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Abstract

Answering complex questions that involve

multiple entities and multiple relations using

a standard knowledge base is an open and

challenging task. Most existing KBQA ap-

proaches focus on simpler questions and do

not work very well on complex questions be-

cause they were not able to simultaneously

represent the question and the corresponding

complex query structure. In this work, we en-

code such complex query structure into a uni-

form vector representation, and thus success-

fully capture the interactions between individ-

ual semantic components within a complex

question. This approach consistently outper-

forms existing methods on complex questions

while staying competitive on simple questions.

1 Introduction

The knowledge-based question answering

(KBQA) is a task which takes a natural lan-

guage question as input and returns a factual

answer using structured knowledge bases

such as Freebase (Bollacker et al., 2008),

YAGO (Suchanek et al., 2007) and DBpe-

dia (Auer et al., 2007). One simple example is

a question like this: “What’s the capital of the

United States?” A common answer to such ques-

tion is to identify the focus entity and the main

relation predicate (or a sequence) in the question,

and map the question to a triple fact query (US,

capital, ?) over KB. The object answers are

returned by executing the query. The mapping

above is typically learned from question-answer

pairs through distant supervision.

While the above question can be answered by

querying a single predicate or predicate sequence

in the KB, many other more complex questions

cannot, e.g. the question in Figure 1. To answer

the question “What is the second longest river in

United States”, we need to infer several semantic
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river
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Figure 1: Running example of complex question.

clues: 1) the answer is contained by United States;

2) the answer is a river; 3) the answer ranks second

by its length in descending order. Thus, multiple

predicates are required to constrain the answer set,

and we call such questions “complex questions”

throughout this paper.

For answering complex questions, it’s more im-

portant to understand the compositional semantic

meanings of the question. As a classic branch of

KBQA solutions, semantic parsing (SP) technique

(Berant et al., 2013; Yih et al., 2015; Reddy et al.,

2016; Hu et al., 2018) aims at learning semantic

parse trees or equivalent query graphs 1 for repre-

senting semantic structures of the questions. For

example in Figure 1, the query graph forms a tree

shape. The answer node A, serving as the root of

the tree, is the variable vertex that represents the

real answer entities. The focus nodes (US, river,

2nd) are extracted from the mentions of the ques-

tion, and they constrain the answer node via predi-

cate sequences in the knowledge base. Recently,

neural network (NN) models have shown great

promise in improving the performance of KBQA

systems, and SP+NN techniques become the state-

of-the-art on several KBQA datasets (Qu et al.,

2018; Bao et al., 2016). According to the discus-

sion above, our work extends the current research

in the SP+NN direction.

The common step of SP-based approaches

1The term “query graph” is interchangeable with “query
structure” and “semantic parsing tree” throughout this paper.
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is to first collect candidate query graphs us-

ing bottom up parsing (Berant et al., 2013;

Cai and Yates, 2013) or staged query generation

methods (Yih et al., 2015; Bao et al., 2016), then

predict the best graph mainly based on the se-

mantic similarity with the given question. Ex-

isting NN-based methods follow an encode-and-

compare framework for answering simple ques-

tions, where both the question and the predicate

sequence are encoded as semantic vectors in a

common embedding space, and the semantic sim-

ilarity is calculated by the cosine score between

vectors. In order to define the similarity func-

tion between one question and a complex query

graph, an intuitive solution is to split the query

graph into multiple semantic components, as the

predicate sequences separated by dashed boxes in

Figure 1. Then previous methods can be applied

for modeling the similarity between the question

and each part of the graph. However, such ap-

proach faces two limitations. First, each seman-

tic component is not directly comparable with the

whole question, since it conveys only partial in-

formation of the question. Second, and more im-

portantly, the model encodes different components

separately, without learning the representation of

the whole graph, hence it’s not able to capture the

compositional semantics in a global perspective.

