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Abstract
Multi-turn response selection is a task de-
signed for developing dialogue agents. The
performance on this task has a remarkable im-
provement with pre-trained language model-
s. However, these models simply concatenate
the turns in dialogue history as the input and
largely ignore the dependencies between the
turns. In this paper, we propose a dialogue
extraction algorithm to transform a dialogue
history into threads based on their dependen-
cy relations. Each thread can be regarded as
a self-contained sub-dialogue. We also pro-
pose Thread-Encoder model to encode thread-
s and candidates into compact representations
by pre-trained Transformers and finally get the
matching score through an attention layer. The
experiments show that dependency relations
are helpful for dialogue context understanding,
and our model outperforms the state-of-the-art
baselines on both DSTC7 and DSTC8*, with
competitive results on UbuntuV2.

1 Introduction

Dialogue system is an important interface between
machine and human. An intelligent dialogue agent
is not only required to give the appropriate response
based on the current utterance from the user, but
also consider the dialogue history. Dialogue con-
text modeling has been a key point for developing
such dialogue systems, including researches on s-
tate tracking (Eric et al., 2019; Ren et al., 2019),
topic segmentation (Nan et al., 2019; Kim, 2019),
multi-turn response selection (Tao et al., 2019; Gu
et al., 2019), next utterance generation (Zhang et al.,
2019; Chen et al., 2019), etc. In this paper, we tar-
get on the multi-turn response selection task, which
is first proposed by Lowe et al. (2015) and is also a
track in both DSTC7 (Gunasekara et al., 2019) and
DSTC8 (Kim et al., 2019).

∗ The corresponding author.

Dialogue History

Response: B: Those are all the services that load on startup. 

A: How can i speed up ubuntu's initialization process ?
C: My grub menu not displayed while starting ubuntu, help!
B: Stop all the services you don’t need from loading on startup.
C: The services are listed in /etc/rc2. 
B: Comment out the vars in /etc/default/grub …
A: I have no idea what those files are for. 
C: Ok, that worked, thanks a lot!

Figure 1: An example of the tangled dialogue history.
A, B and C are three participants. Texts in different
colors represent different dialogue threads.

Given a dialogue history made up of more than
one utterance, the selection task is to choose the
most possible next utterance from a set of candidate
responses. Previous work on this task can be rough-
ly divided into two categories: sequential models
and hierarchical models. The former ones, includ-
ing (Lowe et al., 2015; Yan et al., 2016; Chen and
Wang, 2019), concatenate the history utterances
into a long sequence, try to capture the similarities
between this sequence and the response and give
a matching score. The latter ones, including (Tao
et al., 2019; Wang et al., 2019; Gu et al., 2019),
extract similarities between each history utterance
and the response first. Then, the matching infor-
mation is aggregated from each pair (mostly in a
chronological way) to get a final score. There is
little difference between the performance of these
two kinds of architectures until the emergence of
large pre-trained language models.

Work such as (Whang et al., 2019; Vig and
Ramea, 2019) has shown the extraordinary per-
formance of the pre-trained language models on
dialogues. These pre-trained models are easily
transferred to the response selection task by con-
catenating all of the utterances as the input. All of
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the words in dialogue history can directly interact
with each other via transformers like Bi-encoder,
even the words both in the dialogue history and
the candidate response if time permits, such as
Cross-encoder (Humeau et al., 2019). However,
since such models can be regarded as the ultimate
architecture of the sequential-based models, the
dialogue dependency information between the ut-
terances is largely ignored due to the concatenation
operation (Wu et al., 2017). An example is shown
in Figure 1. The dependency relations can definite-
ly help us to understand the two tangled dialogue
threads. Besides, we always need to truncate the
earlier dialogue history to limit the size of the mod-
el and make the computation efficient. However, it
isn’t always that the nearest utterances are more im-
portant. As we can see in Figure 1, several dialogue
threads may be tangled especially in multi-party
chat rooms, it’s hard to tell which dialogue thread
will be moving on.

