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ABSTRACT
This paper targets to a novel but practical recommendation prob-
lem named exact-K recommendation. It is different from traditional
top-K recommendation, as it focuses more on (constrained) combi-
natorial optimization which will optimize to recommend a whole
set of K items called card, rather than ranking optimization which
assumes that “better” items should be put into top positions. Thus
we take the first step to give a formal problem definition, and inno-
vatively reduce it to Maximum Clique Optimization based on graph.
To tackle this specific combinatorial optimization problem which
is NP-hard, we propose Graph Attention Networks (GAttN) with
a Multi-head Self-attention encoder and a decoder with attention
mechanism. It can end-to-end learn the joint distribution of the
K items and generate an optimal card rather than rank individual
items by prediction scores. Then we propose Reinforcement Learn-
ing from Demonstrations (RLfD) which combines the advantages in
behavior cloning and reinforcement learning, making it sufficient-
and-efficient to train the model. Extensive experiments on three
datasets demonstrate the effectiveness of our proposed GAttN with
RLfDmethod, it outperforms several strong baselines with a relative
improvement of 7.7% and 4.7% on average in Precision and Hit Ratio
respectively, and achieves state-of-the-art (SOTA) performance for
the exact-K recommendation problem.
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1 INTRODUCTION
The explosive growth and variety of information (e.g. movies, com-
modities, news etc.) available on the web frequently overwhelms
users, while Recommender Systems (RS) are valuable means to
cope with the information overload problem. RS usually provide
the target user with a list of items, which are selected from the over-
whelmed candidates in order to best satisfy his/her current demand.
In the most traditional scenarios of RS especially on mobiles, recom-
mended items are shown in a waterfall flow form, i.e. users should
scroll the screen and items will be presented one-by-one. Due to
the pressure of QPS (Query-Per-Second) for users interacting with
RS servers, it is common to return a large amount of ranked items
(e.g. 50 items in Taobao RS) based on CTR (Click-Through-Rate)
estimation for example1 and present them from top to bottom. That
is to say we believe the top ranked items take the most chance to
be clicked or preferred so that when users scroll the screen and see
items top-down, the overall clicking efficiency can be optimized. It
can be seen as top-K recommendation [7], because the ranking of
item list is important.

However in many real-world recommendation applications, ex-
act K items are shown once all to the users. In other words, users
should not scroll the screen and the combination of K items is
shown as a whole card. Taking two popular RS in the homepages
of Taobao and YouTube for example (illustrated in Fig. 1), they rec-
ommend cards with exact 4 commodities and 6 videos respectively.
Note that items in the same card may interact with each other, e.g.
in Taobao, co-occurrence of “hat” and “scarf” performs better than
“shoe” and “scarf”, but “shoe” and “scarf” can be optimal individu-
ally. We call it exact-K recommendation, whose key challenge is to
maximize the chance of the whole card being clicked or satisfied by
the target user. Meanwhile, items in a card usually maintain some
constraints between each other to guarantee the user experience
in RS, e.g. the recommended commodities in E-commerce should
have some diversity rather than being all similar for complement
consideration. In a word, top-K recommendation can be seen as a
ranking optimization problem which assumes that “better” items
should be put into top positions, while exact-K recommendation is
a (constrained) combinatorial optimization problem which tries to
maximize the joint probability of the set of items in a card.

Top-K recommendation has been well studied for decades in in-
formation retrieval (IR) research community. Among them, listwise
models are the most related to our problem as they also perform
optimization considering the whole item list. However, they either
target on ranking refinement or do not consider constraints in the

∗Equal contribution.
1Here we take CTR as an example, other preference score can also be used, e.g. Movie
Rating, CVR (Conversion-Rate) or GMV (Gross-Merchandise-Volume) etc.
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(a) Taobao RS (b) YouTube RS
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Figure 1: Show cases for exact-K recommendation in Taobao and YouTube.

ranking list, which will fall into sub-optimal towards exact-K rec-
ommendation (refer to Sec. 2.1.2 for more discussions). Our work
mainly focuses on solving exact-K recommendation problem end-
to-end, and its main contributions can be summarized as follows.
(1) We take the first step to formally define the exact-K recommen-

dation problem and innovatively reduce it to a Maximal Clique
Optimization problem based on graph.

(2) To solve it, we propose Graph Attention Networks (GAttN) with
an Encoder-Decoder framework which can end-to-end learn the
joint distribution of K items and generate an optimal card con-
taining K items. Encoder utilizes Multi-head Self-attention to
encode the constructed undirected graph into node embeddings
considering nodes correlations. Based on the node embeddings,
decoder generates a clique consisting of K items with RNN and
attention mechanism which can well capture the combinational
characteristic of the K items. Beam search with masking is ap-
plied to meet the constraints. Then we adopt well-designed
Reinforcement Learning from Demonstrations (RLfD) which com-
bines the advantages in behavior cloning and reinforcement
learning, making it sufficient-and-efficient to train GAttN.

(3) We conduct extensive experiments on three datasets (two con-
structed from public MovieLens datasets and one collected from
Taobao). Both quantitative and qualitative analysis justify the ef-
fectiveness and rationality of our proposed GAttN with RLfD for
exact-K recommendation. Specifically, our method outperforms
several strong baselines with significant improvements of 7.7%
and 4.7% on average in Precision and Hit Ratio respectively.

2 RELATEDWORKS
2.1 Top-K Recommendation
Top-K recommendation refers to recommending a list of K ranked
items to a user, which is related to the descriptions of recommen-
dation problem and learning to rank methods.

2.1.1 The Recommendation Problem. The key problem of recom-
mendation system lies in how to generate users’ most preferred item
list. Some previous works [17] model the recommendation problem

as a regression task (i.e. predict users’ ratings on items) or classifi-
cation task (i.e. predict whether the user will click/purchase/. . . the
item). Items are then ranked based on the regression scores or
classification probabilities to form the recommendation list. Other
works [14, 22, 29] directly model the recommendation problem as
a ranking task, where many pairwise/listwise ranking methods are
exploited to generate users’ top-k preferred items. Learning to rank
is surveyed in detail in the next subsection.

