
Unpack Local Model Interpretation for GBDT

Wenjing Fang, Jun Zhou, and Xiaolong Li

Ant Financial Services Group, Hangzhou, China
{bean.fwj,jun.zhoujun,xl.li}@antfin.com

Abstract. Gradient boosting decision tree(GBDT), which aggregates a
collection of single weak learners (i.e. decision trees), is widely used for
data mining tasks. Because GBDT inherits the good performance from
its ensemble essence, much attention has been drawn on the optimization
of this model. As with its popularization, an increasing need for model
interpretation arises. Besides the commonly used feature importance as a
global interpretation, feature contribution is a local measure that reveals
the relationship between a specific instance and the related output. This
work focuses on the local interpretation and proposed a unified computa-
tion mechanism to get the instance-level feature contributions for GBDT
in any version. Practicability of the mechanism is double checked by the
listed experiments and utilizations in our real scenarios.

1 Introduction

Machine learning have great success in modeling data and making predictions
automatically. In many real-world applications, we need more than the black-box
model and an explanation is needed. For example, when customers apply for the
loan on credit, the loan officers will compute their credit scores based on their
historical behaviors. In this case, it’s far from enough to only show customers
the final score and the loan officers should convince them with detailed reasons.
The most efforts made in data mining is mainly on improving the accuracy and
efficiency, which result in excellent models. However, little attention is drawn to
model interpretation for these models. Several common measures for the variable
significance have been proposed. Gini importance is a commonly used importance
measure for Random Forest, which is derived from the Gini index[2]. Gini is
used to measure impurity between the parent node and two descendent nodes of
samples after splitting. The final importance is cumulated from the Gini change
for each feature over all the trees in forest. This general feature importance(FI),
also known as global interpretation shows the important factors of the target,
which unpack the general information in trained models. But it doesn’t take
any feature values of an instance into consideration which is not enough in some
ways. Local interpretation, on the other hand, places particular emphasis on a
specific case and reveals main cause of each record. This type of interpretation
makes up for the shortages of global one. A method is raised to define the feature
contributions(FC) [13] ,which is cumulated from label distribution changes, as a
description of the feature impact on the output. The value of feature contribution

reveals how much a feature contributes and the sign represent whether it’s a
positive influence or not.

GBDT[7] is an ensemble model built on top of a bunch of regression decision
trees. It has some appealing characteristics. For example, GBDT can naturally
handle nonlinearity and tolerate missing values. As a winning model in many
data mining challenges [8, 1, 3], GBDT is a good option for regression, classifi-
cation and ranking problems with well-known generalization ability. Besides its
wide range of applications, GBDT is also flexible in allowing users to define their
own suitable loss functions. Furthermore, there are many implementations[4][9]
and much work has been done to speed up the training process. For GBDT,
global feature importances calculation is widely used to do the feature selection.
For example, Breiman proposed a method to estimate feature importance[7].
First, it make an approximation of relative influences of a split as the empirical
improvements in squared-error. By summing over all the non-terminal nodes in
a decision tree for every split feature, a cumulative importance is obtained. For
a collection of boosting trees, the averaging feature importance among them is
the global relative feature importances. In this way, the changes of loss function
are divided into splitting features and obtain a feature measure related to the
training process.

Given the popularity and high quality of GBDT, it’s important to uncover
internals of the model. Existing work has largely ignored the exploration of local
interpretations, which will be the focus of this paper. Specifically, we will study
feature contributions for GBDT. We starts from former procedures of model
interpretation for random forest[13] and update the definition of the feature
contribution. The proposed mechanism is flexible enough to interpret all versions
of GBDT. The original definition based on label distribution change is prove to
be a special case of ours under a particular loss function.