In this paper, we propose to incorporate dialogue
dependency information into the response selec-
tion task. We train a dialogue dependency parser
to find the most probable parent utterance for each
utterance in a session. We name such relation be-
tween utterances as “reply-to”. Then, we empirical-
ly design an algorithm to extract dialogue threads,
which is represented by a path of dependency rela-
tions according to the parsed trees. The extracted
threads are sorted by the distance between the fi-
nal utterance in each thread and the response in
ascending order, following the intuition that the
closer utterances are more relevant. After that, we
propose the model named Thread-Encoder based
on a pre-trained language model. Each encoder in
the model can distill the critical information from
each dialogue thread or the candidate response. Fi-
nally, another attention layer is used to calculate
the matching score with thread representations and
the candidate representation. The candidate with
the highest matching score will be selected as the
final response.

We collect the training data for dialogue de-
pendency parser from a dialogue disentanglement
dataset (Kummerfeld et al., 2019) in the technical
domain. And we do response selection experiments
among UbuntuV2, DSTC7 and DSTC8*. These
datasets consist of dialogues in the same domain
but under different settings, including two-party
dialogues and multi-party dialogues. The results
demonstrate our model’s strong capability to repre-

sent multi-turn dialogues on all of these datasets.
Our main contributions are as follows:

• As far as we know, we are the first to incor-
porate dialogue dependency information into
response selection task, demonstrating that
the dependency relations in the dialogue histo-
ry are useful in predicting dialogue responses
(Sec 5).

• Based on the predicted dependencies, we de-
sign a straight-forward but effective algorithm
to extract several threads from the dialogue
history (Sec 2.1). The results show the algo-
rithm is better than other simple segmentation
methods on the response selection task.

• We propose the Thread-Encoder model, incor-
porating dialogue dependency information by
threads and utilizing the pre-trained language
model to generate corresponding representa-
tions (Sec 2.2). The experimental results show
that our model outperforms the state-of-the-
art baselines on DSTC7 and DSTC8* datasets,
and is very competitive on UbuntuV2 (Sec 4).

2 Approach

The multi-turn response selection tasks represent
each dialogue as a triple T = 〈C,R,L〉, where
C = {t1, t2, ..., tn} represents the history turns.
R is a candidate response and L is the 0/1 label
indicating whether R is the correct response or a
negative candidate. To incorporate the dependency
information between the history turns, we design a
straight-forward algorithm to extract the dialogue
history C into dialogues threads 〈C1, C2, ..., CM 〉
based on the predicted dependencies, along with
an elaborately designed model to find the function
f(C1, C2, ..., CM , R), which measures the match-
ing score of each (C,R) pair. Both the extraction
algorithm and the model will be explained as fol-
lows.

2.1 Dialogue Extraction Algorithm

Since it’s impossible for the large pre-trained lan-
guage models to take all of the dialogue history
turns as the input under the computational power
nowadays, these models usually set a truncate win-
dow and only consider the top-k most recent turns
or tokens. However, several dialogue threads may
exist concurrently in two-party (Du et al., 2017)
or multi-party dialogues (Tan et al., 2019). Such
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coarse-grained truncating operation may not only
bring in redundant turns from other dialogue thread-
s, but also exclude the expected turns given earlier
in the current dialogue thread, hurting the represen-
tation capability of pre-trained language models.
Extracting the whole history into self-contained
dialogue threads can help preserve more relevant
turns and avoid the negative effects of encoding
irrelevant turns by a single language model.

Motivated by the above, we aim to analyze the
discourse structures in dialogue history at first. We
utilize the discourse dependency parsing model for
dialogues proposed by Shi and Huang (2019). It is
a deep sequential model that achieves the state-of-
the-art performance on the STAC corpus. Instead
of predicting the predefined relation types between
Elementary Discourse Units(EDUs), we borrow
the proposed model in this work to find if there ex-
ist dependency relations between utterances in the
given dialogue history. The model scans through
the dialogue history and predicts the most likely
parent turn for each turn. It finally constructs a
dependency tree for each dialogue history with a
confidence score on each edge.

Algorithm 1: The Dialogue Extraction Algo-
rithm

Input : The dependency tree T with confidence scores on each edge
eji = (ti, tj , Pji), where i.j = 1, 2, ..., n and j > i;
The threshold for the confidence score P .

