) (-1,0,0)

p

n

(1,0,-0.5)

n

p

(1,0,-1)

n

(1,0,-1)

n

(0.5,0,1)

n n n

(0.5,0,1) (1,0,-1.5) (1.2,0,1) (1,0,-1)

(b)

Fig. 7: Tree of False Rumors and Others

In a social network with 50 million active users, a popular
message can be reposted thousands of times and the propaga-
tion tree thus gets extremely large. To reduce the computation
complexity of graph kernel function, we develop the following
rules to simplify a tree by lumping adjacent normal user nodes
together to form one super node, and thus reduce Figure 7(b)
to Figure 8:

1) If mi is the parent of mj , and both are labeled as
n, then mi, mj merge into one node mij , whose
parent is the parent of mi and whose children are the
children of mi or mj;

2) If mi is sibling of mj and both are labeled as n then
mi,mj merge into one node mij , whose parent is
the parent of mi and mj , and whose children are the
children of mi or mj;

3) The merged node mij has label n and the label of
incoming edge eij is vij = vi + vj ;

4) Do not merge the root with any other nodes;
5) Repeat the above rules until no pair of nodes can be

merged;
6) For each super node, normalize the vector on incom-

ing edge by the number of ordinary nodes merged
into this super node.



p

n p

(0.8,0,-0.2) (1,0,-1)

n

(1.1,0,0)

Fig. 8: Simplified Propagation Tree

B. Random walk graph kernel

To classify different propagation trees by SVM, we need
to calculate the similarity between trees. There are several tree
kernel functions that can be used to calculate the similarity of
trees such as the subset tree (SST) kernel[11] and subtree (ST)
kernel[12]. While these kernels prove to be useful in natural
language processing[13], they can not be used for our problem
because they consider two nodes to be similar only when they
have the same number of children. Whereas in this paper, if
mi is reposted a times and mj is reposted b times we would
like to consider them similar to some extent.

Instead of tree kernel, we use a random walk graph kernel
[14] to calculate the similarity of trees. Because the labels
of edges in the propagation tree are not discrete values but
continuous vectors, we modify the original random walk kernel
so that the kernel is applicable to graphs with continuously
labeled edges[15].

Given two trees T = (V,E) and T ′ = (V ′, E′), we first
calculate the direct product graph of two trees. The direct
product graph of two trees is G× = (T × T ′) = (V×, E×),
where

V× = {(v, v′) ∈ V × V ′ : label(v) = label(v′)}

E× = {((u, u′), (v, v′)) ∈ V 2
× :

(u, v) ∈ E ∧ (u′, v′) ∈ E′}

(3)

The adjacency matrix of the direct product graph G× is
A×, which is defined as [A×](u,u′),(v,v′) = l, where

l =

{

k((u, u′), (v, v′)) if ((u, u′), (v, v′)) ∈ E×,
0 otherwise.

(4)

The kernel function k measures the similarity of edges e(u,v)
and e(u′,v′), and is given by

k((u, u′), (v, v′)) = kedge((u, v), (u
′, v′))

= e−
‖v1−v2‖2

2σ2

(5)

where v1 is the vector label of e(u,v), v2 is the vector label
of e(u′,v′), and σ is a parameter.

Given the adjacency matrix A× and a weighting parameter
λ ≥ 0 we can define a random walk kernel on T and T’ as

K×(T, T
′) =

|V×|
∑

i,j=1

[

∞
∑

n=0

λnAn
×

]

ij

= e
T (I − λA×)

−1
e

(6)

If λ < 1 and is sufficiently small then the sum will converge.

Assuming T and T ′ contain n vertexes, then A× is a
n2×n2 matrix. Thus computing (I−λA×)

−1 directly requires
O(n6) time, which is too slow. In order to speed up, we
compute the graph kernel in two steps. First, we solve the
linear system

(I − λA×)x = e (7)

for x, then we compute eTx. In the first step, we use conjugate
gradient (CG) method to solve the linear system [16]. CG is
very efficient to solve the system of equations Mx = b if the
matrix M is rank deficient. In our work, the adjacency matrix
is from the product of two trees, which means the matrix is
sparse. As such, the CG solver can be sped up significantly
[17]. To solve the linear system, CG takes O(n4i) where i is
the number of iterations.