2.1.2 Learning to Rank. Learning to Rank (LTR) refers to a group
of techniques that attempts to solve ranking problems by using ma-
chine learning algorithms. It can be broadly classified into three cat-
egories: pointwise, pairwise, and listwise models. Pointwise Models
[14, 17] treat the ranking task as a classification or regression task.
However, pointwise models do not consider the inter-dependency
among instances in the final ranked list. Pairwise Models [22] as-
sume that the relative order between two instances is known and
transform it to a pairwise classification task. Note that their loss
functions only consider the relative order between two instances,
while the position of instances in the final ranked list can hardly be
derived. Listwise Models provide the opportunity to directly opti-
mize ranking criteria and achieve whole-page ranking optimization.
Recently [2] proposed Deep Listwise Context Model (DLCM) to
fine-tune the initial ranked list generated by a base model, which
achieves SOTA performance. Other whole-page ranking optimiza-
tion methods can be found in [16], which mainly focus on ranking
refinement. Listwise models are the most related to our problem.
However, they either target on ranking refinement or don’t con-
sider the constraints in ranking list, which are not well-designed
for exact-K recommendation.

2.2 Neural Combinatorial Optimization
Even though machine learning (ML) and combinatorial optimiza-
tion have been studied for decades respectively, there are few inves-
tigations on the application of ML methods in solving the combina-
tional optimization problem. Current related works mainly focus on
two types of ML methods: supervised learning and reinforcement



learning. Supervised learning [27] is the first successful attempt to
solve the combinatorial optimization problem. It proposes a spe-
cial attention mechanism named Pointer-Net to tackle a classical
combinational optimization problem: Traveling Salesman Problem
(TSP). Reinforcement learning (RL) aims to transform the combina-
torial optimization problem into a sequential decision problem and
becomes increasingly popular recently. Based on Pointer Network,
[5] develops a neural combinatorial optimization framework with
RL, which performs excellently in some classical problems, such as
TSP and Knapsack Problem. RL is also applied to RS [32], but it is
still designed for traditional top-K recommendation. In this work,
we focus on exact-K recommendation, which is transferred into the
maximal clique optimization problem. Some researches [15] also try
to solve it, but they often focus on estimation of node-weight. The
main difference between them and ours is that we target to directly
select an optimal clique rather than search for the clique comprised
of maximum weighted nodes, which brings a grave challenge.

3 PROBLEM DEFINITION
In this section, we first give a formal definition of exact-K recom-
mendation, and then discuss how to transfer it to the Maximal
Clique Optimization problem. Finally we provide a baseline ap-
proach to tackle the above problem.

3.1 Exact-K Recommendation
Given a set of candidate N items S = {si }1≤i≤N , our goal is to
recommend exact K items A = {ai }1≤i≤K ⊆ S which is shown
as a whole card2, so that the combination of items A takes the
most chance to be clicked or satisfied by a user u. We denote the
probability ofA being clicked/satisfied as P(A, r = 1|S,u). Somehow
items in A should obey someM constraints between each other as
C = {ck (ai ,aj ) = 1|ai ∈ A,aj ∈ A, i , j}1≤k≤M or not as C = ∅,
here ck is a boolean indicator which will be 1 if the two items satisfy
the constraint. Overall the problem of exact-K recommendation can
be regarded as a (constrained) combinatorial optimization problem,
and is defined formally as follows:

max
A

P (A, r = 1 |S, u ; θ ), (1)

s .t ∀ai ∈ A, aj ∈ A, i , j, ∀ck ∈ C, ck (ai , aj ) = 1, (2)

where θ is the parameters for function of generating A from S
given user u, and r = 1 donates relevance/preference indicator.

In another perspective, we construct a graph G(N , E) contain-
ing N nodes, in which each node ni in N represents an item
si in candidate item set S , each edge ei j in E connecting nodes
(ni ,nj ) represents that items si and sj should satisfy the constraints
or there is no constraint (a.k.a G is now a complete graph), i.e
∀ck ∈ C, ck (si , sj ) = 1 or C = ∅, so it is an undirected graph here.
Intuitively, we can transfer exact-K recommendation into the max-
imal clique optimization problem3 [9, 12]. That is to say we aim
to select a clique4 (i.e characteristics of clique can ensure the con-
straints defined in Eq. 2) with K nodes from G where combination
of the selectedK corresponding itemsA achieves the maximal objec-
tive defined in Eq. 1. You can take Fig. 2 as an example. Furthermore,
2Here we suppose that permutation of the K items in a card is not considered in
exact-K recommendation.
3It can be generalized according to the optimization objective.
4A clique is a subset of nodes of an undirected graph such that every two distinct
nodes in the clique are adjacent; that is, its induced subgraph is complete.

maximal clique problem is proved to be NP-hard thus it can not be
solved in polynomial time [9].

! "#$ % & ' ($ ) & *+, ! "#$ % & ' ($ ) & *+,

Figure 2: Illustration for a specific graph G with N = 20 and
K = 4. We show two different cliques (red and blue) in graph
and the corresponding cards (A1 and A2) each with 4 items.
We suppose that P(A1, r = 1|S,u) > P(A2, r = 1|S,u) means
that card A1 takes more chance to be satisfied than card A2
given user u and candidate item set S .