Output : The threads C′ = 〈C1, C2, ..., CM 〉, and each is made up
of a sequence of turns.

1 for eji in T do
2 if Pji < P then
3 delete eji from T
4 end
5 end
6 The forest T ′ = T

7 The set of threads C′ = ∅
8 for each leaf node in T ′ do
9 Ctmp = all the node from the leaf node to the corresponding

root.
10 C′ = C′ ∪ Ctmp

11 end
12 Rank the threads in C′ based on the index of the leaf node in

descending order.

Then, the dialogue extraction algorithm is de-
signed to extract original long history into dialogue
threads according to dependency tree T and con-
fidence scores. The algorithm is depicted in Al-
gorithm 1. eji is a directed edge with head ti and
tail tj , indicating that turn j is a reply of turn i
with probability Pji. The threshold P is a hyper-
parameter. It is noteworthy that we still follow the
intuition that the turns closer to the responses are
more likely to be useful than others. As a result, the
threads are returned in ascending order according
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Figure 2: An example of the algorithm when the thresh-
old P = 0.2. The figures are the confidence scores of
corresponding predicted dependency relations.

to the distance between the last turns in each thread
and the response. An illustration of the algorithm
is shown in Figure 2. The 7-turn dialogue history
is extracted into three threads.

2.2 Thread-based Encoder Model

In the work from Humeau et al. (2019), they use a
pre-trained language model as the context encoder
and generate the embedding for dialogue history.
Inspired by this work, we also utilize pre-trained
language models to encode natural texts into mean-
ingful representations.

Given the extracted self-contained dialogue
threads 〈C1, C2, ..., CM 〉, we utilize a pre-trained
language model to encode the content of each di-
alogue thread in parallel and another pre-trained
language model to encode the candidate respective-
ly. If the candidate representation matches well
with one or more thread representations, that can-
didate is probably the correct response.

The architecture of our model Thread-Encoder
(shown in Figure 3) can be divided into two layers:
Encoding Layer and Matching Layer.

2.2.1 Encoding Layer
We use the pre-trained language model released by
Humeau et al. (2019). This large pre-trained Trans-
former model has the same architecture as BERT-
base (Devlin et al., 2019). It has 12 layers, 12 atten-
tion heads and 768 hidden size. Different from the
original one trained on BooksCorpus and Wikipedi-
a, the new language model is further trained on
Reddit (Henderson et al., 2019), a large dialogue
dataset with around 727M context-response pairs.
The pretraining tasks include masked language
model and next utterance prediction 1. Finally, the

1“Utterance” and “turn” are interchangeable in this paper.
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Figure 3: The architecture of Thread-Encoder model.
All of the blocks in the same color share parameters.

pre-trained model can be used for a wide range of
multi-sentence selection tasks with fine-tuning.

In our model, the encoder layer uses two Trans-
formers, thread encoder T1(·) and candidate en-
coder T2(·), both initialized with the pre-trained
weights. T1(·) is used for encoding threads, and all
of the turns in a thread are concatenated into a long
sequence in reverse chronological order as the in-
put. T2(·) is used for encoding the candidate. The
inputs to the Transformer encoder are surrounded
by the special token [S], consistent with the opera-
tions during pretraining.

Above the Transformer encoder is an aggregator
agr(·) that aggregates a sequence of vectors pro-
duced by the encoder into one or more vectors. In
a word, the threads and response can be encoded
as follows:

Cemb
m = agr1(T1(Cm))

Remb = agr2(T2(R)),
(1)

where m = 1, 2, ...M and M is the number of
dialogue threads. For arg1(·), if we simply use
”average” function for the aggregator, only one rep-
resentation will be encoded for each thread. We
name this model as Thread-bi. If we use ”multi-
head attention” as the aggregator, multiple repre-
sentations will be encoded for each thread. We
name this model as Thread-poly. The aggregator
agr2(·) for candidate representations is the average
over input vectors.