The rest of the paper is organized as follows. Section 2 provides a brief
review of related work on local interpretations. Section 3 gives out the formal
definition of feature contribution as preliminary and presents the approach for
calculating feature contributions for random forests. In section 4, we describes
the rationale as well as main actions to interpret GBDT. Section 5 contains
experiment settings and the process to examine the proposed methodology. At
the end, section 6 concludes the work presented.

2 Related Work

Model interpretation provides convincing reasons to the model outputs. In the
occasion when a detailed explanation is needed for a prediction, even a reduction
in model performance is acceptable. This is the reason why some analysts turn to
logistic regression for help. Logistic regression is a typical linear model with thor-
ough study. It is likely that researchers will examine the regression coefficients ,
which is global feature importance after the normalization preprocess. The co-
efficient weights of different features are in the same scale, so that the relative
value between coefficients represents the relative importance between features.

Because of its linearity, the instance-level feature contribution is easy to com-
pute as the product of actual feature value and its coefficient. Both the global
and local interpretation of logistic regression is transparent from observing the
formula and reflect the impact on the function value of independent variables.
Linear models is regarded as interpretable with good quality and speed. In the
field like credit scoring, it is the default choice.

Another type of solutions prefer the good performance of complex models and
interpretability of simple models. The pipeline of this type will first make use of
advanced models as a black-box and then extract useful information out of it with
the help of a more interpretable model. For example, [5] is an interesting attempt
to conduct the model interpretation for neural network. The proposed learning-
based method tries to retrain a decision tree that approximates a trained network
in order to get inductive rules. And a novel approach in [6] formally treat the
interpretation of additive tree models as extracting the optimal actionable plan.
It models the optimization problem as an integer linear programming and utilize
existing toolkit as the solver. The constraints are based on both tree output score
and the objective function. Finally, the linear functions over variables for leaf
node flags and feature value spans are get and they could be efficiently solved.
Notice that, these two kinds of methods need extra training process especially
for the interpretation and bring new models or tasks to solve.

Some other researchers come up with model-independent local interpreta-
tions. They mainly make changes to feature value and test the chain effect to
performance loss of predictions. The loss is then taken as the measure of local im-
portance of feature. This method only rely on the output evaluation and provide
a unified way to check feature contribution for black-box models. Leave-One-
Covariate-Out(LOCO) [12] share the same spirit of feature importance compu-
tation of random forest [2]. By replacing the actual feature values with missing,
zero or average values, the impact of a feature in predicting is then removed.
The instance-level contributions of all the features can be calculated separately
and compared with each other. Moreover, this method is also work for global
feature importance.

Different from the models with a continuous closed-form functions, tree-based
models are discrete. Directly calculating the gradient as the feature change is
not suitable for this kind of models. As a derivative of decision tree, the random
forest goes further on model interpretation than GBDT. The method in [11]
introduces the way to compute the feature contributions so as to show informa-
tive results about the structure of model and provide valuable information for
designing new compounds. The work in [13] extends this idea to support expla-
nation for categorical predictions. These interpretations customize the definition
of feature contributions as the label distribution changes and cumulate these
contributions according to the path of an instance. This method makes full use
of the information, not only the training data but also the model structure. It
is natural to design the interpretations with the model structures to get a more
reasonable result.

In most cases, GBDT outperforms linear models and random forest. This
work proposes an easy way to get the feature contribution on the instance-level.
The interpretation process make full use of model structure and extra model is
not need. Generally, it can be apply to all versions of GBDT implementations
with little preprocessing and modification to the prediction process.

3 Preliminary

Additive tree models are a powerful branch of machine learning but are often
used as black boxs. Though they enjoy high accuracies, it’s hard to explain their
predictions from a feature based point of view. Different ensemble strategies
bring out different models while sharing the tree structure as a basis. So the
model interpretations for different addictive tree models share some key spirits
and can spread out from one to another with appropriate adaptation. In this
section, we first review a practical interpretation method for random forest and
introduce the general definition of feature contribution to better illustrate the
proposed model interpretation for GBDT.

