
Representing Verbs as Argument Concepts

Yu Gong 1 and Kaiqi Zhao 2 and Kenny Q. Zhu 3

Shanghai Jiao Tong University, Shanghai, China
1gy910210@163.com, 2kaiqi zhao@163.com, 3kzhu@cs.sjtu.edu.cn

Abstract

Verbs play an important role in the understanding of natural
language text. This paper studies the problem of abstract-
ing the subject and object arguments of a verb into a set of
noun concepts, known as the “argument concepts”. This set
of concepts, whose size is parameterized, represents the fine-
grained semantics of a verb. For example, the object of “en-
joy” can be abstracted into time, hobby and event, etc. We
present a novel framework to automatically infer human read-
able and machine computable action concepts with high ac-
curacy.

1 Introduction
Verb plays the central role in both syntax and semantics
of natural language sentences. The distributional hypothe-
sis (Harris 1954; Miller and Charles 1991) shows that it is
possible to represent the meaning of a word by the distribu-
tional properties of its context, e.g., its surrounding words in
a window. A verb has a unique role in a sentence because it
maintains dependency relation with its syntactic arguments
such as the subject and the object. Therefore, it is possi-
ble to use the distribution of immediate arguments of a verb
to represent its meaning, such as ReVerb (Fader, Soderland,
and Etzioni 2011). Such an approach is a form of “bag-
of-words” (BoW) approach. The common criticisms of the
BoW approach are i) perceived orthorgonality of all words
despite some of them sharing similar or related meanings;
ii) its high dimensionality and high cost of computation; and
iii) poor readibility to humans.

To ameliorate these limitations, a natural solution is to
represent the arguments by their abstract types, rather than
the words themselves. It is reasonable to assume that a
verb represents different meanings, or different senses, if
it’s used with different types of arguments. To that end,
FrameNet (Baker, Fillmore, and Lowe 1998) and Verb-
Net (Kipper et al. 2000) are examples of human-annotated
lexicons that include verbs and their meanings (called
frames) and the different types of their arguments (called
thematic roles or semantic roles). Due to the excessive cost
of constructing such lexicons, as well as their intentional
shallow semantic nature, the abstraction of verb arguments

Copyright c⃝ 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is very coarse-grained. For example, in FrameNet, the verb
“eat” has just one frame, namely “Ingestion”, and its direct
object has just one role, “Ingestibles”. Furthermore, the lex-
ical coverage of these resources are very limited. FrameNet,
which is the most popular and best maintained among the
three, consists of just 3000 verbs and 1200 frames.

The BoW approach is too fine-grained while the semantic
role approach is too coarse-grained. In this paper, we seek
to strike a balance between these two extremes. Our goal
is to automatically infer a tunable set of human-readable
and machine-computable abstract concepts for the immedi-
ate arguments 1 of each verb from a large text corpus. By
“tunable”, we mean that the granularity of the concepts can
be parameterized by the size of the set to be returned. The
larger the set, the finer-grained the semantics. The vocab-
ulary of the concepts comes from an existing taxonomy of
concepts or terms such as Probase (Wu et al. 2012) or Word-
Net (Miller and Fellbaum 1998). For instance, the direct ob-
ject of verb “eat” may be conceptualized into “food”, “plant”
and “animal”.

One potential solution toward this goal is selectional pref-
erence (SP), originally proposed by Resnik(1996). Class-
based SP computes whether a class of terms is a preferred
argument to a verb. Together with a taxonomy of concept-
s, SP can produce a ranked list of classes that are the most
appropriate subjects or objects of a verb. However, for the
purpose of representing verbs, SP has the following draw-
back: it doesn’t allow the granularity of the concepts to be
tuned because it computes a selectional preference score be-
tween the verb and every possible concept in the taxonomy.
The top k concepts do not necessarily cover all the aspects of
that verb because these concepts may semantically overlap
each other. Clustering-based SP and LDA-based SP (Rit-
ter, Etzioni, and others 2010) find tunable classes with low
overlaps, but the classes are either word clusters or proba-
bilistic distributions of words, which are not abstracted into
concepts. Without associating the classes to concepts in tax-
onomies, the model loses the ability of generalization. For
example, if “eat McDonalds” does not appear in the training
data, clustering- and LDA-based SP cannot recognize “Mc-
Donalds” as a valid argument to “eat”, since “McDonalds” is