2.2.2 Matching Layer

Given the encoded threads 〈Cemb
1 , Cemb

2 , ..., Cemb
M 〉

and candidate Remb, we further use an attention
layer to distill the information from the threads by

attending the query Remb to each Cemb
m :

Cemb =

M∑
m=1

wmCemb
m (2)

where

sm = (Remb)> · Cemb
m

wm = exp(sm)/

M∑
k=1

exp(sk)
(3)

The final matching score is given by:

S = F (C1, C2, ..., CM , R) = (Remb)> · Cemb

(4)
We consider the other correct responses in a

mini-batch as the negative candidates to accelerate
the training process (Mazaré et al., 2018). The w-
hole model is trained to minimize the cross-entropy
loss as follows:

loss = − 1

A

A∑
a=1

A∑
b=1

Lab log(Sab) (5)

where A is the batch size. Lab equals 1 when a = b,
otherwise 0. Sab is the matching score in Eq. 4.

3 Experimental Setup

In this section, we introduce the datasets, baselines
and implementation details of our model2.

3.1 Datasets
Our experiments are performed on three datasets:
UbuntuV2, DSTC 7 and DSTC 8*.

• UbuntuV2 (Lowe et al., 2017) consists of
two-party dialogues extracted from the Ubun-
tu chat logs.

• DSCT7 (Gunasekara et al., 2019) refers to
the dataset for DSTC7 subtask1 consisting of
two-party dialogues.

• DSCT8* refers to the dataset for DSTC8 sub-
task 2, containing dialogues between multiple
parties. We remove the samples without cor-
rect responses in the given candidate sets 3.

More details of these three datasets are in Table 1.
2The codes and data resources can be found in http-

s://github.com/JiaQiSJTU/ResponseSelection.
3We do this to eliminate the controversy of solving no

correct response in different ways and try to focus on dialogue
context modeling.
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UbuntuV2 DSTC7 DSTC8*

Train 957,101 100,000 89,813
Valid 19,560 5,000 7,660
Test 18,920 1,000 7,174
#Candidates 10 10 100
#Correct Response 1 1 1
#Turns 3-19 3-75 1-99

Table 1: The statistics of the datasets used in this paper.

3.2 Baselines

We introduce several state-of-the-art baselines to
compare with our results as follows.

• DAM (Zhou et al., 2018) is a hierarchical
model based entirely on self and cross atten-
tion mechanisms.

• ESIM-18 (Dong and Huang, 2018) and
ESIM-19 (Chen and Wang, 2019) are two se-
quential models, which are the modifications
and extensions of the original ESIM (Chen
et al., 2017) developed for natural language
inference. The latter one ranked top on D-
STC7.

• IMN (Gu et al., 2019) is a hybrid model with
sequential characteristics at matching layer
and hierarchical characteristics at aggregation
layer.

• Bi-Encoder (Bi-Enc), Poly-Encoder
(Poly-Enc) and Cross-Encoder (Cross-
Enc) (Humeau et al., 2019) are the state-
of-the-art models based on pre-trained
model.

3.3 Implementation Details

According to Section 2.1, we firstly transform
the dialogue disentanglement dataset (Kummerfeld
et al., 2019). Turns are clustered if there exists a
“reply-to” edge, and we obtain 4,444 training dia-
logues from the original training set and 480 test
dialogues from the original valid set and test set.
Only 7.3% of turns have multiple parents. Since
the parsing model can only deal with dependency
structure with a single parent, we reserve the depen-
dency relation with the nearest parent in these cases.
We trained a new parser on this new dataset. The
results on the new test set are shown in Table 2. It
shows that in-domain data are useful for enhancing
the results for dialogue dependency prediction.

Precision Recall F1

Trained on STAC 67.37 64.43 65.86
Trained on the new dataset 71.44 68.32 69.85

Table 2: The results of the dialogue dependency parser.

For the response selection task, we implemented
our experiments based on ParlAI 4. Our model is
trained with Adamax optimizer. The initial learn-
ing rate and learning rate decay are 5e−5 and 0.4
respectively. The candidate responses are truncat-
ed at 72 tokens, covering more than 99% of them.
The last 360 tokens in the concatenated sequence
of each thread are reserved. The BPE tokenizer
was used. We set the batch size as 32. The model is
evaluated on valid set every 0.5 epoch. The training
process terminates when the learning rate is 0 or
the hits@1 on validation no longer increases within
1.5 epochs. The threshold in the Algorithm 1 is set
to 0.2 and we preserve at most top-4 threads for
each sample, avoiding the meaningless single turns
while ensuring the coverage of original dialogue
contexts. The results are averaged over three runs.
For UbuntuV2 and DSTC7 training set, we do data
augmentation: each utterance of a sample can be
regarded as a potential response and the utterances
in the front can be regarded as the corresponding
dialogue context.