In order to attack the above limitations, we pro-

pose a neural network based approach to improve

the performance of semantic similarity measure-

ment in complex question answering. Given can-

didate query graphs generated from one question,

our model embeds the question surface and pred-

icate sequences into a uniform vector space. The

main difference between our approach and previ-

ous methods is that we integrate hidden vectors

of various semantic components and encode their

interaction as the hidden semantics of the entire

query graph. In addition, to cope with different

semantic components of a query graph, we lever-

age dependency parsing information as a comple-

mentary of sentential information for question en-

coding, which makes the model better align each

component to the question. The contribution of

this paper is summarized below.

• We propose a light-weighted and effective

neural network model to solve complex

KBQA task. To the best of our knowledge,

this is the first attempt to explicitly encode

the complete semantics of a complex query

graph (Section 2.2);

• We leverage dependency parsing to enrich

question representation in the NN model, and

conduct thorough investigations to verify its

effectiveness (Section 2.2.2);

• We propose an ensemble method to enrich

entity linking from a state-of-the-art linking

tool, which further improves the performance

of the overall task (Section 2.3);

• We perform comprehensive experiments on

multiple QA datasets, and our proposed

method consistently outperforms previous

approaches on complex questions, and pro-

duces competitive results on datasets made

up of simple questions (Section 3).

2 Approach

In this section, we present our approach for solv-

ing complex KBQA. First, we generate candidate

query graphs by staged generation method (Sec-

tion 2.1). Second, we measure the semantic simi-

larities between the question and each query graph

using deep neural networks (Section 2.2). Then

we introduce an ensemble approach for entity link-

ing enrichment (Section 2.3), Finally, we discuss

the prediction and parameter learning step of this

task (Section 2.4).

2.1 Query Graph Generation

We illustrate our staged candidate generation

method in this section. Compared to previous

methods, such as Bao et al. (2016), we employ

a more effective candidate generation strategy,

which takes advantage of implicit type informa-

tion in query graphs and time interval information

in the KB. In our work, we take 4 kinds of seman-

tic constraints into account: entity, type, time and

ordinal constraints. Figure 2 shows a concrete ex-

ample of our candidate generation. For simplicity

of discussion, we assume Freebase as the KB in

this section.

Step 1: Focus linking. We extract possible

(mention, focus node) pairs from the question. Fo-

cus nodes are the starting points of various se-

mantic constraints, refer to Figure 2(a). For en-

tity linking, we generate (mention, entity) pairs

using the state-of-the-art entity linking tool S-

MART (Yang and Chang, 2015). For type linking,

we brutally combine each type with all uni-, bi-
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Figure 2: Running example of candidate generation.

and tri-gram mentions in the question, and pick

top-10 (mention, type) pairs with the highest word

embedding similarities of each pair. For time link-

ing, we extract time mentions by simply matching

year regex. For ordinal linking, we leverage a pre-

defined superlative word list2 and recognize men-

tions by matching superlative words, or the “or-

dinal number + superlative” pattern. The ordinal

node is an integer representing the ordinal number

in the mention.

Step 2: Main path generation. We build dif-

ferent main paths by connecting the answer node

to different focus entities using 1-hop or 2-hop-

with-mediator3 predicate sequence. Figure 2(b)

shows one of the main paths. Further constraints

are attached by connecting an anchor node x to an

unused focus node through predicate sequences,

where the anchor node x is a non-focus node in

the main path (A or v1 in the example).

Step 3: Attaching entity constraints. We ap-

ply a depth-first search to search for combinations

of multiple entity constraints to the main path

through 1-hop predicate. Figure 2(c) shows a valid

entity constraint, (v1, basic title, president).

The advantage of depth-first search is that we

can involve unlimited number of entities in a

query graph, which has a better coverage than

template-based methods.

