
Incremental Learning of System Log Formats

[Extended Abstract]

Kenny Q. Zhu
Shanghai Jiao Tong University

kzhu@cs.sjtu.edu.cn

Kathleen Fisher
AT&T Labs Research

kfisher@research.att.com

David Walker
Princeton University

dpw@cs.princeton.edu

ABSTRACT
System logs come in a large and evolving variety of formats, many
of which are semi-structured and/or non-standard. As a consequence,
off-the-shelf tools for processing such logs often do not exist, forc-
ing analysts to develop their own tools, which is costly and time-
consuming. In this paper, we present an incremental algorithm that
automatically infers the format of system log files. From theresult-
ing format descriptions, we can generate a suite of data processing
tools automatically. The system can handle large-scale data sources
whose formats evolve over time. Furthermore, it allows analysts
to modify inferred descriptions as desired and incorporates those
changes in future revisions.

Categories and Subject Descriptors
D.4.9 [Operating Systems]: Systems Programs and Utilities; D.3.4
[Programming Languages]: Processors

General Terms
Languages, Algorithms

Keywords
Grammar induction, analysis of system logs, domain-specific lan-
guages, parsing, tool generation, ad hoc data, PADS

1. INTRODUCTION
At AT&T and elsewhere, system implementers and administrators
manipulate a wide variety of system logs on a daily basis. Common
tasks include data mining, querying, performing statistical analysis,
detecting errors, and transforming the data to standard formats. Be-
cause many of these logs are in non-standard formats, there are often
no ready-made tools to help process these logs. Often the data is hi-
erarchical rather than relational in nature, making automatic loading
into relational databases difficult. As a result, system engineers have
to resort to writing one-off parsers, typically in Perl or Python, to in-
gest these data sources, a tedious, error-prone and costly process.

To facilitate working with such log files, we developedPADS[2],

a high-level declarative specification language for describing the
physical formats of ad hoc data. APADS description for a data
source precisely documents the format of the data, and thePADS

system compiles such descriptions into a suite of useful processing
tools including an XML-translator, a query engine, a statistical ana-
lyzer, and programmatic libraries and interfaces. Analysts can then
either use these generated tools to manage the logs or write custom
tools using the generated libraries.

A significant impediment to usingPADS is the time and expertise
required to write aPADS description for a new data source. If such
a source is well-documented, writing aPADSdescription is straight-
forward and requires time proportional to the existing documenta-
tion. Often, however, such data sources are not well documented
and the user must adopt an iterative process to produce a descrip-
tion: write a partial description, use this description to parse the
data, flag segments of the data that do not match the description, re-
fine the description to cover these cases, and repeat. This process is
time-consuming, often requiring days for complex formats.

As a first step towards addressing this problem, we developedthe
LEARNPADS1 system [3, 5], which automatically infers aPADS de-
scription from sample data, and thus eliminates the need forhand-
written descriptions. TheLEARNPADSsystem successfully produces
correct descriptions for a range of small data sources, but it cannot
handle larger ones because the system includes a memory-intensive
algorithm designed to process the entire data source at once.

In this paper, we take the next step towards automatically inferring
descriptions of system log files by adaptingLEARNPADS to work
incrementally. With this modification, the system takes as input an
initial description and a new batch of data. It returns a modified
description that extends the initial description and covers the new
data as well. The initial description can be supplied by the user
or the system can use the originalLEARNPADS system to infer it.
This iterative architecture also allows the user to take theoutput of
the system, make revisions such as replacing generated fieldnames
like IP_1 with more meaningful names likesrc, and then use the
refined description as the basis for the next round of automatic revi-
sion.

In the rest of the paper, we give a brief overview ofPADS and the
original inference system (Section 2). We then describe theincre-
mental inference algorithm (Section 3), discuss its implementation
(Section 4), give some experimental results (Section 5), and finally

1A demo is available from thePADS websitewww.padsproj.
org.

Punion client_t {
Pip ip; // 207.136.97.49
Phostname host; // ks38.kms.com

};
Punion auth_id_t {

Pchar unauthorized : unauthorized == ’-’;
Pstring(:’ ’:) id;

};
Pstruct request_t {

"GET "; Ppath path;
" HTTP/"; Pfloat http_ver;
’"’;

};
Precord Pstruct entry_t {

client_t client;
’ ’; auth_id_t remoteID;
’ ’; auth_id_t auth;
" ["; Pdate date;
’:’; Ptime time;
"] "; request_t request;
’ ’; Pint response;
’ ’; Pint length;

};

Figure 2: PADS/C description for the wl format

conclude (Section 6). Space considerations preclude discussion of
related work; however, our earlier paper [3] contains an extensive
discussion of other grammar induction systems.

2. PADS AND THE ORIGINAL LEARNPADS
We use a simple web server log format, which we callwl, to illus-
trate the principal features of thePADS data description language.
Figure 1 shows a fragment of such data, which is comprised of a
sequence of records, separated by newlines. Each record contains
a number of fields delimited by white space. For example, the first
record starts with an IP address, then has two dashes, a time stamp
enclosed in square brackets, a quoted HTTP message, and finally
two integers. The second record shows some variation: the IPad-
dress becomes a hostname and the second dash becomes an identi-
fier.