3.2 Naive Node-Weight Estimation Method
A baseline method is that we can estimate a weight aswi of each
node ni ∈ N related to the optimization objective in graph G. In
exact-K recommendation, our goal is to maximize the clicked or
satisfied probability of the recommended K items set as in Eq. 1,
so we regard the weight of each node as CTR of corresponding
item. After getting the weight of each node in graph supported
as G(N , E,W), we can reduce the Maximal Clique Optimization
problem as finding a clique in graph G with maximal node weights
summation. We can then apply some heuristic methods like Greedy
search to solve it. Specifically, we modify Eq. 1 as follows:

max
A

∑
ai ∈A

P (r = 1 |ai , S, u ; θ ), (3)

where P(r = 1|ai , S,u;θ ) can be regarded as node weight wi in
graph. Here we focus on how to estimate the node weights W,
it can be formulated as a normal item CTR estimation task in IR.
A large amount of LTR based methods for CTR estimation can be
adopted as our strong baselines. Refer to Sec. 2.1.2 for more details.

We call the adapted baseline as Naive Node-Weight Estimation
Method, with its detailed implementation shown in Algorithm 1 5.
However weaknesses of such method are obvious for the follow-
ing three points: (1) CTR estimation for each item is independent,
(2) combinational characteristic of the K items in a card is not
considered, (3) problem objective is not optimized directly but sub-
stituted with a reduced heuristic objective which will unfortunately
fall into sub-optimal. On the contrary, we will utilize a framework
of Neural Combinatorial Optimization (some related works in Sec.
2.2) to directly optimize the problem objective in Sec. 4.

4 APPROACH
In Sec. 3.1, we formally define the exact-K recommendation prob-
lem based on searching for maximal scoring clique with K nodes
in a specially constructed graph G(N , E) with N nodes. The score
5In our problem, we ignore the circumstance of getting infeasible solution, and we
argue that in real-world application with small K and large N we can always find a
clique with K nodes in graph with N nodes greedily.
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Figure 3: The key modules of Graph Attention Networks (GAttN).

of a clique is the overall probability of a user clicking or stratifying
the corresponding card of K items as in Eq. 1. To tackle this spe-
cific problem, we first propose Graph Attention Networks (GAttN)
which follows the Encoder-Decoder Pointer framework [27] with
Attention mechanism [4, 25]. Then we adopt Reinforcement Learn-
ing from Demonstrations (RLfD) which combines the advantages
in behavior cloning [24] and reinforcement learning, making it
sufficient-and-efficient to train the networks.

4.1 Graph Attention Networks
The traditional encoder-decoder framework [23] usually encodes
an input sequence into a fixed vector by a recurrent neural net-
works (RNN) and decodes a new output sequence from that vector
using another RNN. For our exact-K recommendation problem, the
encoder produces representations of all input nodes in graph G,
and the decoder selects a clique A among input nodes by pointer,
in which the constraint of clique is considered by masking.

4.1.1 Input. We first define the input representation of each node
in graphG(N , E). Specifically in our problem, given candidate items
set S and user u, we can represent the input xi of a node ni ∈ N
by combination of the features of corresponding item si ∈ S and
user u. Here we use a simple fully connected neural network with
nonlinear activation ReLU as:

xi = ReLU (WI [xsi ; xu ] + bI ), (4)

where xsi and xu are feature vectors for item si and user u (e.g
trainable embeddings of corresponding item and user IDs), [a;b]
represents the concatenation of vector a and b,WI and bI are train-
ing parameters for input representation.

4.1.2 Encoder. First of all, since the order of nodes in a undirected
graph is meaningless, the encoder network architecture should be
permutation invariant, i.e. any permutation of the inputs results
in the same output representations. While the traditional encoder
usually uses a RNN to convey sequential information, e.g., in text
translation the relative position of words must be captured, but it is

not appropriate to our case. Secondly, the representation for a node
should consider the other nodes in graph, as there can exist some
underlying structures in graph that nodes may influence between
each other. So it’s helpful to represent a node with some attentions
to other nodes. As a result, we use a model like Self-attention, it is
a special case of attention mechanism that only requires a single
sequence to compute its representation. Self-attention has been
successfully applied to many NLP tasks up to now [30], here we
utilize it to encode the graph and produce nodes representations.

Actually in this paper, the encoder that we use is similar to the
encoder used in Transformer architecture by [25] with multi-head
self-attention. Fig. 3(b) depicts the computation graph of encoder.
From the dx -dimensional input feature vector xi for node ni , the
encoder firstly computes initial dh -dimensional graph node embed-
ding (a.k.a representation) h(0)i through a learned linear projection
with parametersWE and bE as:

h(0)
i =WExi + bE . (5)

The node embeddings are then updated through L self-attention
layers, each consisting of two sub-layers: a multi-head self-attention
(MHSA) layer followed by a feed-forward (FF) layer. We denote
with H (l ) = {h(l )i }1≤i≤N the graph node embeddings produced by
layer l , and the final output graph node embeddings as H (L).

The basic component of MHSA is the scaled dot-product atten-
tion, which is a variant of dot-product (multiplicative) attention
[18]. Given a matrix of N input d-dimensional embedding vectors
E ∈ RN×d , the scaled dot-product attention computes the self-
attention scores based on the following equation:

SelfAttention(E) = sof tmax (EE
T

√
d

)E, (6)

where so f tmax is row-wise. More specifically, MHSA sub-layers
will employM attention heads to capture multiple attention infor-
mation and the results from each head are concatenated followed
by a parameterized linear transformation to produce the sub-layer



outputs. Fig. 3(a) shows the computation graph of MHSA. Specifi-
cally in layer l , it will operate on the output embedding matrices
H (l−1) ∈ RN×dh from previous layer l − 1 and produce the MHSA
sub-layer outputs Ĥ (l ) ∈ RN×dh as:

Ĥ (l ) = [head1; . . . ;headM ]WO ,

where headi = SelfAttention(H (l−1)Whi ),
(7)

where M is the number of heads, Whi ∈ Rdh×dk is parameter
for each head,WO ∈ R(Mdk )×dh is parameter for linear transfor-
mation output, and dk is the output dimension in each head. In
addition to MHSA sub-layers, FF sub-layers consist of two linear
transformations with a ReLU activation in between.

h(l )
i =WF 2ReLU (WF 1ĥ

(l )
i + bF 1) + bF 2, (8)

whereWF 1,WF 2 are parameter matrices, ĥ(l )i and h
(l )
i represent

embedding outputs of node ni in MHSA and FF sub-layers corre-
spondingly. We emphasize that those trainable parameters men-
tioned above are unique per layer. Furthermore, each sub-layer adds
a skip-connection [13] and layer normalization [3].