Step 4: Type constraint generation. Type

constraints can only be applied at the answer node

using IsA predicate. Our improvement in this step

is to filter type constraints using implicit types

2 ~20 superlative words, such as largest, highest, latest.
3 Mediator is a kind of auxiliary nodes in Freebase main-

taining N-ary facts.

of the answer, derived from the outgoing predi-

cates of the answer node. For example in Fig-

ure 2(c), the domain type of the predicate gov-

ernment position is politician, which becomes the

implicit type of the answer. Thus we can filter

type constraints which are irrelevant to the im-

plicit types, preventing semantic drift and speed-

ing up the generation process. To judge whether

two types in Freebase are relevant or not, we adopt

the method in Luo et al. (2015) to build a rich type

hierarchy of Freebase. Focus types are discarded,

if they are not the super- or sub- types of any im-

plicit types of the answer.

Step 5: Time and ordinal constraint gener-

ation. As shown in Figure 2(d), the time con-

straint is represented as a 2-hop predicate se-

quence, where the second is a virtual predicate

determined by the preposition before the focus

time, indicating the time comparing operation, like

“before”, “after” and “in”. Similarly, the ordinal

constraint also forms a 2-hop predicate sequence,

where the second predicate represents descending

(MaxAtN) or ascending order (MinAtN).

For the detail of time constraint, while exist-

ing approaches (Yih et al., 2015; Bao et al., 2016)

link the focus time with only single time predi-

cate, our improvement is to leverage paired time

predicates for representing a more accurate time

constraint. In Freebase, paired time predicates are

used to represent facts within certain time inter-

vals, like from and to4 in Figure 2(d). For time

comparing operation “in”, we link the time focus

to the starting time predicate, but use both predi-

4 Short for governmental position held.from and
governmental position held.to respectively.
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cates in SPARQL query, restricting that the focus

time lies in the time interval of the paired predi-

cates.

After finishing all these querying stages, we

translate candidate graphs into SPARQL query,

and produce their final output answers. Finally,

we discard query graphs with zero outputs, or us-

ing overlapped mentions.

2.2 NN-based Semantic Matching Model

The architecture of the proposed model is shown

in Figure 3. We first replace all entity (or time)

mentions used in the query graph by dummy to-

kens 〈E〉 (or 〈Tm〉). To encode the complex query

structure, we split it into predicate sequences start-

ing from answer to focus nodes, which we call

semantic components. The predicate sequence

doesn’t include the information of focus nodes,

except for type constraints, where we append the

focus type to the IsA predicate, resulting in the

predicate sequence like {IsA, river}. We intro-

duce in detail the encoding methods for questions

and predicate sequences, and how to calculate the

semantic similarity score.

2.2.1 Semantic Component Representation

To encode a semantic component p, we take the se-

quence of both predicate ids and predicate names

into consideration. As the example shown in Fig-

ure 3, the id sequence of the first semantic com-

ponent is {contained by}, and the predicate word

sequence is the concatenation of canonical names

for each predicate, that is {“contained”, “by”}.

Given the word sequence {p
(w)
1 , . . . , p

(w)
n }, we

first use a word embedding matrix Ew ∈ R
|Vw|×d

to convert the original sequence into word em-

beddings {p
(w)
1 , . . . , p

(w)
n }, where |Vw| denotes the

vocabulary size of natural language words, and d

denotes the embedding dimension. Then we rep-

resent the word sequence using word averaging:

p(w) = 1
n

∑
i p

(w)
i .

For the id sequence {p
(id)
1 , . . . , p

(id)
m }, we sim-

ply take it as a whole unit, and directly translate

it into vector representation using the embedding

matrix Ep ∈ R
|Vp×d| at path level, where |Vp| is

the vocabulary size of predicate sequences. There

are two reasons for using such path embedding: 1)

the length of id sequence is not larger than two,

based on our generation method; 2) the number of

distinct predicate sequences is roughly the same

as the number of distinct predicates. We get the fi-

nal vector of the semantic component by element-

wise addition: p = p(w) + p(id).

2.2.2 Question Representation

We encode the question in both global and lo-

cal level, which captures the semantic information

with respect to each component p.