3.1 Interpretation for Random Forest

Random forest is one of the most popular machine learning models on account
of its superior accuracy utilizing categorical or numerical features on regression
and classification problems. A random forest is a bunch of decision trees that
are generated respectively and vote together to get a final prediction. Every
tree is trained on randomly sampled data and subsampling feature columns
to introduce the diversity for better generalization, which is the key weakness
of single decision tree models. Random forest is known as a typical bagging
model and the bagging strategy works out by averaging the noises to get a lower
variance model.

The process to generate a random forest from a given dataset is shown in
algorithm 1 and 2. The training process generates a forest with M trees based on
dataset D and function splitData divide current dataset into two parts according
to the split feature and split value. While predicting a new instance Xi, each
tree in Forest first votes for one class and a final prediction is then concluded
by the majority. Function goLeft tells whether the instance falls into left branch
of current decision subtree. Algorithm 1 is the utility for decision tree for both
random forest and GBDT. Trees grow gradually as described and there is a pair
of splitting feature and splitting value at every branch of a single tree. They
are chosen according to pre-defined Gain which measures the improvement of a
split. getLeafWeight will return either a class or score and the computation is
determined by the model.

An instance starts a path from the root node all the way down to a leaf node
according to its real feature value. All the instances in the training data will
fall into several nodes and different nodes have quite different label distributions
of the instances. For simplicity, we only show the binary classification here and

it can be extended to multi-classification. Every step after passing a node, the
probability of being the positive class changes with the label distributions. All
the features along the path contribute to the final prediction of a single tree.

A practical way to evaluate feature contributions is explored[13]. The key
idea is taking the distribution change values for the positive class as the feature
contribution. Concretely, it takes four procedures to work:

1. Computing the percentage of positive class of every node in a tree
2. Recording the percentage difference between every parent node and its child

nodes
3. Cumulating the contributions for every feature on each tree
4. Averaging the feature contribution among the trees in the forest

The method consists of an offline preparation embedded in train(steps 1-
2) and an online computing with the prediction process(step 3-4). It is easy to
record the local contribution(or local increment) and related split feature to every
edge in a tree. In the algorithm 2, the positive class percentage in Dk,s could be
computed while entering function BuildTree. With an extra parameter parent,
we can compute the percentage difference between this node and its parent. Next,
record this local contribution in the node information and pass this node as a
parent node when BuildTree is called to build subtrees recursively. Finally, every
node except the root of a tree retains a local contribution of the split feature in
the parent node and the algorithm will store this additional information in model
file. As for the prediction, we only have to read the pre-computed local feature
contribution of the nodes that a new instance passes through and aggregate them
as the definition, which won’t take much extra time.

3.2 Gradient Boosting Decision Tree

GBDT is another type of ensemble model contains a collection of regression
decision trees. However, the ensemble is based on gradient boosting which pro-
motes the prediction gradually by reducing the residual. For every iteration, a
new model is built up to fit the negative gradient of the loss function until it
converges under an acceptable threshold. And the final prediction is the sum-
mation of all stagewise models. Gradient boosting is a general framework and
different models are available to be embedded. GBDT introduce decision tree
as the basic weak learner. When square error is chosen as the loss function,
the residual between current prediction and target label is the negative gradient
which is computational friendly.

From the above definition, we can see the differences between random forest
and GBDT, some of which are the main obstacles to stop us from employing the
model interpretation of random forest to GBDT:

1. Random forest aggregates trees by voting, while GBDT sum up the scores
from all the trees. This means that the trees in GBDT are unequal and the
trees have to be trained in sequential order. The interpretation should make
proper adaptations to deal with this problem.