As a result, encoder transforms x1,x2, · · · ,xN (original represen-
tations of nodes in graph) in Fig. 3(b) to h(L)1 ,h

(L)
2 , · · · ,h

(L)
N (embed-

ding representations of these nodes, considering graph constructure
information), which will be used in decoder in Fig. 3(c).

4.1.3 Decoder. For exact-K recommendation problem, the output
A represents a clique (card) withK nodes (items) in graphG that can
be interrelated with each other. Recently, RNN [10, 11, 27] has been
widely used to map the encoder embeddings to a correlated output
sequence, so does in our proposed framework. We call this RNN
architecture decoder to decode the output nodes A = {a1, . . . ,aK }.
Remember our goal is to optimize P(A|S,u;θ ) defined in Sec. 3.1
(here we omit relevance score of r = 1), it is a joint probability and
can be decomposed by the chain rule as follows:

P (A |f (S, u ; θ ) =
K∏
i=1

p(ai |a1, . . . , ai−1, S, u ; θ )

=

K∏
i=1

p(ai |a1, . . . , ai−1, f (S, u ; θe ); θd ),

(9)

where we represent encoder as f (S,u;θe ) with trainable parame-
ters θe , and decoder trainable parameters as θd . The last term in
above Eq. 9 is estimated with RNN by introducing a state vector,
di , which is a function of the previous state di−1, and the previous
output node ai−1, i.e.

p(ai |a1, · · · , ai−1, f (S, u ; θe ); θd ) = p(ai |di , f (S, u ; θe ); θd ), (10)

where di is computed as follows:

di =

{
д(0, 0) if i = 1,
д(di−1, ai−1) otherwise,

(11)

where д(d,a) is usually a non-linear function (e.g. cell in LSTM
[33] or GRU [34]) that combines the previous state and previous
output (embedding of the corresponding node a from encoder) in
order to produce the current state.

Decoding happens sequentially, and at time-step t ∈ {1, . . . ,K},
the decoder outputs the node at based on the output embeddings
from encoder and already generated outputs {at ′}1≤t ′≤t which are
embedded by RNN hidden state dt . See Fig. 3(c) for an illustration
of the decoding process. During decoding, p(at |dt , f (S,u;θe );θd )

is implemented by an specific attention mechanism named pointer
[27], in which it will attend to each node in the encoded graph and
calculate the attention scores before applying softmax function to
get the probability distribution. It allows the decoder to look at the
whole input graph G(N , E) at any time and select a member of the
input nodes N as the final outputs A.

For notation purposes, let us define decoder output hidden states
as (d1, . . . ,dK ), the encoder output graph node embeddings as
(h(L)1 , . . . ,h

(L)
N ). At time-step t , decoder first glimpses [26] the whole

encoder outputs, and then computes the representation of decoding
up to now together with attention to the encoded graph, denoted
as d̂t and the equation is as follows:

et j = sof tmax (vTD1 tanh(WD1dt +WD2h
(L)
j )), j ∈ {1, . . . , N },

ct =
∑N
j=1 et jh

(L)
j , d̂t = [dt ; ct ], (12)

whereWD1,WD2 and vD1 are trainable parameters. After getting
the representation of decoder at time-step t , we apply a specific
attentive pointer with masking scheme to generate feasible clique
from graph. In our case, we use the following masking procedures:
(1) nodes already decoded are not allowed to be pointed, (2) nodes
will be masked if disobey the clique constraint rule among the
decoded subgraph. Andwe compute the attention values as follows:

ut j =

{
vTD2 tanh (WD3d̂t +WD4h

(L)
j ), otherwise,

−∞, if node nj should be masked,
(13)

where vD2,WD3, andWD4 are trainable parameters. Then softmax
function is applied to get the pointing distribution towards input
nodes, as follows:

p(at |dt , f (S, u ; θe ); θd ) = sof tmax (ut j ), j ∈ {1, . . . , N }. (14)

Wemention that the attention mechanism adopted in Eq. 12 and 13
is following Bahdanau et al [4]. At the period of decoder inference,
we apply technique of beam search [28]. It is proposed to expand
the search space and try more combinations of nodes in a clique
(a.k.a items for a card) to get a most optimal solution.

To summarize, decoder receives embedding representations of
nodes in graph G from encoder, and selects clique A of K nodes
with attention mechanism. With the help of RNN and beam search,
decoder in our proposed GAttN framework is able to capture the
combinational characteristics of the K items in a card.

4.2 Reinforcement Learning from
Demonstrations

4.2.1 Overall. In our proposed GAttN framework, we represent
encoder as f (S,u;θe ) which can be seen as state S in RL, and
we represent decoder as P(A| f (S,u;θe );θd ) = P(A|S;θd ) which
can be seen as policy P in RL. A Reinforcement Learning from
Demonstration (RLfd) agent, possessing both an objective reward
signal and demonstrations, is able to combine the best from both
fields. This framework is first proposed in domain of Robotics [20].
Learning from demonstrations is much sample efficient and can
speed up learning process, leveraging demonstrations to direct
what would otherwise be uniform random exploration and thus
speed up learning. While the demonstration trajectories may be
noisy or sub-optimal, so policy supervised from such demonstra-
tions will be worse too. And learning from demonstrations is not
directly targeting the objective which makes the policy fall into



local-minimal. On the other hand, training policy by reinforce-
ment learning can directly optimize the objective reward signal,
witch allows such an agent to eventually outperform a potentially
sub-optimal demonstrator.