C. Features

We extract a total of 23 features from each message
propagation tree to build a vector for RBF kernel. Some of
the features have been proposed previously [4], [7], [8] and
shown to be effective. These features are largely based on
the basic characteristics of the original message itself or its
author. Besides, we propose 8 new features in this paper, which
can boost the accuracy of classifier. Some of the features are
specific to the Sina Weibo platform while others are generic.
We divide these features into 3 categories: message-based
and user-based features which are extracted from the original
message and its author, and repost-based features which are
calculated from the set of all reposts of an original message.
Table I documents all 23 features and their brief descriptions.
Features marked with * are new features proposed in this paper.
Next we discuss the new features in more details.

Topic Type feature refers to the topics of the original
message. We assume that a message can belong to one or
more topics. Since Sina Weibo has an official classification of
18 topics [18], we train a Latent Dirichlet Allocation (LDA)
[19] model which returns an 18-topic distribution for message
mi:

topic(mi) = (s1, . . . , s18) (8)

where sj is the probability of mi belonging to topic j. We
further convert topic(mi) into a binary vector by setting the
k highest probability topics to 1 and the rest of the topics to
0. We select k such that the total probabilities of top k topics
is above 0.5 while the total probabilities of top k− 1 topics is
below 0.5.

Search Engine feature refers to the number of results
returned by searching for the original message and the keyword
“false rumor” on a web search engine. Due to the limitation
of query length imposed by search engines, we divide the
message into word sequences of qlmax characters4 each. Then
each sequence qi is searched by querying “intext:qi intitle:false
rumor”. The final score for the message is obtained by aver-
aging the numbers for all queries.

User Type feature refers to the verified type of author.
Recently Sina Weibo not only classifies users into verified
and unverified, but categorizes all users into 12 refined types.

4qlmax is 32 for Google.



TABLE I: Description of 23 Features

Category Feature Description

MESSAGE HAS MULTIMEDIA Whether the message includes pictures, videos or audios
SENTIMENT The average sentiment score of the message
HAS URL Whether the message contains URLs
TIME SPAN The time interval between user registration and posting
CLIENT The type of software client used to post the original message
TOPIC TYPE∗ The topic type of the message based on LDA
SEARCH ENGINE∗ The number of search results returned by Google

USER IS VERIFIED Whether the author is verified by Sina Weibo
HAS DESCRIPTION Whether the author has personal description
GENDER The author’s gender: female or male
LOCATION Location where user was registered
NUM OF FOLLOWERS The number of people following the author at time of post
NUM OF FRIENDS The number of people the author is following at time of post
NUM OF POSTED MESSAGES The number of messages posted by the author at time of post
REGISTRATION TIME The time of author registraton
USER TYPE∗ The type of author based on the verified information

REPOST NUM OF COMMENTS The number of comments on the original message
NUM OF REPOSTS The number of reposts from the original message
AVG SENTIMENT∗ The average score of sentiment based on lexicon
AVG DOUBT∗ The average score of doubting based on lexicon
AVG SURPRISE∗ The average score of surprising based on lexicon
AVG EMOTICON∗ The average score of emoticon
REPOST TIME SCORE∗ The time interval between original message and repost

For example, -1 means not verified, 0 means verified media
celebrities, 3 means verified official media, etc.

Avg Sentiment feature refers to the average sentiment
score of all reposts of an original message. Each repost is first
segmented into Chinese words by the toolkit NLPIR [20] with
stop words removed. After that, we calculate the sentiment
score of each message based on the sentiment lexicon of
HowNet [21] and the basic emotion family of Ekman [22].
The average sentiment score is

1

n

n
∑

i=1

NPi −NNi

|mi|
(9)

where NPi is the number of positive words and NNi is the
number of negative words in mi, |mi| is the number of words
in mi, and n is the total number of reposts for that message.
Note that a positive word can be negated by a preceding
“not” or similar words (called negation word) in Chinese and
hence become a negative word. Same goes for negative words.
Avg doubt, Avg surprise and Avg emoticon features are
calculated similarly except the lexicons used are specially for
these categories. For example, when calculate Avg doubt of
an original message, NPi is the number of doubt words (based
on a doubt word lexicon) and NNi is the number of non-doubt
words.