Algorithm 1 Decision Tree

1: function BuildTree(Dk,s)
2: if all samples in Dk,s are in the same class or have the same features then
3: node = new Node()
4: node.isLeaf = True
5: node.score = getLeafWeight(Dk,s)
6: return node
7: end if
8: for each feature q ∈ S do
9: for every split value p ∈ split(q) do

10: Dleft, Dright = splitData(Dk,s, q, p)
11: compute the gain Gq,p = Gain(Dk,s, Dleft, Dright)
12: end for
13: end for
14: choose the split(p,q) = argmax

q,p
Gq,p

15: node = new Node()
16: node.isLeaf=False
17: node.split=(q, p)
18: node.left = BuildTree(Dleft)
19: node.right = BuildTree(Dright)
20: return node
21: end function
22: function TreePredict(Xi,root)
23: if True == root.isLeaf then
24: return root.score
25: else
26: if True == goLeft(Xi,root.split) then
27: return TreePredict(Xi,root.left)
28: else
29: return TreePredict(Xi,root.right)
30: end if
31: end if
32: end function

2. Decision tree in GBDT outputs a score instead of a majority class type for
classification problems. Though we can get the label distribution changes as
random forest interpretation, this score should be wisely taken into consid-
eration.

3.3 Problem Statement

Given a training dataset D = {x(i), y(i)}Ni=1, where N is the total number of
training samples, x = (x1, x2, ..., xS) implies a S dimensional feature vector, x(i)

is the feature vector for the i-th sample and y(i) is the related label. We can
illustrate training process of GBDT as in algorithm 3. rmi is the residual for
sample i in the m-th iteration.

Algorithm 2 Random Forest

1: function Train(D,M)
2: Init Forest = {}
3: for m = 1, 2, ...,M do
4: Bootstrap samples: randomly select k samples from D as Dk
5: select s variables at random of Dk as Dk,s
6: Tm =BuildTree(Dk,s)
7: Forest = Forest ∪ Tm
8: end for
9: return Forest

10: end function
11: function PredictInstance(Xi,Forest)
12: Init class set C = {}
13: for each Tm ∈ Forest do
14: Cm = TreePredict(Xi, Tm)
15: C = C ∪ Cm
16: end for
17: choose the class r with most predictions
18: return r
19: end function

Besides the basics of model, we introduce the notation of feature contribution
by denoting the model interpretation of random forest in section 3.1 :

LIcf =

Y c
mean − Y p

mean
, if the split in the parent is performed

over the feature f
0, otherwise

(1)

LInf in equation 1 is the Local Increment(LI) of feature f for node n defined
before. For binary classification, Y n

mean represents the percentage of the instances
belonging to the positive class in node n.

FCf
i,m =

∑
c∈path(i)

LIcf (2)

FCf
i =

1

M

M∑
m=1

FCf
i,m (3)

On a single tree m, FCf
i,m in equation 2 cumulates the feature contribution

of feature f for a specific instance i. Equation 3 later average all the feature
contribution for feature f among all the trees.

4 Mechanism

Looking back at model interpretation for random forest, its central spirit is
to establish the idea of feature contribution. By computing label distribution,

Algorithm 3 Gradient Boosting Decision Tree

1: function Train(D,M)
2: Init f0(x) = 0
3: for m = 1, 2, ...,M do
4: Compute residual:
5: rmi = yi − fm−1(xi), i = 1, 2, . . . , N
6: Train a regression decision tree from residual:
7: Tm =BuildTree(D)
8: Cumulated prediction sum:
9: fm(x) = fm−1(x) + Tm

10: end for
11: Get finally boosting function:

12: fM =
M∑
m=1

Tm

13: return fM
14: end function
15: function PredictInstance(Xi,fM)

16: score =
M∑
m=1

TreePredict(Xi, Tm)

17: return score
18: end function

a measure of the change is then got and associated with the split feature. In
the case of GBDT, we can expand this computation with a slight modification.
Because the targets of latter trees are the residual, it should be the replacement
while computing label distribution. Nevertheless, the problem of this version is
that the label distributions on leaf nodes are not always equal to the score on
it. So the valuable information of these scores are not utilized and the method
cannot reflect different GBDT versions [7][4].