Our experiments were carried out on 1 to 4 N-
vidia Telsa V100 32G GPU cards. The evaluation
metrics for response selection are hits@k and M-
RR, which are widely used and the codes can be
found in ParlAI.

4 Results and Analysis

Here we show results on dialogue thread extraction
and response selection of the three datasets, and
give some discussions on our model design.

4.1 Extraction Results
We first evaluate the extraction results on Ubuntu-
V2, DSTC7 and DSTC8* with three metrics: The
average number of threads (avg#thd) is to show
how many dialogue threads are discovered in each
dialogue, which ranges from 1 to 4. We didn’t
take all of the extracted threads into consideration,
serving as a hard cut for the trade-off between infor-
mation loss and memory usage of the model. The
average number of turns in each thread (avg#turn)
and the average standard deviation of the number

4https://github.com/facebookresearch/ParlAI

https://github.com/facebookresearch/ParlAI
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Dataset avg#thd avg#turn std#turn 1-thd(%) 2-thd(%) 3-thd(%) 4-thd(%)

UbuntuV2
train 1.42 3.24 0.29 68.92 22.19 6.65 2.24
valid 1.39 3.09 0.25 70.78 20.90 6.47 1.85
test 1.39 3.13 0.25 70.69 20.89 6.18 2.23

DSTC7
train 1.40 4.45 0.38 67.75 25.37 5.48 1.40
valid 1.39 4.42 0.37 67.76 25.74 5.44 1.06
test 1.45 4.42 0.42 65.00 26.10 7.70 1.20

DSTC8*
train 3.82 24.70 5.39 2.96 2.59 3.85 90.61
valid 3.80 24.46 5.37 3.32 3.09 3.64 89.95
test 3.81 24.53 5.34 3.09 2.76 4.06 90.09

Table 3: Statistics on extraction results. avg#thd refers to the average number of threads per dialogue, avg#turn
refers to the average number of turns in each thread, and std#turn refers to the average standard deviation of the
number of turns in each thread per dialogue. 1-thd to 4-thd refers to the percentage of the number of dialogues
with 1 to 4 threads in corresponding datasets.

of turns in each thread (std#turn) are to measure
the length of each thread. Dialogues context is not
well separated if the length of each thread varies a
lot (i.e., the std#turn is too high).

We apply the dialogue extraction algorithm in
Section 2.1 on the three datasets. The statistics of
extracted threads are in Table 3. Firstly, we can find
that the average number of threads is around 3.81
for DSTC8* dataset while around 1.40 for the other
two datasets, which well aligns with the empirical
observation that two-party dialogues tend to have
more concentrated discussions with a smaller num-
ber of threads while multi-party dialogues usually
contain more threads to accommodate conversation
with high diversity. Also, as is listed in Table 1,
the number of turns for DSTC8* dataset is usually
larger than UbuntuV2 and DSTC7 dataset, which
naturally leads to more leaf nodes hence a larger
number of threads. Secondly, the average length
of threads is around 24.50 for DSTC8* dataset
while around 4.0 for DSTC7 dataset and Ubuntu-
V2 and the standard deviation for DSTC8* dataset
is also larger. It shows that when the number of
dialogue threads increases, the standard deviation
of the length of each thread also tends to increase
since some dialogue threads may catch more atten-
tions while others may be ignored. In summary,
DSTC8* is a more challenging multi-party dia-
logue dataset for dialogue context modeling than
two-party dialogue datasets, including UbuntuV2
and DSTC7.

4.2 Response Selection Results

The response selection results of our Thread-
Encoder models, including Thread-bi and Thread-
poly, are shown in Table 4 for UbuntuV2 and D-
STC7 datasets, and in Table 6 for DSTC8*.