Similarly, approval score a or doubt score d of mj (intro-
duced in Section III-A) is computed as

NPj −NNj

|mj |
(10)

where NPj is the number of approval (or doubt) words and
NNj is the number of dispproval (or non-doubt) words in mj ,
|mj | is the number of words in mj .

Repost Time feature is calculated from the time difference
in days between the original message and the repost:

1

n

n
∑

i=1

2−(ti−t0) (11)

where n is the total number of reposts, ti is the time stamp
of repost mi and to is the time stamp of the original message.
This feature represents the timeliness of the responses.

D. Hybrid kernel

For traditional SVM, input data is represented as {Xi, yi}
where Xi is the feature vector. In this work, we use {Xi, yi}
to represent an original message mi. Xi has 23 dimensions
and yi is the binary class label of false rumor or not. The RBF
kernel for this binary classifier is

K(Xi,Xj) =
〈

φ(Xi) · φ(Xj)
〉

(12)

where φ denotes the feature map from an input space to the
high dimensional space associated with the kernel function.

Moreover, every original message mi is associated with a
propagation tree Ti. In order to normalize the kernel function
of two propagation trees in Eq. (6), we divide K×(T, T

′) by
nn′ where n and n′ are the numbers of nodes in T and T ′:

K(T, T ′) =
1

nn′
K×(T, T

′) (13)

Therefore, the kernel function of message mi and mj can
be defined as

K(mi,mj) = βK(Ti, Tj) + (1− β)K(Xi,Xj) (14)

where 0 < β < 1, and β determines the proportional weight
of random walk kernel versus the feature vector kernel. In the



following experiments, we will train an SVM classifier based
on this hybrid kernel.

E. General Applicability

Although this paper targets Sina Weibo, the methods de-
veloped can be applied to other micro-blogging platforms such
as Twitter to detect false rumors there. Since most of the old
features we use were proposed in Castillo[7], which targeted
Twitter specifically, it is easy to extract these old features using
the Twitter API. On the other hand, almost all new features
belong to the message category and the reposting category,
which are only related to the text of micro-blogs, hence can
also be extracted using the Twitter API.

IV. EVALUATION

The evaluation of the hybrid SVM classifier consists of the
following phases: collection of Weibo data and annotation of
the original messages; tuning parameters of the SVM model;
evaluation of effectiveness of various features; comparison
with competing methods on end-to-end results; and finally
performance of the model on false rumor early detection.

A. Dataset

To train and evaluate our approach of detecting false
rumors, a labeled data set is needed. We collect a set of
known false rumors from Sina community management center
[23], which deals with reporting of issues including various
misinformation which we regard as certified false rumors.
There are 11466 reported false rumors between 2012/05/28
and 2014/04/11. Since a rumor must have sufficient circulation,
we only keep those false rumors that have at least 100 reposts,
which leaves us with 2601 false rumors up to 2014/04/11. Sina
Weibo API provides interfaces to capture the information of
original messages as well as their repost messages. From Sina
Weibo API, we captured the post time, post client and content
of 2601 false rumors along with all their reposts.

In the real world, the number of false rumors on Sina Weibo
is much smaller than the number of normal messages (1 out of
9 or less). Thus a “dummy” classifier that rules all messages
as normal messages will achieve a very high accuracy (above
90%) on real-world data. To avoid this problem, we construct a
data set with roughly equal number of false rumors and normal
messages. Most studies in the past also use data sets which are
either 50-50 split [7], [24] or close to that [4], [8]. Thus, we
randomly select 5000 other Weibo original messages which
are not proved to be false as well as their reposts using the
Sina Weibo API. Then, we manually filtered out messages with
fewer than 100 reposts as well as false rumors to form a set of
2536 normal messages. Each message or repost contains links
to the author profile information such as age, gender, number
of followers and friends, and can be crawled using the Weibo
API.

At the end of this phase, our labeled data set 5 consists of
2601 false rumors, 2536 normal messages and with 4 million
distinct users involved in these messages. Of these 500 false
rumors and 500 other messages (called small data set) are used

5The labeled data set of the original messages (without reposts) is available
at http://adapt.seiee.sjtu.edu.cn/∼kzhu/rumor/.

for SVM parameter tuning while the rest (called big data set)
are used for end-to-end cross validation.