4.2.2 Learning from Demonstrations. Learning from demonstra-
tions can be seen as behavior cloning imitation learning [24], it
applies supervised learning for policy (mapping states to actions)
using the demonstration trajectories as ground-truth. We collect
the ground truth clicked/satisfied cards A∗ = {a∗i }1≤i≤K given
user u and candidate items set S as demonstration trajectories and
formulated as PSdata (A

∗ |S,u), we can define the following loss func-
tion based on cross entropy CrossEntropy of the generated cards
P(A|S,u;θ ) and demonstrated cards PSdata (A

∗ |S,u).

LS (θ ) =
∑
S,u

CrossEntropy(P (A |S, u ; θ ), PSdata (A
∗ |S, u))

= −
∑

S,u,A∗∈PSdata

log P (A∗ |S, u ; θ )

= −
∑

S,u,A∗∈PSdata

K∑
i=1

logp(a∗i |a∗1, · · · , a∗i−1, S; θd )

= −
∑

S,u,A∗∈PSdata

K∑
i=1

logp(a∗i |d∗
i , S; θd ),

(15)

whered∗i in the last term is state vector estimated by a RNN defined
in Eq. 11 with inputs of d∗i−1 and a

∗
i−1. This means that the decoder

model focuses on learning to output the next item of the card given
the current state of the model AND previous ground-truth items.

SUPERVISE with Policy-sampling. During inference the model
can generate a full card A given state S by generating one item at a
time until we get K items. For this process, at time-step t , the model
needs the output item at−1 from the last time-step as input in order
to produce at . Since we don’t have access to the true previous item,
we can instead either select the most likely one given our model
or sample according to it. In all these cases, if a wrong decision
is taken at time-step t − 1, the model can be in a part of the state
space that is very different from those visited from the training
distribution and for which it doesn’t know what to do. Worse, it
can easily lead to cumulative bad decisions. We call this problem as
discrepancy between training and inference [6].

In our work, we propose SUPERVISE with Policy-sampling to
bridge the gap between training and inference of policy. We change
the training process from fully guided using the true previous item,
towards using the generated item from trained policy instead. The
loss function for Learning from Demonstrations is now as follows:

LS (θ ) = −
∑

S,u,A∗∈PSdata

K∑
i=1

logp(a∗i |a1, · · · , ai−1, S; θd )

= −
∑

S,u,A∗∈PSdata

K∑
i=1

logp(a∗i |di , S; θd ),

(16)

where di is computed by Eq. 11 with inputs of di−1 and ai−1 now,
here ai−1 is sampled from the trained policy p(ai−1 |di−1,S;θd ).

4.2.3 Learning from Rewards.

Reward Estimator. The objective of exact-K recommendation is
to maximize the chance of being clicked or satisfied for the selected
card A given candidate items set S and user u, as we defined in Sec.
3.1 and Eq. 1. Leveraging the advantage of reinforcement learning,
we can directly optimize the objective by regarding it as reward
function in RL. While there is no explicit reward in our problem,
we can estimate the reward function based on teacher’s demon-
stration by the idea from Inverse Reinforcement Learning [1]. The
reward function can then be more generalized against supervised
by demonstration only. In our problem, there are large amount of
explicit feedback data in which users click cards (labeled as r∗ = 1)
or not (labeled as r∗ = 0), we represent it as PDdata (r

∗ |A,u). Then
we transfer estimation of reward function to the problem of CTR
estimation for a card A given user u as P(r = 1|A,u;ϕ), and the loss
function for training it is as follows:

LD (ϕ) = −∑
A,u,r ∗∈PDdata

(
r ∗ log

(
P (r = 1 |A, u ;ϕ)

)
+ (17)

(1 − r ∗) log
(
1 − P (r = 1 |A, u ;ϕ)

) )
.

To model the reward function, we follow the work of PNN [21] ,
in which we consider the feature crosses for card of items and user.
And we define P(r = 1|A,u;ϕ) as following equation:

P (r = 1 |A, u ;ϕ) = (18)

σ
(
WR2ReLU

(
WR1

[
[xai ⊙ xu ]Ki=1; [xai ]Ki=1; xu

]
+ bR1

)
+ bR2

)
,

where [·]Ki=1 represents the concatenation of K vectors, ⊙ is inner-
product andσ means sigmoid function,xai andxu are feature vector
for item ai and user u defined in Sec. 4.1.1,WR1,WR2,bR1,bR2 are
trainable parameters for reward function totally donated by ϕ.

REINFORCE with Hill-climbing. After we get the optimized re-
ward function represented as P(r = 1|A,u;ϕ∗), we use policy gra-
dient based reinforcement learning (REINFORCE) [29] to train
the policy. And its loss function given previously defined dataset
PSdata (·|S,u) is derived as follows:

LR (θ ) = −
∑

S,u∈PSdata

EA∼P (A |S,u ;θ )[R(A, u)] (19)

= −
∑

S,u∈PSdata

R(A, u)
K∑
i=1

logp(ai |a1, · · · , ai−1, S; θd ),

where S is previously defined encoder state, R(A,u) is the delayed
reward [31] obtained after the whole card A is generated and is
estimated by the following equation:

R(A, u) = 2 ×
(
P (r = 1 |A, u ;ϕ∗) − 0.5

)
, (20)

here we rescale the value of reward between −1.0 to 1.0.
One problem for training REINFORCE policy is that the reward

is delayed and sparse, in which policy may be hard to receive
positive reward signal, thus the training procedure of policy be-
comes unstable and falls into local minimal finally. In order to ef-
fectively avoid non-optimal local minimal and steadily increase the
reward throughout training, we borrow the idea of Hill Climbing
(HC) which is heuristic search used for mathematical optimiza-
tion problems [8]. Instead of directly sampling from the policy by
A ∼ P(A|S,u;θ ), in our method we first stochastically sample a
buffer ofm = 5 solutions (cards) from policy and select the best one
as A∗, then train the policy by A∗ according to Eq. 19. In that case,
we will always learn from a better solution to maximize reward,
train on it and use the trained new policy to generate a better one.