The global information takes the token se-

quence as the input. We use the same word embed-

ding matrix Ew to convert the token sequence into

vectors {q
(w)
1 , . . . , q

(w)
n }. Then we encode the to-

ken sequence by applying bidirectional GRU net-

work (Cho et al., 2014). The representation of the

token sequence is the concatenation of the last for-

ward and backward hidden states through the Bi-

GRU layer, q(tok) = [
←−
h

(w)
1 ;
−→
h

(w)
n ].

To encode the question at local level, we lever-

age dependency parsing to represent long-range

dependencies between the answer and the focus

node in p. Since the answer is denoted by the wh-

word in the question, we extract the dependency

path from the answer node to the focus mention

in the question. Similar with Xu et al. (2016), we

treat the path as the concatenation of words and

dependency labels with directions. For example,

the dependency path between “what” and “United

States” is {what,
−−−→
nsubj, is, −−→prep, in,

−−→
pobj, 〈E〉}.

We apply another bidirectional GRU layer to pro-

duce the vector representation at dependency level

q
(dep)
p , capturing both syntactic features and local

semantic features. Finally we combine global and

local representation by element-wise addition, re-

turning the representation of the question with re-

spect to the semantic component, qp = q(tok) +

q
(dep)
p .

2.2.3 Semantic Similarity Calculation

Given the query graph with multiple semantic

components, G = {p(1), . . . , p(N)}, now all its

semantic components have been projected into a

common vector space, representing hidden fea-

tures in different aspects. We apply max pooling

over the hidden vectors of semantic components,

and get the compositional semantic representation

of the entire query graph. Similarly, we perform

max pooling for the question vectors with respect

to each semantic component. Finally, we compute

the semantic similarity score between the graph

and question:

Ssem(q,G) = cos(max
i

p(i),max
i

q(i)p ). (1)



2189

A
contained_by

A

length

2

MaxAtN

contained by contained_by

pooling

avg

what is the second longest river in the !"#

what nsubj river prep in pobj <E>

pooling

BiGRU

cos

US

river

A

isA

+

BiGRU

+

Figure 3: Overview of proposed semantic matching model.

Based on this framework, our proposed method

ensures the vector spaces of the question and the

entire query graph are comparable, and captures

complementary semantic features from different

parts of the query graph. It’s worth mention-

ing that the semantic matching model is agnostic

to the candidate generation method of the query

graphs, hence it can be applied to the other exist-

ing semantic parsing frameworks.

2.3 Entity Linking Enrichment

The S-MART linker is a black box for our system,

which is not extendable and tend to produce high

precision but low recall linking results. To seek a

better balance at entity linking, we propose an en-

semble approach to enrich linking results. We first

build a large lexicon by collecting all (mention, en-

tity) pairs from article titles, anchor texts, redirects

and disambiguation pages of Wikipedia. Each pair

is associated with statistical features, such as link-

ing probability, letter-tri-gram jaccard similarity

and popularity of the entity in Wikipedia. For the

pairs found in S-MART results, we take the above

features as the input to a 2-layer linear regression

model fitting their linking scores. Thus we learn

a pseudo linking score for every pair in the lexi-

con, and for each question, we pick top-K highest

pairs to enrich S-MART linking results, where K

is a hyperparameter.

2.4 Training and Prediction

To predict the best query graph from candidates,

we calculate the overall association score S(q,G)
between the question q and each candidate G,

which is the weighted sum of features over entity

linking, semantic matching and structural level.

Table 1 lists the detail features.

During training step, we adopt hinge loss to

maximize the margin between positive graphs G+

and negative graphs G−:

loss = max{0, λ− S(q,G+) + S(q,G−)}. (2)

For each question, we pick a candidate graph as

positive data, if the F1 score of its answer is larger

than a threshold (set to 0.1 in our work). We ran-

domly sample 20 negative graphs G− from the

candidate set whose F1 is lower than the corre-

sponding G+.