B. SVM parameter tuning

The SVM classifier is implemented using LIBSVM[25].
We first use the small data set and 10-fold cross validation to
obtain the following parameters values that will be used in all
subsequent experiments:

2σ2 = 3

ρ = 0.1

γ = 2−11

cost = 213

By Eq. (1), α controls the number of opinion leaders in
the tree and hence affects the final simplified tree and the
calculation of the kernel function. Here we analyze the impact
of α on the size of the product graph in the graph kernel as well
as the accuracy of the SVM through 10-fold cross validation.
To suppress the effects of the vector kernel, we set β = 1 in
this experiment. The results of experiment are shown in Figure
9 and Figure 10.
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Fig. 9: Average number of vertexes in product graph vs. α
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Fig. 10: Classification accuracy vs. α

Accuracy hits the maximum when α = 20. It is also
interesting to note that as α grows, the size of the graph
converges, which indicates that when α is large, most ordinary
users have been merged into super nodes and there are only
small number of opinion leaders in the “long tail” who have
extremely large fan base. In the following experiments, we set
α = 20.



Next we try to tune the best β value to balance the graph
kernel and the RBF kernel. For each value of β, we train
an SVM classifier and record its accuracy. The results of
experiment are shown in Figure 11.
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Fig. 11: Accuracy, F1 for false rumors and for other messages
vs. β

Results show that when β = 0.6, the hybrid kernel achieves
the best accuracy and the combination of the two kernels
performs better than each individual kernel (two ends of
the graph). Therefore, in the following experiments, we set
β = 0.6.

C. Feature selection

To investigate the effectiveness of our new features, we
train several SVM classifiers using different subsets of the fea-
tures. We also train a classifier without graph kernel function
to show its usefulness. The small data set (1000 messages)
is divided into training set and test set with a ratio of 2:1.
For each subset of features, we train an SVM classifier on the
training set and test the classifier on the test set. The results of
experiment are shown in Table II. Here (-)X means the whole
set of features except feature X. F stands for “false rumors”
while O stands for “other messages”.

The results show that the inclusion of the graph kernel
is indeed very effective, improving the accuracy by 0.056,
which is the largest single-feature improvement among all
features. This clearly indicates that the explicit representation
of propagation tree patterns better models the false rumors
than others. Results also suggest that TOPIC TYPE is the
most effective among all ordinary features. This is because
false rumors tend to concentrate on a few sensitive topics,
such as missing persons or health issues. The features about
sentiments also have significant impact on the result, which
means people’s opinions, especially when they are doubtful or
surprised, point to possible false rumors. Finally, when all new
features and the graph kernel are removed, the accuracy of the
classifier drops considerably, which again shows that the graph
kernel and our new features, when combined together, provide
substantial boost for the classifier.

D. End-to-end false rumor detection

We compare our hybrid SVM classifier with two oth-
er state-of-the-art false rumor detection algorithms[7], [4].
Castillo’s J48 decision tree is implemented using the 15 best
reported features under WEKA; Yang’s SVM classifier was

implemented using all 19 reported features except locations of
the messages which are not available in our data. The location
feature was shown to be not particularly useful in Yang’s
system anyway. We also train an SVM classifier with only
graph kernel (β = 1) as baseline to evaluate the classification
performance of graph kernel (Graph). Finally, we train an
SVM classifier with all features except the graph kernel, plus
7 simple graph features proposed by Castillo[7] to examine
if our graph kernel is indeed important versus just simple
graph features extracted from propagation tree (Simple). For
this experiment, we compute the accuracies, precisions, recalls
and F1 measures by 3-fold cross validation on the big data set.

TABLE III: Comparison of different methods

Methods Hybrid Castillo Yang Graph Simple

Accuracy 0.913 0.854 0.772 0.770 0.856
F precision 0.905 0.853 0.773 0.773 0.846
F recall 0.922 0.854 0.776 0.763 0.871
F F1 0.913 0.854 0.774 0.768 0.859
O precision 0.920 0.853 0.770 0.766 0.866
O recall 0.903 0.854 0.768 0.776 0.840
O F1 0.912 0.854 0.769 0.771 0.853

Table III shows the result. Overall, the table demonstrates
that our approach outperforms the other competitions by
large margins across all measures. The hybrid SVM classifier
achieve a higher accuracy than the classifier with simple graph
features. This is because hybrid SVM classifier could store
much information of the propagation tree while simple graph
features lose a lot of such structural information. Besides,
the graph kernel alone has a comparable performance to
the baseline of Yang. These results indicate that propagation
tree pattern is a critically important high-order feature for
distinguishing false rumors from others.