In fact, the loss function determines the optimal coefficient and table 1 shows
some common examples. LS and LAD stand for Least Square and Least Absolute
Deviation respectively. ỹi is the residual updated after each iteration. Fm−1(xi)
is the approximation on iteration (m − 1). gi and hi are the first and second
order gradient statistics on the loss. Different from the numerical optimization
essence to compute negative gradient(for LS and LAD), XGB first approximate
the loss function with its second order Taylor expansion and an analytic solution
is then got. So it contains no negative gradient computation and the evaluation
of leaf weights is far from the label distribution. Particularly, only if the LS loss
function and traditional GBDT training process is used, the label distributions
meet the scores.

Without loss of generality, the interpretation for GBDT need to work on the
leaf scores. Since the scores are only assigned to leaf nodes, we have to find a
way to propagate them back all the way to the root. The left tree of Fig 1 shows
an example tree in a GBDT model, with split feature and split value marked on
arcs. Observing the three nodes in the rounded rectangle, the instances in node
6 will get a score difference as: Sn11 − Sn12 = 0.085− 0.069 = 0.016, where Sn11

Table 1. Loss Functions of GBDT

Settings Loss Function Negative Gradient Leaf weight

LS 1
2
[yi − f(xi)]

2 yi − f(xi) avexi∈Rjm ỹi

LAD | yi − f(xi) | sign[yi − f(xi)] medianxi∈Rjm
{yi − Fm−1(xi)}

XGB

∑n
i=1[l((yi, ŷ

(t−1))) + gift(xi) / −
∑

i∈Ij
gi∑

i∈Ij
hi+λ+ 1

2
hif

2
t (xi))] +Ω(ft)

is the score on node 11. Moreover, this difference is caused by splitting feature
feat5 branching by a threshold of 1.5. We can allocate this difference to the two
branches by assigning the average score of child nodes to their parent node. For
instance, Sn6 = 1

2 (Sn11 + Sn12) = 1
2 × (0.085 + 0.069) = 0.0771. Then, the local

increment metrics could be calculate with the scores, LIn11feat5 = Sn11 − Sn6 =
0.085− 0.0771 = 0.0079. Similarly, the leaf scores as well as the local increment
could be spread to the whole tree.

The interpretation process while predicting is the same as that of the random
forest. On the right hand side of Fig 1, all the node average scores and feature
contributions on the tree is marked. Supposing an instance gets a final prediction
on leaf node 14 of tree t, a cumulation through the path: n0 → n2 → n5 →
n9→ n14 will be executed: FCt

feat5 = LIn2feat5 = −0.0201, FCt
feat2 = LIn5feat2 =

−0.0073,FCt
feat4 = LIn9feat4 + LIn14feat4 = −0.0015 + 0.0010 = 0.0025.

Fig. 1. Feature Contribution Example for GBDT

Thinking over the propagation strategy, the average score is assigned to the
node 6 which assumes an instance falls into the left branch or the right with
equal probability. So the expectation of intermediate nodes could be revised as
in equation 4:

Sp =
1

2
(Sc1 + Sc2)→ Nc1 × Sc1 + Nc2 × Sc2

Nc1 + Nc2
(4)

Where the Nc1 and Nc2 is the number of the instances fall into child nodes node
c1 and c2. These statistics need extra information from training process.

By viewing the computation in this brand new way, we get a flexible inter-
pretation mechanism by only use the leaf node scores and instance distributions,
regardless of the implement settings of GBDT. Under the setting of the LS loss
function, we can notice that not only the label distribution meets the prediction
score on leaf node but also label distribution of the intermediate nodes meets
our back propagated scores. That is to say, the label distribution method is a
special case of our mechanism with this particular settings. And this method
also support the multiple classification problems.