4.2.4 Combination. To benefit from both fields of Learning from
Demonstrations and Learning from Rewards, we simply apply linear
combination of their loss functions and conduct the final loss as:

L(θ ) = α × LS (θ ) + (1 − α ) × LR (θ ), (21)

where LS (θ ) and LR (θ ) are formulated by Eq. 16 and 19, α ∈ [0, 1]
is the hyper-parameter which should be tuned. The overall learning
process is shown in Algorithm 2.

5 EXPERIMENTS
In this section, we conduct experiments with the aim of answering
the following research questions:
RQ1 Does our proposed GAttN with RLfD method outperform the

baseline methods in exact-K recommendation problem?
RQ2 How does our proposed Graph Attention Networks (GAttN)

framework work for modeling the problem?
RQ3 How does our proposed optimization framework Reinforce-

ment Learning from Demonstrations (RLfD) work for training
the model?

5.1 Experimental Settings
5.1.1 Datasets. We experiment with three datasets and Tab. 3 sum-
marizes the statistics. The first two datasets are constructed from
MovieLens and last dataset is collected from real-world exact-K
recommendation system on Taobao platform. The implementation
details and parameter settings can be found in Appx. C.2.

MovieLens. This movie rating dataset6 has been widely used
to evaluate collaborative filtering algorithms in RS. As there is no
public datasets to tackle exact-K recommendation problem, we con-
struct for it based on MovieLens. While MovieLens is an explicit
feedback data, we first transform it into implicit data, where we
regard the 5-star ratings as positive feedback and treat all other en-
tries as unknown feedback [29]. Then we construct recommended
cards of each user with set of K items7, where cards containing
positive item are regarded as positive cards (labeled as 1) and cards
without any positive item are negative cards (labeled as 0). Mean-
while, positive item in the corresponding card can be seen as what
user actually clicked or preferred item belonging to that card. Fi-
nally we construct a candidate set with N items for each card for
a user, where the N items are randomly sampled from the whole
items set given this user and must include all the items in that card.
We show examples how the dataset like in Tab. 4. Specially in our
experiments, we construct two dataset: 1) card with K = 4 items
along with N = 20 candidate items and 2) card with K = 10 items
along with N = 50 candidate items. We call the above two dataset
as MovieLens(K=4,N=20) and MovieLens(K=10,N=50). Notice
that there is no constraint between items in the output card (i.e
C = ∅ defined in Sec. 3.1) for these two datasets.

Taobao. Above two datasets for exact-K recommendation prob-
lem based on MovieLens are what we call synthetic data which are
not real-world datasets in production. On the contrary, we collect a
dataset from exact-K recommendation system in Taobao platform,
of which two days’ samples are used for training and samples of the
6http://grouplens.org/datasets/movielens/100k/
7The K items in a card are randomly permuted. As we suppose in Sec. 3.1, the permu-
tation of the K item is not considered.

following day for testing, and specifically with K = 4 and N = 50.
We call it Taobao(K=4,N=50). Notice there is a required constraint
between items in the output card in this dataset, that normalized
edit distance (NED) [19] of any two items’ titles must be larger than
τ = 0.5, i.e C = {NED(ai ,aj ) ≥ τ |ai ∈ A,aj ∈ A, i , j} defined in
Sec. 3.1, to guarantee the diversity of items in a card.

5.1.2 Evaluation Protocol. For evaluation, we can’t use traditional
ranking evaluation metrics such as nDCG, MAP, etc. These metrics
either require prediction scores for individual items or assume that
“better” items should appear in top ranking positions, which are
not suitable for exact-K recommendation problem.

Hit Ratio. Hit Ratio (HR) is a recall-based metric, measuring
how much the testing ground-truth K items of card A∗ are in the
predicted card A with exact K items. Specially for exact-K recom-
mendation, we refer to HR@K and is formulated as follows:

HR@K =
n∑
i=1

|Ai ∩ A∗
i |

K

/
n , (22)

wheren is the number of testing samples, | · | represents the number
of items in a set.

Precision. Precision (P) measures whether the actually clicked
(positive) item a∗ in ground-truth card is also included in the pre-
dicted card A with exact K items, and is formulated as follows:

P@K =
n∑
i=1

I (a∗i ∈ Ai )
/
n , (23)

where I (·) ∈ {0, 1} is the indicator function.

5.1.3 Baselines. Our baseline methods are based on Naive Node-
Weight Estimation Method (in Sec. 3.2) to adapt to exact-K recom-
mendation. The center part is to estimate node weight which can
be seen as CTR for the corresponding item. Therefor LTR based
methods are applied and we compare with the follows:

PointwiseModel. DeepRankmodel is a popular rankingmethod
in production which applies DNNs and a pointwise ranking loss
(a.k.a MLE) [14].

Pairwise Model. BPR [22] is the method optimizes MF model
[17] with a pairwise ranking loss. It is a highly competitive baseline
for item recommendation.

Listwise Model. GRU based listwise model (Listwise-GRU) a.k.a
DLCM [2] is a SOTA model for whole-page ranking refinement. It
applies GRU to encode the candidate items with a list-wise ranking
loss. In addition, we also compare with listwise model based on
Multi-head Self-attention in Sec. 4.1.2 as Listwise-MHSA.