Category Description

Entity Sum of S-MART scores of all entities;
Number of entities from S-MART;
Number of entities from enriched lexicon;

Semantics Semantic similarity score Ssem(q,G);
Structural Number of each kind of constraints in G;

Whether a kind of constraints is used in G;
Whether the main path is one-hop;
Number of output answers.

Table 1: Full set of features.

3 Experiments

In this section, we introduce the QA datasets and

state-of-the-art systems that we compare. We

show the end-to-end results of the KBQA task, and

perform detail analysis to investigate the impor-

tance of different modules used in our approach.

3.1 Experimental Setup

QA datasets: We conduct our experiments

on ComplexQuestions (Bao et al., 2016), We-
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bQuestions (Berant et al., 2013) and SimpleQues-

tions (Bordes et al., 2015). We use CompQ, WebQ

and SimpQ as abbreviations of the above datasets,

respectively. CompQ contains 2,100 complex

questions collected from Bing search query log,

and the dataset is split into 1,300 training and 800

testing questions. WebQ contains 5,810 questions

collected from Google Suggest API, and is split

into 3,778 training and 2,032 testing QA pairs.

Each question is manually labeled with at least one

answer entity in both datasets. SimpQ consists of

more than 100K questions, and the gold answer of

each question is a gold focus entity paired with a

single predicate. This dataset is designed mainly

for answering simple questions, and we use it for

complementary evaluation.

Knowledge bases: For experiments on both

CompQ and WebQ, we follow the settings of Be-

rant et al. (2013) and Xu et al. (2016) to use the full

Freebase dump 5 as the knowledge base, which

contains 46M entities and 5,323 predicates. We

host the knowledge base with Virtuoso engine 6.

For the experiments on SimpQ, the knowledge

base we use is FB2M, which is a subset of Free-

base provided with the dataset, consisting 2M en-

tities and 10M triple facts.

Implementation detail: For all experiments in

this section, we initialize word embeddings us-

ing GloVe (Pennington et al., 2014) word vectors

with dimensions set to 300, and the size of Bi-

GRU hidden layer is also set to 300. We tune the

margin λ in {0.1, 0.2, 0.5}, the ensemble thresh-

old K in {1, 2, 3, 5, 10, +INF}, and the batch

size B in {16, 32, 64}. All the source codes,

QA datasets, and detail results can be downloaded

from http://202.120.38.146/CompQA/.

3.2 End-to-End Results

Now we perform KBQA experiments on WebQ

and CompQ. We use the average F1 score over

all questions as our evaluation metric. The offi-

cial evaluation script 7 measures the correctness of

output entities at string level. While in CompQ,

the annotated names of gold answer entities don’t

match the case of their names in Freebase, thus we

follow Bao et al. (2016) to lowercase both anno-

tated names and the output answer names before

5detail information of the Freebase dump is available at
https://github.com/syxu828/QuestionAnsweringOverFB/.

6http://virtuoso.openlinksw.com/
7The evaluation script is available at http://www-

nlp.stanford.edu/software/sempre/.

calculating the F1 score. We set λ = 0.5, B = 32,

K = 3 for WebQ and K = 5 for CompQ, as

reaching the highest average F1 on the validation

set of each dataset.

We report the experimental results in Table 2.

The result of Yih et al. (2015) on CompQ is re-

ported by Bao et al. (2016) as their implemented

result. Our approach outperforms existing ap-

proaches on CompQ dataset, and ranks 2nd on

WebQ among a long list of state-of-the-art works.

Jain (2016) achieves highest F1 score on WebQ

using memory networks, which is not semantic

parsing based, and thus less interpretable. We

point out that Xu et al. (2016) uses Wikipedia texts

as the external community knowledge for veri-

fying candidate answers, and achieves a slightly

higher F1 score (53.3) than our model, but the

performance decreases to 47.0 if this step is re-

moved. Besides, Yih et al. (2015) and Bao et al.