PADS uses a type-based metaphor to describe ad hoc data. Each
PADS type plays a dual role: it specifies a grammar by which to
parse the data and a data-specific data structure in which to store the
results of the parse.PADS/C is the variant ofPADS that uses C as its
host language. Hence,PADS/C types are drawn by analogy from C,
and the generated data structures and parsing code are in C.

Figure 2 shows aPADS/C specification that describes each of the
records in Figure 1. The specification consists of a series ofdec-
larations. Types must be declared before they are used, so the last
declarationentry_t describes the entirety of a record, while the
earlier declarations describe data fragments. Typeentry_t is a
Precord, meaning it comprises a full line in the input, and is a
Pstruct, meaning it consists of a sequence of named fields, each
with its own type. For convenience,Pstructs can also contain
anonymous literal fields, such as" [", which denote constants in
the input source. The generated representation forentry_t will
be a C struct with one field for each of the named fields in the dec-
laration. The typeclient_t is aPunion, meaning the described
data matchesoneof its branches, by analogy with C unions. In par-
ticular, aclient_t is either an IP address (Pip) or a host name
(Phostname), wherePip andPhostnamearePADS/C base types
describing IP addresses and hostnames, respectively.

In general, base types describe atomic pieces of data such asinte-
gers (Pint) and floats (Pfloat), characters (Pchar) and strings
(Pstring(:’ ’:)), dates (Pdate) and times (Ptime), paths
(Ppath), etc. Strings represent an interesting case because in the-
ory they could go on forever, soPstring takes a parameter which
specifies when the string stops: in this case, when it reachesa space.
To account for more general stopping conditions, a programmer
may use the base typePstring_ME, which takes a regular ex-
pression as a parameter. With this type, the corresponding string
is the longest that matches the regular expression. The firstbranch
of thePunion auth_id_t illustrates the use of aconstraint. It
specifies that theunauthorized character must be equal to’-’.
If the constraint fails to hold, the next branch of the union will be
considered.

In addition to the features illustrated in Figure 2,PADS provides
arrays, which describe sequences of data all of the same type; op-
tions, which describe data that may be present; and switchedunions,
which describe unions where a value earlier in the data determines
which branch to take. Such unions illustrate thatPADSsupportsde-
pendencies: earlier portions of the data can determine how to parse
later portions.

The goal of theLEARNPADS format inference engine is to infer
PADS descriptions like the one in Figure 2 from raw data. From
such a description, thePADS compiler can produce end-to-end pro-
cessing tools fully automatically. A full description of the LEARN-
PADSalgorithm appears in an earlier paper [3]. We give only a brief
summary here.

LEARNPADS assumes that the input data is a sequence of newline-
terminated records and that each record is an instance of thedesired
description. From such an input, it uses a a three-phase algorithm
to produce a description. In thetokenizationphase,LEARNPADS

converts each input line into a sequences of tokens, where each to-
ken type is defined by a regular expression. Intuitively, these tokens
correspond toPADS base types. In thestructure discoveryphase,
LEARNPADScomputes a frequency distribution for each token type
and then uses that information to determine if the top-levelstructure
of the data source is a base type,Pstruct, Parray, or Punion.
Based on that determination, the algorithm partitions the data into
new contexts and recursively analyzes each of those contexts, con-
structing the corresponding description as it recurses. This phase
terminates with a candidate description. In theformat refinement
phase, the algorithm uses an information-theoretic scoring function
to guide the application of rewriting rules. These rules seek to
minimize the size of the description while improving its precision
by performing structural transformations (such as mergingadjacent
Pstructs), adding data dependencies, and constraining the range
of various base types,e.g., converting a general integer to a 32-bit
integer.

The scoring function, which is based on theminimum description
length principle[4], measures how well a description describes data
by calculating the number of bits necessary to transmit boththe
description and the datagiven the description. We use the terms
typeanddata complexityto refer to the number of bits necessary to
encode the description and the data given the description, respec-
tively. This function penalizes overly general descriptions, such
asPstring, which have a low type complexity but a very high
data complexity. It also penalizes overly specific descriptions that
painstakingly describe each character in the data. Such descriptions

207.136.97.49 - - [05/May/2009:16:37:20 -0400] "GET /README.txt HTTP/1.1" 404 216
ks38.kms.com - kim [10/May/2009:18:38:35 -0400] "GET /doc/prev.gif HTTP/1.1" 304 576

Figure 1: A fragment from a web server log in wl format

have a low data complexity but a high type complexity.