E. False rumor early detection

In this subsection, we evaluate the ability of the hybrid
SVM classifier in detecting false rumors in the early stage
of propagation. Given a detection deadline, we assume all
reposts and related information published after this deadline
are invisible when testing the model of the classifier. For
example, if the detection deadline is 24 hours, then we only
use the data that was generated during the first day after the
original message is posted. The sooner the deadline, the less
data of reposts and hence the propagation structures can be
used. A deadline of 0 hours means that we will not use any
repost data except the original messages themselves. Such
detection deadlines affects the graph kernel as well as all
features in REPOST category.

Figure 12 shows the average accuracy of detection for
various deadlines. The experiment was performed on the small
data set. The data set was divided into two parts evenly, one
part was used to learn the model of classifier, another part was
used to test the model. When learning the model, all training
data is used, while only the test data before the deadline is used
when testing the model. Our model (Hybrid) achieves 72%
accuracy when deadline is 0. This accuracy is low because
there is no information of propagation structure but only
some static features from the original messages. As deadline



TABLE II: Impact of features

Accuracy F precision F recall F F1 O precision O recall O F1

(-)TOPIC TYPE 0.865 0.836 0.911 0.872 0.900 0.818 0.857

(-)SEARCH ENGINE 0.880 0.872 0.912 0.892 0.906 0.863 0.884

(-)USER TYPE 0.894 0.877 0.919 0.897 0.912 0.868 0.890

(-)AVG SENTIMENT
(-)AVG DOUBT 0.872 0.846 0.912 0.878 0.903 0.830 0.865
(-)AVG SURPRISE

(-)AVG EMOTICON 0.887 0.874 0.908 0.891 0.902 0.866 0.884

(-)REPOST TIME SCORE 0.892 0.874 0.919 0.896 0.912 0.865 0.888

(-)Graph Kernel 0.848 0.851 0.846 0.849 0.844 0.849 0.846

(-)All New Features 0.796 0.806 0.782 0.794 0.786 0.810 0.798

(-)All New Features & Graph Kernel 0.761 0.748 0.792 0.769 0.777 0.730 0.753

With All Features & Graph Kernel 0.904 0.886 0.929 0.907 0.924 0.877 0.900
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Fig. 12: False rumor early detection

is lengthened, the accuracy climbs rapidly, which indicates
that the features from the responses and the propagation
graph weigh in. By 24 hours after the initial posting, the
detection accuracy is 88%, which suggests that the model
is 88% confident to detect an average false rumors within
the first day of the posting of original messages. We also
experimented with rumor early detection on Yang’s[4] and
Castillo’s[7] algorithms, and compare their results with ours
in Figure 12. The accuracies of the three methods at time
0 are mostly the same because three methods share similar
basic features when there is no repost. However, after 24
hours, Yang’s result improves a little, Castillo’s improves
substantially, while ours improves the most. This is because
Yang’s method uses only simple features related to reposting
(e.g., “IS RETWEETED”, “NUM OF COMMENTS”, “NUM
OF RETWEETES”), Castillo’s method includes some simple
but effective features of reposting such as “AVG SENTIMENT
SCORE” and “PROPAGATION MAX LEVEL”, while our
method considers the propagation structure as well as many
other reposting features and thus benefits most from the signals
of the reposts. Among the three methods, ours converges most
quickly in terms of early false rumor detection.

V. RELATED WORK

Previous work on false rumor detection for microblogging
service (either on Twitter or Weibo) has largely modeled the
problem as a binary classification problem. Hence the primary
focus has been feature selection. In the following, we will
first discuss the definition of rumor. Then, we will discuss

features ever used in false rumor detection in the literature.
After that, we will compare various classification methods and
discuss some graph kernels. We conclude this section with
rumor source detection, which is a related problem.

A. Definition of Rumor

Although there is no commonly accepted definition of
rumor, in many dictionaries [3] and previous literatures [26],
an important character of rumor is uncertainty. In the previous
work on false rumor detection for microblogging service, there
are different definitions of rumor and false rumor. Some pre-
vious work [8] defines rumor according to social psychology,
where a rumor is defined as a statement whose truth-value is
unverifiable or deliberately false. In their research, they use the
word “false rumor,” “misinformation” or “disinformation” to
distinctively refer to rumors that turn out to be false eventually
[7], [27]. In our work, we follow a similar definition.