5 Experiment

In this section, we demonstrate the experiments on the proposed interpretation.
In the first place, we show the mechanism is reliable with respect to global feature
importance. Then we compare our interpretations to that of random forest and
find it accord with the global feature importance better. Finally, we study the
interpretation at real cases in our scenario and get a satisfied analysis for them.

5.1 Experiment settings

The GBDT version in our experiment is the Scalable Multiple Additive Regres-
sion Tree (SMART)[14], which is a distributed algorithm under parameter server.
Hundreds of billions of samples with thousands of features could be trained by
the algorithm. Not only the storage usage but also the running time cost is
optimized without the loss of the accuracy. The training data is drawn from
transaction table under the scene of Fast Pay(FP) in Alipay. The transaction
is marked as a positive if it is reported as a fraud by the customer. To keep
a balanced ratio between positive and negative cases, normal transactions only
retain 1% by random sampling.

Predictive Model Markup Language(PMML)1 is an XML-based predictive
model interchange format. PMML restricts a standard expression of different
models and allows analysts share model among different prediction implemen-
tations. PMML include the process of data pre-processing and post-processing
along with model prediction. The structure of PMML files follows the order to
predict an instance, the compulsory parts of tree models are:

1. Header: general information about PMML document.
2. Data Dictionary: field definitions in model.
3. Model: contains the definition of the data mining model.
4. Mining Schema: a list of all fields used in the model.
5. Output: name all the desired output fields expected from the model.

1 http://dmg.org/pmml/v4-3/GeneralStructure.html

Fig. 2. GBDT Model in PMML Format

Fig 2 is a toy fraction of GBDT PMML file and the tree embedded in it can
be translate as the tree in Fig 1. The element Node is an encapsulation for a
tree node, which contains a predicative rule to choose itself or its siblings. The
attribute id assigns a unique number to each node in a tree. The value of score
in a Node is the predicted value for an instance falling into it. SimplePredicate
is a simple boolean expression indicating the split information. Our pre-trained
model is stored as a PMML file. JPMML2 is employed as the evaluator and we
change it slightly to print the nodes on the prediction path for an instance.

5.2 Consistency check

We implement the feature contribution as previous description in [7]. In order
to make the interpretation to be independent on the training process of GBDT,
we experiment without change the training algorithm. Because the distribution
of instances is needed according to equation 4. JPMML will predict the training
instances and record instance distributions on every nodes. According to the
tree structure in model and instance distributions, a pre-process is done by back
propagating the local increments as shown in section 4. With the local incre-
ments, the feature contributions of the new instances is then computed . After
interpreting lots of instances, we can get a distribution of feature contributions

2 https://github.com/jpmml/jpmml-evaluator

among the instances. The median is a robust estimator for the expectation of
the general feature contribution and should somehow keep accordance with the
global feature importances metrics.

Fig. 3. Feature Importance and Feature Contribution Medians

Fig 3 plots the Feature Importance(FI) and Feature Contribution(FC) me-
dians for every feature. As we can see, this two statistics have similar relative
value and are in good agreement. It proves that the interpretation for GBDT is
practical and reasonable.

5.3 Comparison to Random Forest

Following the experiment of last section, we get a ranking of the feature con-
tribution median. This ranking is a measure of feature importance and reflect
the quality of local interpretation. We implement the work for random forest in
[13] and compare it with our ranking. For justice, we replace the GBDT feature
importance with Information value (IV) as the importance metric. IV is a con-
cept from information theory and show the predictive strength for the target
label[10].

In Fig 4, we compute the intersection size on different variable coverage(i.e.
Top 10-50 features of IV). RF implies the method explained in section 3.1.
GBDT is the simple average strategy with only the information in PMML file.
GBDTV 2 is the modified version in equation 4. From the result, our interpre-
tations better captured the importance and the revised version works best.