(2016) used ClueWeb dataset for learning more

accurate semantics, while based on the ablation

test of Yih, the F1 score of WebQ drops by 0.9

if ClueWeb information is removed.

Method CompQ WebQ

Dong et al. (2015) - 40.8
Yao (2015) - 44.3
Bast and Haussmann (2015) - 49.4
Berant and Liang (2015) - 49.7
Yih et al. (2015) 36.9 52.5
Reddy et al. (2016) - 50.3
Xu et al. (2016) (w/o text) - 47.0
Bao et al. (2016) 40.9 52.4
Jain (2016) - 55.6
Abujabal et al. (2017) - 51.0
Cui et al. (2017) - 34.0
Hu et al. (2018) - 49.6
Talmor and Berant (2018) 39.7 -

Ours (w/o linking enrich) 42.0 52.0
Ours (w/ linking enrich) 42.8 52.7

Table 2: Average F1 scores on CompQ and WebQ datasets.

Our results show that entity enrichment method

improves the results on both datasets by a large

margin (0.8), which is a good help to our ap-

proach. We argue that the enriched results are

directly comparable with other approaches, as S-

MART itself is learned from semi-structured in-

formation in Wikipedia, such as anchor texts, redi-

rect links and disambiguation pages, the enrich-

ment step does not bring extra knowledge into our

system. In addition, the improvements of the can-

didate generation step also show a positive effect.

If we remove our implicit type filtering in Step 4

and time interval constraints in Step 5, the F1 of

CompQ slightly drops from 42.84 to 42.37. Al-

http://202.120.38.146/CompQA/
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though these improvements mainly concern time-

related questions (around 25% in CompQ), we be-

lieve these strategies can be useful tricks in the fur-

ther researches.

As a complementary evaluation, we perform se-

mantic matching experiments on SimpQ. Given

the gold entity of each question, we recognize

the entity mention in the question, replace it with

〈E〉, then predict the correct predicate. Table 3

shows the experimental results. The best result is

from Qu et al. (2018), which learns the semantic

similarity through both attentive RNN and sim-

ilarity matrix based CNN. Yu et al. (2017) pro-

posed another approach using multi-layer BiL-

STM with residual connections. Our semantic

matching model performs slightly below these two

systems, since answering simple questions is not

the main goal of this paper. Comparing with these

approaches, our semantic matching model is light-

weighted, with a simpler structure and fewer pa-

rameters, thus is easier to tune and remains effec-

tive.

Method Relation Inputs Accuracy

BiLSTM w/ words words 91.2
BiLSTM w/ rel name rel name 88.9
Yih et al. (2015) char-3-gram 90.0
Yin et al. (2016) words 91.3
Yu et al. (2017) words+rel name 93.3
Qu et al. (2018) words+rel separated 93.7

Ours words+path 93.1

Table 3: Accuracy on the SimpleQuestions dataset.

3.3 Ablation Study

In this section, we explore the contributions of var-

ious components in our system.

Semantic component representation: We first

evaluate the results on CompQ and WebQ under

different path encoding methods. Recap that the

encoding result of a semantic component is the

summation of its word and id path representations

(Section 2.2.1), thus we compare encoding meth-

ods by multiple combinations. For encoding pred-

icate word sequence, we use BiGRU (the same

setting as encoding question word sequence) as

the alternative of average word embedding. For

encoding predicate id sequence, we use average

predicate embedding as the alternative of the cur-

rent path-level embedding (PathEmb).

The experimental results are shown in Table 4.

The encoding method None means that we don’t

encode the id or word sequence, and simply take

the result of the other sequence as the represen-

tation of the whole component. we observe that

the top three combination settings, ignoring either

word or id sequence, perform worse than the bot-

tom three settings. The comparison demonstrates

that predicate word and id representation can be

complementary to each other. The performance

gain is not that large, mainly because predicate id

features are largely covered by their word name

features.