1We only consider subjects and direct objects in this paper,
though other arguments may be inferred as well.

not a member of any inferred clusters or word distributions.
In this paper, we first introduce the notion of taxonomy

(Section 2) and define the argument conceptualization prob-
lem, which asks for k concepts drawn from a taxonomy that
generalize as many possible arguments of a verb as possi-
ble, and with bounded overlap with each other (Section 3).
We present the system to generate tunable argument con-
cepts through a branch-and-bound algorithm (Section 4) and
show in experiments that our system can generate high qual-
ity human-readable and machine-computable argument con-
cepts (Section 5). Some related work will be discussed (Sec-
tion 6) before we draw some concluding remarks (Section
7).

2 Taxonomy
We use a taxonomy as the external classification knowledge
for conceptualizing the arguments of verbs. A taxonomy is
a directed graph (V,E), Here, V is a set of terms, E is a set
of binary “isA” relations

E = {(e, c)|e ∈ V, c ∈ V, e isA c},

where e is called an entity, c is called a concept, and c is
said to cover e. Most terms in V are both concepts and enti-
ties; terms with zero outdegree in the graph are entities only.
In this paper, we consider two different taxonomies, name-
ly WordNet (Miller and Fellbaum 1998) and Probase (Wu
et al. 2012). WordNet organizes words into sets of syn-
onyms (called synsets) along with “isA” relation between
two synsets. Each word may belong to multiple synsets
and have multiple hypernyms (concepts) or hyponyms (enti-
ties). Probase covers a lot of named entities and multi-word
expressions (e.g., Microsoft, Star Wars) which may not be
covered by WordNet. This feature allows us to extract more
precise arguments.

3 Problem Formulation
We begin with an informal definition of the argument con-
ceptualization problem. Given a collection of argument in-
stances of the same argument type (e.g., object or subject)
of a verb, we want to pick k concepts from the taxonomy
that subsume as many instances as possible. We would also
like these k concepts to have little overlap with each other.
The intuition is that each of the k selected concepts repre-
sents a unique sense with small semantics overlap and the k
concepts collectively cover the majority uses of that verb.

We define semantics overlap between two concepts as:

Overlap(c1, c2) =
|Ec1 ∩ Ec2 |

min{|Ec1 |, |Ec2 |}
,

where Ec is the set of all entities covered by concept c in the
taxonomy.

Then, we formulate the argument conceptualization prob-
lem as a problem of finding maximum weighted k-cliques.
Consider a concept graph G = (C,L,W), which has a col-
lection of concepts C in a taxonomy, and a set of edges L in
which each edge connects two concepts that have an overlap
less than a predefined threshold τ . W stands for weights for

the concepts in the graph. Each weight intuitively represents
the quality of the concept with respect to the verb.

Figure 1 shows 4 concepts in an illustrative 2-dimensional
entity space (a), as well as their corresponding concept graph
(b). Each circle ci in (a) represents a set of entities covered
by concept ci. Because the overlap between c0 and c3 and
between c1 and c3 is high (> τ), (b) is a fully connected
graph (clique) minus only two edges: lc0,c3 and lc1,c3 .

(a) (b)

c3

c0 c1

c2

c0

c1

c2

c3

Figure 1: (a) 4 concepts in the entity space (b) corresponding
concept graph

The argument conceptualization problem is then trans-
formed to finding the k-clique with maximum combined
weight.

A straightforward way to define the weight for each con-
cept is counting the number of argument instances it sub-
sumes according to the isA taxonomy (used as baseline
method in Section 5). This assumes that all argument in-
stances of a verb are of equal importance, which is not true
in practice. We thus generalize the importance of an argu-
ment e to a verb v by a quality function Qv(e), which we will
discuss in detail in Section 4.1. Consequently, the weight of
concept c for verb v is defined as

wv(c) =
∑

e∈{e|e isA c}

Qv(e). (1)

The argument conceptualization problem is to find a k-
clique (which forms a concept set as Ck) in the graph G
which maximizes

fv(Ck) =
∑
c∈Ck

wv(c). (2)

We parameterize the number (k) of argument concepts of
a verb because i) different verbs have different number of
senses; and ii) even for the same verb, there is no agreemen-
t on the exact number of its senses because one meaning
can always be divided into a number of finer-grain mean-
ings. For example, in Oxford English Dictionary (Oxford
University Press 2015), the transitive verb “eat” has 4 senses
(or definitions), while in Cambridge Dictionary (Cambridge
Dictionaries Online 2015) it has just one meaning.