5.2 Performance Comparison (RQ1)
Tab. 1 shows the performances of P@K and HR@K for the three
datasets with respect to different methods. First, we can see that
our method with the best setting (GAttN with RLfD) achieves the
best performances on both datasets, significantly outperforming
the SOTA methods Listwise-MHSA and Listwise-GRU by a large
margin (on average over three datasets, the relative improvements
for P@K andHR@K are 7.7% and 4.7%, respectively). Secondly from
the results, we can find that listwise methods (both Listwise-MHSA
and Listwise-GRU) outperform pointwise and pariwise baselines

http://grouplens.org/datasets/movielens/100k/


significantly. Therefore listwise methods are more suitable for exact-
K recommendation, because they consider the context information
to represent an item (node in graph) as what we have claimed in
Sec. 4.1.2. And Listwise-MHSA performs better than Listwise-GRU,
which indicates the effectiveness of our proposedMHSAmethod for
encoding the candidate items (graph nodes). More detailed analysis
for our method GAttN with RLfD can be found in the following two
subsections (RQ2 and RQ3).

Table 1: Overall performances respect to different methods
on three datasets, where ∗ means a statistically significant
improvement for p < 0.01.

Model MovieLens (K=4,N=20) MovieLens (K=10,N=50) Taobao (K=4,N=50)

P@4 HR@4 P@10 HR@10 P@4 HR@4

DeepRank 0.2120 0.1670 0.0854 0.1320 0.6857 0.6045
BPR 0.3040 0.2050 0.2350 0.1801 0.7357 0.6582

Listwise-GRU 0.4142 0.2423 0.4041 0.2144 0.7645 0.6942
Listwise-MHSA 0.4272 0.2465 0.4384 0.2168 0.7789 0.7176
Ours (best) 0.4743 0.2611 0.4815 0.2245 0.7958 0.7488

Impv. 11.0%∗ 6.1%∗ 9.8%∗ 3.6% 2.2% 4.3%

5.3 Analysis for GAttN (RQ2)
Tab. 1 shows that Listwise-MHSA performs better than Listwise-
GRU on both P@K and HR@K on all datasets. It indicates the
effectiveness to apply MHSA method for encoding the candidate
items (graph nodes). As we claimed in Sec. 4.1.2, the representation
for a node should consider the other nodes in graph, for there can
exist some underlying structures in graph that nodes may influence
between each other. Here we further give a presentational case
on how the self-attention works in encoder (see Fig. 4) based on
Taobao dataset. Take item “hat” in graph for example, items with
larger attention weights to it are kinds of “scarf”, “glove” and “hat”.
It is reasonable that users focusing on “hat” tend to prefer “scarf”
rather than “umbrella”. So to represent item “hat” in graph, it’s
helpful to attend more features of items like “scarf”.

!

!

!

!

Figure 4: An example of the attention mechanism in the en-
coder self-attention in layer 2. The higher attention weights
of the item, the darker color of the grid. We take item “hat”
for example and only show attention weights in one head.

Beam search is proposed in GAttN decoder (see Sec. 4.1.2) to
expand the search space and try more combinations of items in a
card to get a most optimal solution. A critical hyper-parameter for
beam search is the beam size, indicating how many solutions to
search in a decoding time-step. We tune beam size in Fig. 5 and find
that larger beam size can lead to better performances8 on both P@K
and HR@K. However we can also see that when beam size gets
larger than 3 the improvement of performances will be minor, so for
efficiency consideration we set beam size as 3 in our experiments.
8We only report the results on MovieLens(K=4,N=20) and other datasets follow the
same conclusion.
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Figure 5: Performance of P@4 and HR@4 with different
beam size in GAttN decoder.

5.4 Analysis for RLfD (RQ3)
To verify how our proposed optimization framework RLfD works,
we will do the following ablation tests:
(1) Set α = 0 in Eq. 21 (only reinforcement loss as Eq. 19), and

compare RL(w/ hill-climbing) with RL(w/o hill-climbing).
(2) Set α = 1 in Eq. 21 (only supervised loss as Eq. 16), and compare

SL(w/ policy-sampling) with SL(w/o policy-sampling).
(3) Finetune α in Eq. 21 and figure out the influence to the combi-

nation of SL with RL.
Here we represent Learning from Demonstrations and Learning from
Rewards as SL and RL for short. Tab. 2 gives an overall results and
we only report on dataset MovieLens(K=4,N=20) for simplification.

Table 2: Performance for different settings in RLfD.

Settings in RLfD MovieLens (K=4,N=20)

P@4 HR@4

1 RL(w/o hill-climbing) 0.3340 0.2314
2 RL(w/ hill-climbing) 0.3573 0.2330
3 SL(w/o policy-sampling) 0.4095 0.2401
4 SL(w/ policy-sampling) 0.4272 0.2465
5 RL(w/o hill-climbing) + SL(w/ policy-sampling) 0.4495 0.2514
6 RL(w/ hill-climbing) + SL(w/o policy-sampling) 0.4472 0.2534
7 RL(w/ hill-climbing) + SL(w/ policy-sampling) 0.4743 0.2611

Fig. 6 shows the learning curves respect to Reward (defined in Eq.
20), P@4 and HR@4 for RL with (w/) or without (w/o) hill-climbing
proposed in Sec. 4.2.3. From the curves, we can find that with the
help of hill-climbing REINFORCE training becomes more stable
and steadily improves the performance, finally achieves a better
solution (row 1 vs. 2 and row 5 vs. 7 in Tab. 2). Another insight in
Fig. 6 is that learning curve of Reward is synchronous monotonous
with P@4 and HR@4, which verifies the effectiveness of our defined
reward function to direct the objective in problem.
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Figure 6: Learning curves respect to Reward, P@4 and
HR@4 for RL with (w/) or without (w/o) hill-climbing.



Fig. 7 shows the learning curves respect to P@4 and HR@4 for
SL with (w/) or without (w/o) policy-sampling proposed in Sec.
4.2.2. We observe that in the beginning 50 iterations SL with policy-
sampling may perform worse than without policy-sampling. We
believe that in the first steps of training procedure the learned policy
can be poor, so feeding the output sampled from such policy to the
next time-step as input in decoder can lead to worse performances.
However as training goes on, SL with policy-sampling will converge
better for revising the inconsistency between training and inference
of policy, finally achieve better performances (row 3 vs. 4 and row
6 vs. 7 in Tab. 2).
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Figure 7: Learning curves respect to P@4 and HR@4 for SL
with (w/) or without (w/o) policy-sampling.