However, some other research [4], [28] does not make a
distinction between “rumor”, “false rumor”, and “misinfor-
mation,” and use these terms interchangeably to mean false
statements. Some literatures [29], [24] use the word “rumor”
as the opposite term of “news” where they consider “news”
to be always true while “rumor” always false. Most of these
researchers come from Asia where “rumor” is generally carries
a negative connotation. Such cultural differences may be the
reason why there is no universally agreed upon definition for
this term.

B. Features for False Rumor Detection

We divide existing features for false rumor detection into
4 types.

Linguistic Features pertain to the microblog message
text [8]. They range from simple features such as message
length, punctuations, letter case, whether URLs or hashtags are
included [30], types of emoticons used and POS tags [31] to
more advanced semantic features such as sentiment scores [7],
[8] and opinion words [32]. Previous research [4], [32] shows
that not all these features are effective for false rumor detec-
tion. The most significant features among them are emoticons,
opinion words and sentiment scores (positive or negative). In
this paper, we used all the effective features, plus a topic model
feature and a search engine feature (see Section III-C). These



new semantic features were not previously attempted and they
turn out to be very useful.

User Features describe the characteristics of an individual
user. These include the time and location of the account
registration, gender and age of the user, username and avatar
[33], whether this is a verified account, number of friends,
number of followers, the description and the personal home
page of the user, number of messages post in the past, etc. [7]
These features are associated with the original message to be
classified in this paper. Furthermore, we utilize a more refined
user type than verification status.

Structural Features pertain to either the message propa-
gation tree or the user friendship network. All existing work
[7], [8], [28] focuses on the numeric summary of such graph
structures, e.g., the total number of nodes (i.e., messages or
users) in the graph, maximum or average depth of the graph,
the degree of the root and the maximum or average degree of
the graph. Most of the work treats each node (either message
or user) equally and hence only derives such generic statistics.
Recently, some researchers [24], [6] adapted the epidemio-
logical models to false rumor detection, and group users into
population compartments such as susceptible (S), infected (I)
and skeptic (Z), etc. Users transit from one compartment to
another as they choose to or not to repost a topical message.
Structural features under these models are slightly more refined
as the they keep the counts for each compartment separately.
Our approach adopts some of these features but we advocate
that the actual graph structure of the message propagation is
more explicit thus important than the summary statistics. But
since the graph can be very big, we distinguish the messages
posted by opinion leaders or normal users and propose a way
to simplify the graph so it can be used efficiently in a graph
kernel.

Temporal Features look at the time stamps of the mes-
sages and compare them with the time of the original post
or the time when the author was first registered [7]. More
advanced models use these times to detect sudden spikes in
the volume of responses or periodicity of such spikes [32].
Researchers also use time to calculate rates of population
change among the compartments in epidemiological models
[24], [32]. We use the time between a repost and the original
message as a damping factor to indicate the strength of the
sentiments in the response. Thus responses which are posted
long after the original message have little effect on false rumor
identification.

In addition to the above 4 types, there are also miscel-
laneous features like type of software client used to post a
message, location from which a message is posted, etc.

C. Classification Methods

Most of existing research uses common supervised learn-
ing approaches such as decision tree, random forest, Bayes
networks and support vector machine (SVM). Castillo et al.
[7] reported that different methods produce comparable results
but decision tree is the best for 608 topics (equivalent to
our original messages), with a classification accuracy of 89%
under 3-fold cross validation. More recently, Kwon et al. [32]
considered random forest to outperform other methods with 11
features on 102 topics each with at least 60 tweets. Although

they reported 90% accuracy under 2-fold cross validation, their
data set is relatively small. Our paper proposes a hybrid SVM
classifier which combines a random walk graph kernel with
normal RBF kernel using 23 features including 8 new features.
Our experiments show that its performance is superior against
the state-of-the-art methods and features used by Castillo et
al. and Yang et al.

Okazaki et al.[27] instead used unsupervised approach for
extracting false information after the 2011 Japan earthquake
and tsunami. They designed a set of linguistic patterns for
correction or refutation statements, extracted the text passages
that match the correction patterns and clustered them into
different topics. At last, they selected a representative passage
for each topic as the rumor.