4 Framework
Our framework consists of three main steps: argument ex-
traction, argument weight computation and argument con-
ceptualization. In the argument extraction component, we

extract the arguments of the verb from a dependency parsed
sentence by several dependency relations (“nsubj”, “agent”
for subject extraction and “nsubjpass”, “dobj” for object ex-
traction). In the argument weight computation component,
we pre-compute the weight for each argument instance (see
Section 4.1). In the argument conceptualization, we build
the concept graph and use a branch-and-bound algorithm
(see Section 4.2) to solve the argument conceptualization
problem.

4.1 Argument Weight Computation
Since many of the existing dependency parser systems are
noisy (Manning et al. 2014). Our observations showed that
some errors follow certain patterns. For example, “food”
in “food to eat” is usually incorrectly labeled as the subject
of “eat”, and the same goes for “water to drink”, “game to
play”, etc. Similarly, “time” in “play this time” and “play
next time” is incorrectly labeled as the object of “play”. We
also discovered that if an argument is incorrect due to pars-
ing, it is often extracted from just a couple of patterns. Con-
versely, if an argument is correct for the verb, it probably
appears under many different patterns. Consider “corn” as
an object of verb “eat”. It appears in 142 patterns, e.g., “eat
corn”, “eat expensive corn”, “eat not only corn”, etc., each
of which gives a different dependency structure. Howev-
er, “habit” only appears in 42 patterns like “eating habit”.
We follow this observation and assume that correct argu-
ments generally are likely to appear in more patterns than
the wrong ones. We define a pattern as a subtree in the de-
pendency tree according to two rules:
• The argument and one of its children form a pattern:

{POSarg, DEParg, POSchild, DEPchild},
where POS and DEP stand for POS tag and dependency
type, respectively.

• The argument and its siblings form another pattern:

{POSarg, DEParg, POSsib, DEPsib}.

For each argument e of verb v, we collect the set of its
patterns Me,v , and use the entropy to measure the correct-
ness, where a higher entropy value means that the argument
is more informative w.r.t. the patterns, and hence more likely
to be a valid argument. The entropy is defined as:

Entropyv(e) = −
∑

m∈Me,v

P (m) logP (m) (3)

Moreover, even if an argument is valid under a verb, it
may be less relevant. For example, while “fruit” is highly
relevant to “eat”, “thing” is not because it can be the object
of many other verbs. To this end, we use a binary version of
mutual information to measure the relatedness between two
terms. The mutual information MIv(e) is defined as:

MIv(e) =

{
1 if p(v, e) log p(v,e)

p(v)p(e) > 0,

−1 otherwise.
(4)

In essence, the entropy measures the correctness of the
argument, while mutual information measures its correlation

with the verb. We compute the quality of an argument by
combining these two measures:

Qv(e) = Entropyv(e)× MIv(e). (5)

4.2 A Branch-and-Bound Algorithm
Because the concept space in a general-purpose taxonomy is
large, we propose a branch-and-bound algorithm to efficient-
ly search for the solution. The details of our algorithm are
shown in Algorithm 1. We model each solution as a binary
vector of size |C| (C is the set of all concepts in the taxon-
omy) in which exactly k elements of the vector are set to 1
while others are set to 0. The search space is represented by
a binary decision tree where the nodes at each level indicate
the decision to include a concept in the solution or not. The
complete search space contains 2|C| nodes. Take the con-
cept graph in Figure 1 as an example. The corresponding
search space is shown in Figure 2, in which di = 1 means to
include ci in the solution, and di = 0 means otherwise. For
k = 3, the concept set {c0, c1, c2} is a valid solution, which
is marked by the path (d0 = 1) → (d1 = 1) → (d2 = 1).
The key insight in this algorithm is that, even though the
search space is exponential, a subtree can be pruned if its
path from the root already contains a valid solution, or if the
current path doesn’t have the potential to produce a better
solution than the current best.