Fig. 4. Interpretation: GBDT v.s RF

5.4 Case Study

Besides the general evaluation, we analysis the 300 specific instances. Fig 5
shows an example case, we only list some representative fields and divide them
into 4 parts. The variables are ranked by IV(general feature importance) and
checked the feature risk manually by domain experts. We can draw the following
conclusions:

– Part I: Variables in this section are with high IV, our interpretation is able to
capture the features that are judged to be high risk(marked as blue fields).
The feature with high IV but low risk (judging from the feature value) is
assigned a lower score, so the interpretation is good for instance-level con-
tributions.

– Part II: There are 2 variables(colored pink) with high IV and marked high
risk is missed by the interpretation, which mainly due to its low occurrence
in split features. The global importance of these two variables is also low
and model interpretations are limit by the model.

– Part III: Variables with median or low IVs are not caught by mistake and is
assigned a low feature contribution for that case.

– Part IV: Several variables are considered to be high risk for the particular
instance, even the general IVs of them are low. Our interpretation find them
out and show the superiority of the local feature contributions over the global
feature importance.

Further more, if we conduct interpretations on a batch of fraud cases which are
missed by the model, the local feature contributions will mine valuable rules and
help analysts improve the model.

Fig. 5. Case Study for Interpretation

6 Conclusion

Employing models as a black-box is not enough. A measure for the impact of
a feature on the prediction convinces analysts in an intuitive way. The local
interpretation provides an explanation when necessary and contributes to the
develop of the models. We describe the method to unpack the interpretation
for the advanced model GBDT. To the delight of analysts, the whole process is
independent from the training details and technical optimizations. Only the tree
structure and instance distribution are needed, which can be easily extracted by
a post-processing after training. The label distribution based method of random
forest is proved to be a special case of our method. We explore the distribution
of local feature contribution and prove it to be in agreement with global feature
importance. The method is applied to real case studies in different scenarios and
serves as a good translator of our models.

References

1. Bennett, J., Lanning, S., et al.: The netflix prize. In: Proceedings of KDD cup and
workshop. vol. 2007, p. 35. New York, NY, USA (2007)

2. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
3. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. In: Proceed-

ings of the Learning to Rank Challenge. pp. 1–24 (2011)
4. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and data
mining. pp. 785–794. ACM (2016)

5. Craven, M.W., Shavlik, J.W.: Using neural networks for data mining. Future gen-
eration computer systems 13(2-3), 211–229 (1997)

6. Cui, Z., Chen, W., He, Y., Chen, Y.: Optimal action extraction for random forests
and boosted trees. In: Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. pp. 179–188. ACM (2015)

7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. An-
nals of statistics pp. 1189–1232 (2001)

8. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich,
R., Bowers, S., et al.: Practical lessons from predicting clicks on ads at facebook.
In: Proceedings of the Eighth International Workshop on Data Mining for Online
Advertising. pp. 1–9. ACM (2014)

9. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in Neural
Information Processing Systems. pp. 3149–3157 (2017)

10. Kullback, S.: Information theory and statistics. Courier Corporation (1997)
11. Kuz’min, V.E., Polishchuk, P.G., Artemenko, A.G., Andronati, S.A.: Interpretation

of qsar models based on random forest methods. Molecular informatics 30(6-7),
593–603 (2011)

12. Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R.J., Wasserman, L.: Distribution-free
predictive inference for regression. Journal of the American Statistical Association
(just-accepted) (2017)

13. Palczewska, A., Palczewski, J., Robinson, R.M., Neagu, D.: Interpreting random
forest models using a feature contribution method. In: Information Reuse and
Integration (IRI), 2013 IEEE 14th International Conference on. pp. 112–119. IEEE
(2013)

14. Zhou, J., Cui, Q., Li, X., Zhao, P., Qu, S., Huang, J.: Psmart: Parameter server
based multiple additive regression trees system. In: Proceedings of the 26th Inter-
national Conference on World Wide Web Companion. pp. 879–880. International
World Wide Web Conferences Steering Committee (2017)