Besides that, research that adapts epidemiological models
[24], [6] to false rumor detection generally define ordinary
differential equations (ODEs) on the rate of user population
changes and fit non-linear functions to the data. By observation
of the function curves of different population compartment,
they then manually design a classification function to tell false
rumors from others.

D. Graph Kernels

Traditional SVM classifiers are based on the data that can
be represented as simple, flat vectors. However, it is not always
reasonable as many objects in the real world are structured
by nature[34]. For this reason, people have developed ways
to incorporate complex structures such as trees and graphs as
the kernels of SVM. In this paper, as proposed in Section
III-B, although the propagation pattern of a message is tree-
structured, we use graph kernel to calculate the similarity of
two propagation trees.

One kind of kernel that can be used in graph is convolution
kernel [35]. Convolution kernel assumes that one object can
be decomposed into different parts and the similarity of two
objects can be computed by combining the similarity of parts
from two objects. Convolution kernel provides a generic way to
construct kernel for discrete structured data and can be used
in many different problems. One application of convolution
kernel on tree structures is subset tree (SST) kernel[11]. SST
decomposes syntax tree into different subset trees and the
similarity of two trees can be computed by the similarity of
their subset trees. Although convolution kernel is very general,
it remains a difficult problem to find a reasonable method to
decompose an object into different parts.

Graph kernel can be defined on all paths or shortest paths
[36]. The all-path kernel is defined as the sum over all kernels
on all pairs of paths from two graphs. However, computing
the all-path kernel is time-consuming because finding all paths
in a graph is NP-hard. Conversely, computing shortest path
in a graph can be solved in polynomial time using classic
algorithms such as Dijkstra [37] and Floyed-Warshall [38],
[39]. Given a pair of graphs, we can first compute the shortest-
path graph for both graphs. Then we compute pair-wise kernels
from all pairs of edge walks of length 1, each coming from
one of the short-path graphs. The shortest-path graph kernel
of the pair of graphs is defined as the sum of all these
pair-wise kernels. The shortest-path graph kernel is positive
definite and can be computed efficiently (O(n4)). However, it



is inappropriate for computing the similarity of propagation
trees in our problem because the shortest-path graph kernel
only consider the shortest path of one graph, which loses
information in the propagation tree.

Random walk graph kernel was first proposed by Gärtner
[14]. The idea of random walk graph kernel is, given a pair of
graphs, to first perform random walks on both simultaneously,
then to count the number of matching walk paths. This proce-
dure is equivalent to doing random walks on the direct product
of two graphs [40]. Random walk graph kernel is applicable to
graphs with labeled nodes and edges and have considered the
whole graph when computing similarity, which is appropriate
for propagation trees. However, the original random walk
graph kernel can not deal with continuously labeled graphs
[15]. For this reason, an extension of the original random
walk kernel has been proposed [41]. The idea is to calculate
the similarity rather than equality between two walks. The
extended random walk graph kernel can then be applied to
our problem.

E. Rumor Source Detection

Some previous work [42], [43] focuses on rumor propaga-
tion through social network. They try to use graph theory to
detect rumors and find the source of rumors. A social network
is modeled as a directed graph where each vertex represents an
individual person and each edge represents information flow
between two individuals. Some of the nodes are designated as
“monitor nodes” where data that they receive may be observed.
Given that messages are sent from some of the nodes and get
propagated through the network, rumors can be detected and
their sources can be recognized by observing the data received
at the monitor nodes.

VI. CONCLUSION

This paper studies the problem of automatically detecting
false rumors on the popular Chinese microblogging service,
Sina Weibo. We develop a graph-kernel-based SVM classifier
which combines the features from the topics of the original
message, the sentiments of the responses, the message prop-
agation patterns, and the profiles of the users who transmit
this message around. Message propagation patterns have been
used as high order features for the first time. Our results show
that the repost patterns of false rumors and others are very
different, which makes the random walk graph kernel very
useful in detecting false rumors. The combination of random
walk kernel and RBF kernel performs better than each of them
alone, as well as recent state-of-the-art approaches, with an
accuracy of 0.913. More importantly, our model can be used
for the early detection of false rumors. Results show that our
algorithm is almost 90% confident when detecting false rumors
just one day after their initial broadcast.
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