d0 =1 =0

=1 =0

=1 =0

=1 =0

d0

d1 d1

d2

d3

d2

d3

Figure 2: A Snapshot of the Binary Decision Tree with k =
3

Suppose the partial solution of the first i levels in the tree
are (d0, d1, ..., di−1) and the current best solution has a score
(computed by Eq. (2)). We use dmax and πmax to store the
best solution and its score found thus far; and use d and πc

to represent the current partial solution and its partial score.
Variable ck stands for the number of concepts that have been
set to 1 in the current decision path, i.e.,

ck =
i−1∑
n=0

dn.

The main function BB(i) searches through the tree in a
depth-first manner. It returns when it reaches the leaf node
(Line 11-12) or when it has found a solution (Line 13-16).
If the solution is better than the current best, the current best
solution is updated. The function traverses one more level to
include concept ci (Line 17-19) if it forms a clique with the
currently chosen concepts (ISCLIQUE function) and if the
maximum possible score with ci is better than the current
best score (BOUND function).

Algorithm 1 Argument Conceptualization
1: function AC(W,C,L, k)
2: {c0, ..., c|C|−1} ← Sort concepts c ∈ C in the descending

order of wv(c).
3: πmax ← 0, πc ← 0, ck ← 0
4: dmax ← {0, ..., 0}, d← {0, ..., 0}
5: BB(0)
6: if ck = k then
7: return dmax

8: else
9: No solution

10: function BB(i)
11: if i ≥ |C| then
12: return
13: if ck = k then
14: if πc > πmax then
15: πmax ← πc, dmax ← d

16: return
17: if ISCLIQUE(L, i) = TRUE and BOUND(i)> πmax

then
18: ck ← ck + 1, πc ← πc + wsv(ci), di ← 1
19: BB(i+ 1)
20: ck ← ck − 1, πc ← πc − wsv(ci), di ← 0

21: if BOUND(i+ 1) > πmax then
22: di ← 0
23: BB(i+ 1)
24: return

25: function ISCLIQUE(L, i)
26: for j from 0 to i− 1 do
27: if dj = 1 then
28: if (ci, cj) ̸∈ L and (cj , ci) ̸∈ L then
29: return FALSE
30: return TRUE

31: function BOUND(i)
32: b← πc

33: for j from i to min{i+ k − ck − 1, |C| − 1} do
34: b← b+ wsv(cj)

35: return b

A crucial optimization in this algorithm is that we first sort
all concepts in C in the descending order of their weighted s-
cores (Line 2). This allows us to quickly compute the bound
(Line 33-34) in linear time (against k), i.e., simply compute
the total score of the next k−ck concepts down the decision
tree hierarchy, rather than sorting all the remaining concepts.

5 Experimental Results
In this section, we first show how we prepare the data for
argument conceptualization. Then, we use some example
concepts generated by our algorithm to show the advantage
of our algorithm (AC) against selectional preference (SP),
FrameNet (Baker, Fillmore, and Lowe 1998) and ReVer-
b (Fader, Soderland, and Etzioni 2011), as well as our base-
line approach (BL) which considers equal weight for each
argument (see Section 3). We also quantitatively evaluate
the accuracies of AC, BL and SP on Probase. Finally, we
apply our algorithm to an NLP task known as argument i-

dentification (Gildea and Palmer 2002; Abend, Reichart, and
Rappoport 2009; Meza-Ruiz and Riedel 2009) and show that
concepts generated by AC achieve better accuracy against
BL, SP, Reverb and a state-of-the-art semantic role labeling
tool (using FrameNet) on both taxonomies.

5.1 Experimental Setup
We use our algorithm to conceptualize subjects and ob-
jects for 1770 common verbs from Google syntactic N-
gram (Goldberg and Orwant 2013; Google 2013) using
Probase and WordNet as isA taxonomies. 2 From 1770 ver-
b set, we sample 100 verbs with probability proportional to
the frequency of the verb. This set of 100 verbs (Verb-100)
is used for quantitative experiments including evaluating the
accuracy of argument concepts and the accuracy of argu-
ment identification.