Since UbuntuV2 is too large, we only fine-tuned
on this dataset for three epochs due to limited com-
puting resources. The performance of our model
is similar to Bi-Enc and Poly-Enc on UbuntuV2.
Although the Cross-Enc rank top on UbuntuV2, it
is too time-consuming and not practical (Humeau
et al., 2019). It runs over 150 times slower than
both Bi-Enc and Poly-Enc. Our model, Thread-bi,
takes the top four threads (see Section 4.3.2 for
more details) into consideration with the inference
time overhead similar to Bi-Enc and Poly-Enc. Be-
sides, the reason why our model seems slightly
worse than Poly-Enc is that UbuntuV2 is an easi-
er dataset with fewer turns and threads according
to Table 1 and Table 3. Consequently, our model
degenerates towards Bi-Enc and Poly-Enc, and all
four models (Bi-Enc, Poly-Enc, Thread-bi, Thread-
poly) actually yield similar results, with p-value
greater than 0.05.

Due to the huge advancement of pre-trained
models over other models shown on UbuntuV2
and DSTC7, we mainly compared the competi-
tive state-of-the-art pre-trained models on DSTC8*
dataset for through comparison as shown in Table
6. Our models achieve the new state-of-the-art re-
sults on both DSTC7 and DSTC8* dataset proving
that threads based on dependency relation between
turns are helpful for dialogue context modeling.
We can see that using multiple vectors works much
better than using only one representation. The gap
between these two aggregation methods is not clear
on UbuntuV2 and DSTC7, but much more signif-
icant on DSTC8* where the dialogues between
multiple participants are much more complicat-
ed. This finding hasn’t been shown in Humeau’s
work (2019). Besides, our model can enhance both
kinds of pre-trained dialogue models on the multi-
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UbuntuV2 DSCT7
Model hits@1 hits@2 hits@5 MRR hits@1 hits@10 hits@50 MRR

DAM - - - - 34.7 66.3 - 35.6
ESIM-18 73.4 85.4 96.7 83.1 50.1 78.3 95.4 59.3
ESIM-19 73.4 86.6 97.4 83.5 64.5 90.2 99.4 73.5
IMN 77.1 88.6 97.9 - - - - -
Bi-Enc 83.6 - 98.8 90.1 70.9 90.6 - 78.1
Poly-Enc 83.9 - 98.8 90.3 70.9 91.5 - 78.0
Cross-Enc 86.5 - 99.1 91.9 71.7 92.4 - 79.0
Thread-bi 83.8 92.4 98.5 90.0 73.3? 92.5 99.3 80.2?

Thread-poly 83.6 92.5 98.5 90.0 73.2? 93.6? 99.1 80.4?

Table 4: Results on UbuntuV2 and DSTC7 dataset. Scores marked with ? are statistically significantly better than
the state-of-the-art with p < 0.05 according to t-test.

turn response selection task by comparing Thread-
bi with Bi-enc and Thread-poly with Poly-enc.

It should be noted that the inherent properties of
these three datasets are different according to Sec-
tion 4.1. UbuntuV2 and DSTC7 datasets are dia-
logues between two parties, while DSTC8* dataset
involves more complicated multi-party dialogue.
This reveals that Thread-Encoder not only works
under simple scenarios such as private chats be-
tween friends, but also acquires further enhance-
ment under more interlaced scenarios such as chaos
chat rooms.

Model #Para Train(h) Test(#dialog/s)

Bi-Enc 256.08M 10.22 6.79
Poly-Enc 256.13M 12.34 4.78
Thread-bi 256.08M 16.36 4.73
Thread-poly 256.13M 17.09 4.77

Table 5: Total number of parameters, training time (h)
and testing speed(#dialogues per second) on DSTC8*
main models.

The number of parameters, training time and
testing speed are shown in Table 5. It takes more
epochs for our model to convergence, while the
testing speed is similar to Poly-Enc.

4.3 Discussions on Model Design
To further understand the design of our full model,
we did several ablations on DSTC8*. All of the ab-
lation results as listed in Table 6. The descriptions
and analysis are in following subsections.

4.3.1 Different ways to generate threads
We evaluate some reasonable alternative meth-
ods to extract dialogue threads from the history,
i.e.“Thread Type” in Table 6.