For the encoding of id sequences, PathEmb

works better than average embedding, consistently

boosting F1 by 0.65 on both datasets. The former

method treats the whole sequence as a single unit,

which is more flexible and can potentially learn

diverse representations of id sequences that share

the same predicates. For the encoding of word

sequences, the average word embedding method

outperforms BiGRU on CompQ, and the gap be-

comes smaller when running on WebQ. This is

mainly because the training set of WebQ is about 3

times larger than that of CompQ, making it easier

for training a more complex model.

Word repr. Id repr. CompQ F1 WebQ F1

None PathEmb 41.11 51.86
Average None 42.18 51.74
BiGRU None 41.80 51.87
Average Average 42.16 52.00
BiGRU PathEmb 41.52 52.33
Average PathEmb 42.84 52.66

Table 4: Ablation results on path representation.

Semantic composition and question repre-

sentation: To demonstrate the effectiveness of se-

mantic composition, we construct a straightfor-

ward baseline, where we remove the max pool-

ing operation in Eq. (2), and instead calculate

the semantic similarity score as the summation

of individual cosine similarities: Ssem(q,G) =
∑

i cos(p
(i), q

(i)
p ). For methods of question encod-

ing, we setup ablations by turning off either sen-

tential encoding or dependency encoding.

Table 5 shows the ablation results on CompQ

and WebQ. When dependency path information is

augmented with sentential information, the perfor-

mance boosts by 0.42 on average. Dependency

paths focus on hidden features at syntactic and

functional perspective, which is a good comple-

mentary to sentential encoding results. However,

performances drop by 2.17 if only dependency in-

formation is used, we find that under certain de-

pendency structures, crucial words (bolded) are
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not in the path between the answer and the fo-

cus mention (underlined), for example, “who did

draco malloy end up marrying” and “who did the

philippines gain independence from”. While we

observe about 5% of such questions in WebQ, it’s

hard to predict the correct query graph without

crucial words.

In terms of semantic composition, Our max

pooling based method consistently outperforms

the baseline method. The improvement on WebQ

is smaller than on CompQ, largely due to the fact

that 85% questions in WebQ are simple ques-

tions (Bao et al., 2016). As a result of com-

bination, our approach significantly outperforms

the vanilla SP+NN approach on CompQ by 1.28,

demonstrating the effectiveness of our approach.

Theoretically, the pooling outcome may lead to

worse end-to-end result when there are too many

semantic components in one graph, because the

pooling layer takes too many vectors as input,

different semantic features between similar query

graphs become indistinguishable. In our task, only

0.5% of candidate graphs have more than 3 seman-

tic components, so pooling is a reasonable way to

aggregate semantic components in this scenario.

Composition Q repr CompQ F1 WebQ F1

Baseline sentential 41.56 52.14
Baseline both 42.35 52.39

Ours dependency 41.48 49.69
Ours sentential 42.59 52.28
Ours both 42.84 52.66

Table 5: Ablation results on question representation and
compositional strategy.

To further explain the advantage of semantic

composition, we take the following question as

an example: “who is gimli’s father in the hob-

bit”. Two query graphs are likely to be the fi-

nal answer: 1) (?, children, gimli person); 2)

(?, fictional children, gimli character) ∧ (?,

appear in, hobbit). If observing semantic com-

ponents individually, the predicate children is

most likely to be the correct one since “’s father” is

highly related and with plenty of positive training

data. Both fictional children and appear in get

a much lower similarity compared with children,

hence the baseline method prefer the first query

graph. In the meantime, our proposed method

learns the hidden semantics of the second candi-

date by absorbing salient features from both pred-

icates, and such compositional representation is

closer to the semantics of the entire question than

a simple “children” predicate. That’s why our

method manages to answer it correctly.

3.4 Error Analysis

We randomly analyzed 100 questions from

CompQ where no correct answers are returned.