All argument instances we use in this work come from
Verbargs and Triarcs packages of the N-gram data. From
the labeled dependency trees, we extract subject-verb depen-
dency pairs (nsubj, agent) and object-verb dependency pairs
(dobj, nsubjpass). We expand the subject or object, which is
a word, into a phrase recognizable by Probase/WordNet by
sliding a window across the subtree rooted at the argument
word.

For the system parameters, we set the maximum overlap
threshold between two concepts to 0.2, and the number of
concepts k to {5, 10, 15} to evaluate argument concepts of
different granularity. In practice, the number k can be set d-
ifferently for different verbs, which we view as an advantage
of the framework.

5.2 Conceptualization Results
We compare the concepts learned by AC with the concepts
learned by BL, FrameNet elements, Reverb arguments, and
concepts learned by SP. ReVerb is an open information ex-
traction system that discovers binary relations3 from the web
without using any predefined lexicon. ReVerb data contains
15 million subject-predicate-object triple instances without
any abstraction or generalization.

Table 1 shows 3 example verbs and their argument con-
cepts (AC & BL), FrameNet semantic roles (FN), ReVerb
argument instances (RV) as well as selectional preference
(SP) concepts for the verbs’ subjects and objects. The num-
ber of concepts k is set to 5 for AC & BL, and the top 5
instances/concepts are showed for RV and SP. We can ob-
serve that the semantic roles in FN are too general, while
RV instances are too specific. Both inevitably lose informa-
tion: FN is a manually constructed lexicon by experts thus
cannot scale up well, while ReVerb is automatically extract-
ed from massive English sentences and hence comes with
abundant errors (e.g., ive as a subject of “enjoy”). SP does
not consider semantic overlaps between argument concepts.
BL assumes that all argument instances of a verb are of equal

2All evaluation data sets and results are available at http://
adapt.seiee.sjtu.edu.cn/ac.

3ReVerb extracts general relations instead of verb predicates,
e.g., XXX heavily depends on YYY.

Table 1: Example subject/object concepts from 5 lexicons
Verb AC Concepts BL Concepts FrameNet ReVerb SP Concepts

accept
Subj

person, community,
institution, player,
company

topic, name,
group, feature,
product

Recipient,
Speaker,
Interlocutor

Student, an article,
the paper, Web browser,
Applications

world, group,
person, term,
safe payment method

Obj
document, payment,
practice, doctrine,
theory

factor, feature,
product, activity,
person

Theme,
Proposal

the program, publication,
HTTP cookie, the year,
credit card

topic, concept,
matter, issue,
word

enjoy
Subj

group, community,
name, country,
sector

name, topic,
group, feature,
product

Experiencer people, ive, Guests,
everyone, someone

world, stakeholder,
group, person,
actor

Obj
benefit, time, hobby,
social event,
attraction

factor, activity,
feature, product,
person

Stimulus life, Blog, Breakfirst,
their weekend, a drink

benefit, issue,
advantage, factor,
quality

submit
Subj

group, community,
name, term,
source

topic, name,
group, feature,
product

Authority
no reviews, Project,
other destinations,
HTML, COMMENTS

large number, number,
stakeholder, position,
group

Obj
document, format,
task, procedure,
law

factor, feature,
activity, product,
person

Documents
one, review,
a profile, text,
your visit dates

document, esi online tool,
material, nickname,
first name

importance, which is not true in practice. It tends to gener-
ate uninformative concepts such as “factor” and “feature”.
Compared to the other methods, AC generates concepts with
tunable granularity and low semantic overlap. These con-
cepts are more comprehensive and more accurate.

To quantitatively compare our algorithm to BL and SP,
we ask three native English speakers to annotate whether
the concepts generated by AC, BL and SP are the correct
abstraction of the verb’s arguments. The majority votes are
used as the ground truth. We compute the percentage of cor-
rect concepts as accuracy, and report the accuracy of AC,
BL and SP in Table 2. AC generates more accurate concepts
than BL and SP mainly because AC considers the quality of
argument instances extracted from dependency and the se-
mantic overlap between concepts. BL performs worse than
SP because the noise caused by parsing error is not consid-
ered, but SP considers the association between the verb and
arguments which implicitly gives a low rank to the incorrect
arguments.