• Full-hty concatenate the full dialogue history
in one thread. Our model degrades to Bi-Enc

and Poly-Enc.

• Dist-seg segments the turns based on their
distance to the next response. This idea is
based on the intuition that the adjacent turn-
s are possible to have strong connections.
For example, if we use 4 threads, the di-
alogue in Figure 2 will be segmented into
〈〈t6, t7〉, 〈t4, t5〉, 〈t2, t3〉, 〈t1〉〉.

• Dep-extr refers to the threads extraction pro-
cedure as explained in Algorithm 1.

Comparing in group ID-{1, 5, 7} and ID-
{2, 11, 12}, we get the following observations: (1)
Our extraction operations help with the response
selection as both ID-5 and ID-11 have significant
improvement despite the distance-based extraction
method is a strong baseline. The dependency rela-
tions capture salient information in dialogue more
accurately and yields better performance. (2) Seg-
menting dialogues simply based on distance may
hurt the storyline for each sub dialogue as ID-7 is
worse than ID-{1, 5}, which hurts the representa-
tion ability of language models. (3) The informa-
tion loss caused by Dist-seg can be partially made
up by “poly” settings as ID-12 lies between ID-2
and ID-11. Generating multiple representations by
aggregators may help to get multiple focuses in
each thread. Thus interleaved sub-dialogues can be
captured more or less. The gap between Dist-seg
and Dep-extr will definitely be widened by improv-
ing the performance of sub-dialogue extraction.

4.3.2 The number of threads to use
After deciding the way for extraction, the number
of threads (i.e., #Thread in Table 6) to use is another
key hyper-parameter for this model design.

We tested our model using the number of thread-
s ranging from 1 to 4. The results are shown in
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ID Method Aggregation Type Thread Type #Thread hits@1 hits@5 hits@10 hits@50 MRR

1 Bi-Enc Average Full-hty 1 22.2 43.0 54.2 88.7 32.9
2 Poly-Enc Attention Full-hty 1 32.5 54.1 64.4 91.4 43.1

3 Thread-bi Average Dep-extr 1 20.2 39.6 51.1 86.1 30.5
4 Thread-bi Average Dep-extr 2 22.6 42.5 53.1 87.9 32.9
5 Thread-bi Average Dep-extr 3 23.4 43.0 54.9 88.2 33.8
6 Thread-bi Average Dep-extr 4 22.9 43.3 55.1 88.5 33.5
7 Thread-bi Average Dist-seg 3 21.7 43.2 55.2 88.8 32.8

8 Thread-poly Attention Dep-extr 1 29.4 49.1 59.4 88.7 39.5
9 Thread-poly Attention Dep-extr 2 32.0 53.2 63.2 91.1 42.5
10 Thread-poly Attention Dep-extr 3 33.1 54.1 64.2 92.0 43.5
11 Thread-poly Attention Dep-extr 4 33.5? 54.5? 64.5 91.7 44.0?

12 Thread-poly Attention Dist-seg 4 33.2 53.5 63.6 92.3? 43.4

Table 6: Main results of DSTC8* (underlined) and ablation tests on DSTC8*. Scores marked with ? are statistically
significantly better than Poly-Enc with p < 0.05 according to t-test.

ID-{3 ∼ 6} and ID-{8 ∼ 11} from Table 6, we
draw following conclusions. First, by comparing
the results with only 1 thread, we can see ID-3 and
ID-8 are worse than Bi-enc and Poly-enc respec-
tively. It shows that there does exist many cases
that correct candidates that do not respond to the
nearest dialogue threads. Considering only the n-
earest sub-dialogue is not enough. Second, with
the increasing number of threads from 1 to 4, the
results go up and down for Thread-bi. The peak val-
ue is achieved when #Thread equals 3. Although
more than 90% of dialogues can be extracted into 4
threads according to Table 3, the results doesn’t go
up with one more thread. Some redundant dialogue
threads far from the current utterances may bring
noises for response selection. Also, the negative
effects of redundant dialogue threads for Thread-
poly reflect on the limited improvements and even
decreases on hits@50 between ID-10 and ID-11.
Designing a metric to filter the extracted dialogue
threads automatically is our future work.