In Fig. 8 we tune hyper-parameter α defined in Eq. 21, which
represents trade-off for applying SL and RL in training process. We
observe that α = 0.5 achieves the best both on P@4 and HR@4.
The performances increase when α is tuned from 0 to the optimal
value and then drops down afterwards, which indicates that prop-
erly combining SL and RL losses can result in the best solution.
Furthermore, we find that when only apply SL loss (α = 1) we can
get a preliminary sub-optimal policy, after involving some degree
of RL loss the policy can be directed to achieve more optimal solu-
tions, which verifies the sufficiency-and-efficiency of our proposed
Reinforcement Learning from Demonstrations to train the policy.
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Figure 8: Performance of P@4 and HR@4 with different co-
efficients α in loss defined in Eq. 21.

6 CONCLUSION AND FUTUREWORK
This work targets to a practical recommendation problem named
exact-K recommendation, we prove that it is different from tradi-
tional top-K recommendation. In the first step, we give a formal
problem definition, then reduce it to a Maximal Clique Optimiza-
tion problem which is a combinatorial optimization problem and
NP-hard. To tackle this specific problem, we propose a novel ap-
proach ofGAttN with RLfD. In our evaluation, we perform extensive
analysis to demonstrate the highly positive effect of our proposed
method targeting exact-K recommendation problem. In our future
work, we plan to adopt adversarial training for the components of
Reward Estimator and REINFORCE learning, regarding as discrimi-
nator and generator in GAN’s [29] perspective. Moreover further
online A/B testing in production will be conducted.
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A NAIVE NODE-WEIGHT ESTIMATION
METHOD

Algorithm 1 Naive Node-Weight Estimation Method.
Require: Given user u and candidate items set S , construct graph
G(N , E) defined in paragraph 2 of Sec. 3.1.

1: Estimate weight wi of each node ni ∈ N in graph based on
CTR of corresponding item si ∈ S .

2: Initial result card A = ∅.
3: for t = 1 to K do
4: Select node at with the largest weight in N and add to A.
5: Remove at and nodes in N which are not adjacent to at .
6: end for
7: return result card A.

B REINFORCEMENT LEARNING FROM
DEMONSTRATIONS

Algorithm 2 Reinforcement Learning from Demonstrations.
Phase 1 - Reward Estimator Training

Require: reward function P(r = 1|A,u;ϕ), dataset PDdata (r
∗ |A,u)

1: Optimize ϕ with gradient descent by loss function LD (ϕ).
2: return P(r = 1|A,u;ϕ∗)

Phase 2 - Policy Training

Require: optimized reward function P(r = 1|A,u;ϕ∗), dataset
PSdata (A

∗ |S,u), policy P(A|S,u;θ )
1: Optimize θ with gradient descent by loss function L(θ ).
2: return P(A|S,u;θ∗)

C EXPERIMENTAL SETTINGS
C.1 Datasets

Table 3: Statistics of the experimented datasets.
Dataset User# Card# Item# Sample#

MovieLens(K=4,N=20) 817 40036 1630 40036

MovieLens(K=10,N=50) 485 33196 1649 33198

Taobao(K=4,N=50) 581055 310509 3148550 1116582

Table 4: Show case of the dataset.
user card candidate items card label positive item

sample#1 1 1,2,3,4 1,2,3,4,...,20 1 2
sample#2 1 1,4,5,6 1,2,3,4,...,20 0 /

...

(We take K = 4 and N = 20 for example. Items and users are represented
as IDs here. Card label represents whether the card is clicked or satisfied
by user (labeled as 1) or not (labeled as 0). Positive item is the actually
clicked item in card by user.)

C.2 Implementation and Parameter Settings
Here we report implementation details for the three datasets9 (two
MovieLens based datasets and one Taobao based dataset), and our
implementation is based on TensorFlow10. To construct the training
and test sets, we perform a 4:1 random splitting as in [29] for all
the datasets.

C.2.1 MovieLens. Notice both MovieLens(K=4,N=20) and Movie-
Lens(K=10,N=50) share the same parameter settings. For a fair com-
parison, all models are set with an embedding size of 16 for item and
user IDs, and optimized using the mini-batch Adam optimizer with
a batch size of 32 and learning rate of 0.001. All models are trained
for 10 epoch. All the trainable feed-forward parameter matrices are
set with the same input and output dimension as 32 × 32 (includ-
ing DeepRank, BPR, and all the RNN cells in both Listwise-GRU,
Listwise-MHSA and ours). Specifically for our GAttN model, in
decoder (in Sec. 4.1.3) we use LSTM cells with units number of 32
and set beam size as 3, number of heads in encoder (in Sec. 4.1.2)
MHSA layer is 2, and the coefficient parameter α in loss function
(in Sec. 4.2.4) is 0.5. Number of layers L in both encoder and decoder
are set as 2. For reward estimator model (in Sec. 4.2.3), we set the
hidden size in fully-connected layer as 128.

C.2.2 Taobao. In this dataset, the feature vectors for user and item
are statistic features with size of 40 and 52 specifically, instead of
ID features. Sample statistic features are PV (page view), IPV (item
page view), GMV (cross merchandise volume), CTR (click through
rate) and CVR (conversion rate) for 1 day, 7 days and 14 days, etc.
For this dataset, we first transfer the input representation of user
and item to 32 dimension, i.e we setWI ∈ R92×32 and bI ∈ R32 in
Sec. 4.1.1. And all the other hyper-parameters are set as the same
with those on MovieLens based datasets (refer to Appx. C.2.1).

9https://github.com/pangolulu/exact-k-recommendation
10https://www.tensorflow.org/

https://github.com/pangolulu/exact-k-recommendation
https://www.tensorflow.org/
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