Table 2: Accuracy of AC, BL and SP concepts

k
Subject Object

AC BL SP AC BL SP

5 0.88 0.49 0.58 0.97 0.63 0.62
10 0.86 0.47 0.56 0.94 0.61 0.65
15 0.85 0.43 0.58 0.91 0.60 0.66

5.3 Argument Identification
In the argument identification task, we use the inferred argu-
ment concepts to examine whether a term is a correct argu-
ment to a verb in a sentence. To evaluate the accuracy of ar-
gument identification, for each verb in Verb-100, we first ex-
tract and randomly select 100 sentences containing the verb
from the Engish Wikipedia corpus. We then extract ⟨verb,
obj⟩ and ⟨verb, subj⟩ pairs from these 10,000 sentences. A-
part from parsing errors, most of these pairs are correct be-
cause Wikipedia articles are of relatively high quality. We

roughly swap the subjects/objects from half of these pairs
with the subject/object of a different verb, effectively creat-
ing incorrect pairs as negative examples. For example, if we
exchange “clothing” in “wear clothing” with the “piano” in
“play piano”, we get two negative examples “wear piano”
and “play clothing”. Finally, we manually label each of the
20,000 pairs to be correct or not, in the context of the o-
riginal sentences. As a result, we have a test set of 10,000
⟨verb, obj⟩ and ⟨verb, subj⟩ pairs in which roughly 50% are
positive and the rest are negative.

We compare AC with BL, SP, ReVerb and Semantic Role
Labeling (SRL) as follows:

• AC & BL & SP: Check if the test term belongs to any of
the k argument concepts (isA relation) of the target verb.

• ReVerb: Check if the test term is contained by the verb’s
list of subjects or objects in ReVerb.

• SRL: SRL aims at identifying the semantic arguments of
a predicate in a sentence, and classifying them into differ-
ent semantic roles. We use “Semafor”(Chen et al. 2010),
a well-known SRL tool, to label semantic arguments with
FrameNet in the sentences, and check if the test term is
recognized as a semantic argument of the target verb.

Table 3: Accuracy of argument identification

k
Probase WordNet

RV SRL
AC BL SP AC BL SP

Subj
5 0.81 0.50 0.70 0.55 0.54 0.54

0.54

0.48
10 0.78 0.50 0.72 0.57 0.54 0.55
15 0.77 0.49 0.72 0.58 0.54 0.56

Obj
5 0.62 0.51 0.58 0.50 0.46 0.50

0.47

0.50
10 0.62 0.52 0.58 0.52 0.47 0.52
15 0.62 0.52 0.59 0.53 0.47 0.52

We set k = 5, 10, 15 for AC, BL and SP. The accura-
cies are shown in Table 3. From Table 3, we observe that
the accuracy of AC is higher than that of BL, SP, ReVerb

and SRL. Due to its limited scale, ReVerb cannot recognize
many argument instances in the test data, and thus often la-
bels true arguments as negative. SRL, on the opposite side,
tends to label everything as positive because the SRL classi-
fier is trained based on features extracted from the context,
which remains the same even though we exchange the ar-
guments. Thus, SRL still labels the argument as positive.
Comparing with BL and SP, AC considers the coverage of
verb arguments, the parsing errors and overlap of concepts
to give an optimal solution with different values of k. Con-
sequently, our algorithm generates a set of concepts which
cover more precise and diversed verb argument instances.
The accuracy decreases when we use WordNet as the taxon-
omy because WordNet covers 84.82% arguments in the test
data while Probase covers 91.69%. Since arguments that are
not covered by the taxonomy will be labeled as incorrect by
both methods, the advantage of our algorithm is reduced.

6 Related Work
We first review previous work on selectional preference,
which can be seen as an alternate way of producing abstract
concepts for verb arguments, then discuss some known work
on semantic representation of verbs.