5 Related Work

Related work contains dialogue dependency pars-
ing and multi-turn response selection.

5.1 Dialogue dependency parsing

Discourse parsing has been researched by scientist-
s especially in linguistics for decades. Asher and
Lascarides (2005) proposed the SDRT theory with
the STAC Corpus (Asher et al., 2016) which made a
great contribution to the discourse parsing on multi-
party dialogues. Shi and Huang (2019) proposed a
sequential neural network and achieved the state-
of-the-art results on this dataset. Another similar
task is dialogue disentanglement (Du et al., 2017).

This task isn’t focusing on developing discourse
theories but trying to segment the long dialogues
according to topics. It takes each turn in the dia-
logue as a unit, and only care about whether there
is a relation between two turns, which is called
“reply-to” relation. Due to the scarcity of annotat-
ed dialogues across domains under SDRT theory,
the predicted dependency relations had never been
used for down-streaming tasks, such as response
selection and dialogue summarization. In this pa-
per, we take advantage of both the simplicity of
the “reply-to” relation and the sequential parsing
methods (Shi and Huang, 2019) to do dialogue de-
pendency parsing. Developing general discourse
parsing with relations types and take relation types
into consideration may be future work.

5.2 Multi-turn response selection

Multi-turn response selection task was proposed by
Lowe et al. (2015) and the solutions for this task
can be classified into two categories: the sequen-
tial models and the hierarchical models. To begin
with, the sequential models (Lowe et al., 2015)
were directly copied from the single-turn response
selection task since we can regard the multiple his-
tory turns as a long single turn. Considering the
multi-turn characteristic, Wu et al. (2017) proposed
the sequential matching network (SMN), a new ar-
chitecture to capture the relationship among turns
and important contextual information. SMN beats
the previous sequential models and raises a popu-
larity of such hierarchical models, including DU-
A (Zhang et al., 2018), DAM (Zhou et al., 2018),
IOI (Tao et al., 2019), etc. The ESIM (Dong and
Huang, 2018), which is mainly based on the self
and cross attention mechanisms and incorporates
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different kinds of pre-trained word embedding. It
changed the inferior position of the sequential mod-
el, making it hard to say which kind of architecture
is better.

Due to the popularity of the pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
and GPT (Radford et al., 2018), the state-of-the-
art performance on this task was refreshed (Vig
and Ramea, 2019). Work such as (Whang et al.,
2019) and (Humeau et al., 2019) further shows
that the response selection performance can be en-
hanced by further pretraining the language models
on open domain dialogues such as Reddit (Hender-
son et al., 2019), instead of single text corpus such
as BooksCorpus (Zhu et al., 2015). These models
can be also regarded as the sequential models be-
cause they concatenate all the history turns as the
input to the model while ignoring the dependency
relations among the turns. Inspired by these works,
we incorporate the dependency information in the
dialogue history into the response selection model
with the pre-trained language model on dialogue
dataset.

In this work, we focus on the effectiveness of
exploiting dependency information for dialogue
context modeling and follow the data preprocess-
ing steps in two-party dialogue datasets, including
UbuntuV2 and DSTC7, which have no special de-
signs for speaker IDs. In the papers for DSTC8
response selection track, such as (Gu et al., 2020),
many heuristic rules based on speaker IDs are used
for data preprocessing, which greatly helps to filter
out unrelated utterances. However, they also defi-
nitely lead to losing some useful utterances. These
hard rules will hurt the completeness of the mean-
ing in each thread and are not suitable for us. As
a result, the results on the response selection task
for DSTC8 dataset are not comparable. We will
take advantage of the speaker information into both
extraction and dialogue understanding models as
our future work.

6 Conclusion

As far as we know, we are the first work bring-
ing the dependency information of dialogues in-
to the multi-turn response selection task. We
proposed the dialogue extraction algorithm and
Thread-Encoder model, which becomes the state-
of-the-art on several well-known ubuntu datasets.
In the future, we will move on to develop a more
general dialogue dependency parser and better in-

corporate dependency information into dialogue
context modeling tasks.
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