We list the major causes of errors as follows:

Main path error (10%): This type of error oc-

curred when the model failed to understand the

main semantics when facing some difficult ques-

tions (e.g. “What native american sports heroes

earning two gold medals in the 1912 Olympics”);

Constraint missing (42%): These types of ques-

tions involve implicit constraints, for example, the

question “Who was US president when Traicho

Kostov was teenager” is difficult to answer be-

cause it implies an implicit time constraint “when

Traicho Kostov was teenager”;

Entity linking error (16%): This error occurs

due to the highly ambiguity of mentions. For ex-

ample, the question “What character did Robert

Pattinson play in Harry Potter” expects the film

“Harry Potter and the Goblet of Fire” as the focus,

while there are 7 movies in Harry Potter series;

Miscellaneous (32%): This error class contains

questions with semantic ambiguity or not reason-

able. For example, the question “Where is Byron

Nelson 2012” is hard to understand, because “By-

ron Nelson” died in 2006 and maybe this question

wants to ask where did he die.

4 Related Work

Knowledge Base Question Answering(KBQA)

has been a hot research top in recent years. Gen-

erally speaking, the most popular methods for

KBQA can be mainly divided into two classes: in-

formation retrieval and semantic parsing.

Information retrieval based system tries to ob-

tain target answer directly from question in-

formation and KB knowledge without explicit

considering interior query structure. There

are various methods (Yao and Van Durme, 2014;

Bordes et al., 2015; Dong et al., 2015; Xu et al.,

2016) to select candidate answers and to rank re-

sults.

Semantic parsing based approach focuses on

constructing a semantic parsing tree or equivalent

query structure that represents the semantic mean-

ing of the question. In terms of logical representa-

tion of natural language questions, many methods

have been tried, such as query graph (Yih et al.,
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2014, 2015) or RDF query language (Unger et al.,

2012; Cui et al., 2017; Hu et al., 2018).

Recently, as the development of deep learn-

ing, NN-based approaches have been combined

into the KBQA task (Bordes et al., 2014), show-

ing promising result. These approaches tries to

use neural network models to encode both ques-

tions and answers (or query structures) into the

vector space. Subsequently, similarity functions

are used to select the most appropriate query struc-

ture to generate the final answer. For exam-

ple, Bordes et al. (2014) focuses on embedding

the subgraph of the candidate answer; Yin et al.

(2016) uses character-level CNN and word-level

CNN to match different information; Yu et al.

(2017) introduces the method of hierarchical

residual RNN to compare questions and relation

names; Qu et al. (2018) proposes the AR-SMCNN

model, which uses RNN to capture semantic-level

correlation and employs CNN to extract literal-

level words interaction.

Belonging to NN-based semantic parsing cat-

egory, our approach employs a novel encod-

ing structure method to solve complex questions.

Previous works such as Yih et al. (2015) and

Bao et al. (2016) require a recognition of a main

relation and regard other constraints as variables

added to this main relation. Unlike their ap-

proaches, our method encodes multiple relations

(paths) into a uniform query structure representa-

tion (semantic composition), which allows more

flexible query structures.

There are also some works can’t be simply clas-

sified in to IR based methods or SP based meth-

ods. Jain (2016) introduces Factual Memory Net-

work, which tries to encode KB and questions in

same word vector space, extract a subset of ini-

tial candidate facts, then try to employ multi-hop

reasoning and refinement to find a path to answer

entity. Reddy et al. (2016), Abujabal et al. (2017),

and Cui et al. (2017) try to interpret question in-

tention by templates, which learned from KB or

QA corpora. Talmor and Berant (2018) attempts

to answering complex questions by decomposing

them into a sequence of simple questions.

5 Conclusion

To the best of our knowledge, this is the first

work to handle complex KBQA task by explic-

itly encoding the complete semantics of a com-

plex query graph using neural networks. We stud-

ied different methods to further improve the per-

formance, mainly leveraging dependency parse

and the ensemble method for linking enrichment.

Our model becomes the state-of-the-art on Com-

plexQuestions dataset, and produces competitive

results on other simple question based datasets.

Possible future work includes supporting more

complex semantics like implicit time constraints.
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