6.1 Selectional Preference
The most related work to our problem (AC) is selectional
preferences (SP), which aims at computing preferences over
the classes of arguments by a verb, given the fact that some
arguments are more suitable for certain verbs than others.
For example, “drink water” is more plausible than “drink
desk”. While our problem defines a controllable level of
abstraction for verb arguments, selectional preference often
outputs the preference scores for all possible classes of argu-
ments. Moreover, SP doesn’t consider the overlap between
classes, which results in highly similar classes/concepts.

There are several approaches to computing SP. The orig-
inal class-based approaches generalize arguments extracted
from corpus to human readable concepts using a taxonomy
such as WordNet. The most representative of such approach
was proposed by Resnik (1996), which is used as a compar-
ison in this paper. Instead of WordNet, Pantel et al.(2003)
proposed a clustering method (named CBC) to automatical-
ly generate semantic classes, which are nonetheless not hu-
man readable. Another recent piece of work about SP from
Fei et al.(2015) doesn’t abstract the arguments, and is thus d-
ifferent from our approach. Other approaches including cut-
based SP (Li and Abe 1998), similarity-based SP (Clark and
Weir 2001; Erk 2007), and generative model-based SP (Rit-
ter, Etzioni, and others 2010) are less relevant to our prob-
lem, because they cannot generate human readable classes.

6.2 Semantic Representation of Verbs
From past literature, the semantics of a word (includ-
ing verbs) can be represented by the context it appears
in (Mikolov et al. 2013a; 2013b; Mikolov, Yih, and Zweig
2013; Levy and Goldberg 2014). There are a number of
ways to define the context. The simpliest is by the word-
s from a surrounding window. A slightly different type of

context takes advantage of structural information in the cor-
pus, e.g., Wikipedia. The third type of context comes from a
knowledge base or lexicon, such as WordNet. For a verb, the
gloss, its hypernyms, hyponyms, antonyms and synonyms
can be used as its context (Meyer and Gurevych 2012;
Yang and Powers). Finally, most recently, the dependency
structure surrounding the verb in a sentence has been used
as its context (Levy and Goldberg 2014). This is also the
approach adopted in this paper.

With different types of context, a common way to rep-
resent a verb is by a vector of distributional properties, ex-
tracted from the contexts within a large corpus. For example,
LSA (Deerwester et al. 1990) uses the window of words as
context, while ESA (Gabrilovich and Markovitch 2007) us-
es the TF-IDF score of the word w.r.t. the article it appears
in to form a vector of Wikipedia concepts. Another popular
approach is to map the word distribution in the context in-
to another high-dimensional space, which is known as word
embedding (Mikolov et al. 2013b). Our approach can be
thought of as mapping the words in the context, in this case,
the subject and object arguments into a hierarchical concept
space.

7 Conclusion
We developed a data-driven approach that automatically in-
fers a set of argument concepts for a verb by abstracting from
a large number of argument instances parsed from raw text.
These argument concepts are human-readable and machine-
computable, and can be used to represent the meaning of the
verb. Our evaluation demonstrates that the concepts inferred
are accurate to the human judges and show good potential
at identifying correct arguments for verbs even though such
arguments have never been seen before. This work can al-
so be seen as mining predicate relations between abstract
noun concepts from a taxonomy. As future work, one may
consider other important NLP tasks such as word sense dis-
ambiguation or term similarity using the argument concept
representation of verbs.

Acknowledgments
Kenny Q. Zhu is the corresponding author, and is partial-
ly supported by the 2013 Google Faculty Research Award.
Zhiyuan Cai and Youer Pu contributed to the earlier version
of this paper. We thank Dr. Haixun Wang and the anony-
mous reviewers for their valuable comments.

References
Abend, O.; Reichart, R.; and Rappoport, A. 2009. Unsu-
pervised argument identification for semantic role labeling.
In ACL/IJCNLP’09, 28–36. Association for Computational
Linguistics.
Baker, C. F.; Fillmore, C. J.; and Lowe, J. B. 1998. The
berkeley framenet project. In Proceedings of the 17th inter-
national conference on Computational linguistics-Volume 1,
86–90. Association for Computational Linguistics.
Cambridge Dictionaries Online. 2015. eat definition,
meaning - what is eat in the Cambridge British English

Dictionary. http://dictionary.cambridge.org/
dictionary/british/eat.
Chen, D.; Schneider, N.; Das, D.; and Smith, N. A.
2010. SEMAFOR: Frame argument resolution with log-
linear models. In Proceedings of the 5th international work-
shop on semantic evaluation, 264–267. Association for
Computational Linguistics.
Clark, S., and Weir, D. 2001. Class-based probability esti-
mation using a semantic hierarchy. In NAACL’01, 1–8. As-
sociation for Computational Linguistics.
Deerwester, S. C.; Dumais, S. T.; Landauer, T. K.; Furnas,
G. W.; and Harshman, R. A. 1990. Indexing by latent se-
mantic analysis. JAsIs 41(6):391–407.
Erk, K. 2007. A simple, similarity-based model for selec-
tional preferences. In ACL’07, 216–223.
Fader, A.; Soderland, S.; and Etzioni, O. 2011. Identifying
relations for open information extraction. In EMNLP’11,
1535–1545. Association for Computational Linguistics.
Fei, Z.; Khashabi, D.; Peng, H.; Wu, H.; and Roth, D. 2015.
Illinois-profiler: Knowledge schemas at scale.
Gabrilovich, E., and Markovitch, S. 2007. Computing se-
mantic relatedness using wikipedia-based explicit semantic
analysis. In IJCAI, volume 7, 1606–1611.
Gildea, D., and Palmer, M. 2002. The necessity of parsing
for predicate argument recognition. In ACL’02, 239–246.
Association for Computational Linguistics.
Goldberg, Y., and Orwant, J. 2013. A dataset of syntactic-
ngrams over time from a very large corpus of english books.
In Second Joint Conference on Lexical and Computational
Semantics (* SEM), volume 1, 241–247.
Google. 2013. Google syntactic n-gram. http:
//commondatastorage.googleapis.com/
books/syntactic-ngrams/index.html.
Harris, Z. S. 1954. Distributional structure. Word.
Kipper, K.; Dang, H. T.; Palmer, M.; et al. 2000. Class-based
construction of a verb lexicon. In AAAI/IAAI, 691–696.
Levy, O., and Goldberg, Y. 2014. Dependencybased word
embeddings. In ACL’14, volume 2, 302–308.
Li, H., and Abe, N. 1998. Generalizing case frames using a
thesaurus and the MDL principle. Computational linguistics
24(2):217–244.
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.;
Bethard, S. J.; and McClosky, D. 2014. The Stanford
CoreNLP natural language processing toolkit. In ACL’14,
55–60.
Meyer, C. M., and Gurevych, I. 2012. To exhibit is not to
loiter: A multilingual, sense-disambiguated wiktionary for
measuring verb similarity. In COLING, 1763–1780.
Meza-Ruiz, I., and Riedel, S. 2009. Jointly identifying pred-
icates, arguments and senses using markov logic. In NAA-
CL’09, 155–163. Association for Computational Linguistic-
s.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In NIPS’13, 3111–3119.
Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic reg-
ularities in continuous space word representations. In HLT-
NAACL, 746–751.
Miller, G. A., and Charles, W. G. 1991. Contextual cor-
relates of semantic similarity. Language and cognitive pro-
cesses 6(1):1–28.
Miller, G., and Fellbaum, C. 1998. Wordnet: An electronic
lexical database.
Oxford University Press. 2015. eat - defini-
tion of eat in English from the Oxford dictionary.
http://www.oxforddictionaries.com/
definition/english/eat.
Pantel, P. A. 2003. Clustering by committee. Ph.D. Disser-
tation, Citeseer.
Resnik, P. 1996. Selectional constraints: An information-
theoretic model and its computational realization. Cognition
61(1):127–159.
Ritter, A.; Etzioni, O.; et al. 2010. A latent dirichlet allo-
cation method for selectional preferences. In ACL’10, 424–
434. Association for Computational Linguistics.
Wu, W.; Li, H.; Wang, H.; and Zhu, K. Q. 2012. Probase:
A probabilistic taxonomy for text understanding. In SIG-
MOD’12, 481–492. ACM.
Yang, D., and Powers, D. M. Verb similarity on the taxono-
my of WordNet. Citeseer.