This algorithm produces good results for the small log files that we
have experimented with, but it has two limitations: performance
and adaptability. In terms of performance, the algorithm requires
space quadratic in the input file size to perform the data dependency
analysis, so it cannot be used on log files larger than the square of
the size of usable memory. In terms of adaptability, the algorithm
only considers its input data in constructing a description. Hence if
tomorrow’s log file has a new kind of record, the algorithm cannot
modify the existing description; it must start from scratch.

3. THE INCREMENTAL ALGORITHM
To address these problems, we extendedLEARNPADSto work incre-
mentally. Given a candidate descriptionD, the new algorithm uses
D to parse the records in the data source. It discards records that
parse successfully, since these records are already covered byD, but
it collects records that fail to parse. When the algorithm accumu-
latesM such records, whereM is a parameter of the algorithm, it
invokes the incremental learning step, described below, toproduce
a refined descriptionD’. This refined description subsumesD and
describes theM new records. In addition, the algorithm attempts to
preserve as much of the structure ofD as possible, so users supply-
ing initial descriptions can recognize the resulting descriptions. The
algorithm then takesD’ to be the new candidate description and re-
peats the process until it has consumed all the input data. The initial
descriptionD can either be supplied by a user or it can be inferred
automatically by applying the original algorithm toN records se-
lected from the data source, whereN is another parameter.

Intuitively, the incremental learning step works by attempting to
parse each of theM records according to the current description
D. It discards the portions of each record that parse correctly. If
a portion fails to parse, that failure will be detected at a particular
node in the descriptionD. It collects these failed portions in an ag-
gregation data structureA that mirrors the structure ofD. After thus
aggregating all the failures in theM records, the algorithm trans-
formsD to accommodate the places where differences were found
(i.e., by introducing options where a piece of data was missing or
unions where a new type of data was discovered). It then uses the
original LEARNPADS algorithm to infer descriptions for the aggre-
gated portions of bad data.

Figure 3 defines the data structures for descriptionsD, data repre-
sentationsR, and aggregate structuresA. In these definitions, vari-
ablere ranges over regular expressions,s andt over strings, and
i over integers. A value with typeD is the abstract syntax tree of
PADSdescription: it is what we want to learn. For simplicity of pre-
sentation, we assume just two base types: integers and strings that
match a regular expression. Synchronizing tokens, orsync tokens
for short, correspond to string literals inPADS descriptions. Such
tokens, which are often white space or punctuation, serve asdelim-
iters in the data and are useful for detecting errors. We use binary
pairs and unions to account for thePstructs andPunions in
PADS/C descriptions. An array has an element type described by
D, a separator strings that appears between array elements, and a
terminator stringt. Option D indicatesD is optional.

Descriptions:
Base ::= Pint | PstringME(re)
D ::=

Base (Base token)
| Sync s (Synchronizing token)
| Pair (D_1, D_2) (Pair)
| Union (D_1, D_2) (Union)
| Array(D, s, t) (Array)
| Option D (Option)
Data representation:
BaseR ::= Str s | Int i | Error
SyncR ::= Good | Fail | Recovered s
R ::=

BaseR
| SyncR
| PairR (R_1, R_2)
| Union1R R | Union2R R
| ArrayR (R list, SyncR list, SyncR)
| OptionR R
Aggregation structure:
A :: =

BaseA Base
| SyncA s
| PairA(A_1, A_2)
| UnionA(A_l, A_r)
| ArrayA (A_elem, A_sep, A_term)
| OptionA A
| Opt A
| Learn [s]

Figure 3: Data structures used in incremental inference

A term with typeR is a parse tree obtained from parsing data using
a descriptionD. Parsing a base type can result in a string, an integer
or an error. Parsing a sync tokenSync s can give three different
results:Good, meaning the parser founds at the beginning of the
input; Fail, meanings is not a substring of the current input; or
Recovered s’, meanings is not found at the beginning of the
input, but can berecoveredafter “skipping” strings’. The parse of
a pair is a pair of representations, and the parse of a union iseither
the parse of the first branch or the parse of the second branch.The
parse of an array includes a list of parses for the element type, a
list of parses for the separator and a parse for the terminator which
appears at the end of the array.

An aggregate structure is theaccumulationof parse trees; it collects
the data that cannot be parsed and therefore must be re-learned. The
aggregation structure mirrors the structure of the description D with
two additional nodes: anOpt node, and aLearn node. An invari-
ant is that anOpt node always wraps aBaseA or aSyncA node,
where it indicates that the underlying base or sync token is miss-
ing in some of the parses being aggregated, and therefore that the
wrapped token should be made optional. TheLearn node accumu-
lates the bad portions of the data that need to be learned. Thenewly
learned sub-descriptions will be spliced into the originaldescription
to get the new description.

Figure 4 gives pseudo-code for the incremental learning step. The
init_aggregate function initializes an empty aggregate accord-
ing to descriptiond. Then for each data recordx, we use theparse

incremental_step(d, xs) =
as = [init_aggregate(d)];
foreach x in xs {
rs = parse(d, x);
as’ = [];
foreach r in rs {

foreach a in as {
a’ = aggregate(a, r);
as’ = a :: as’

}
}
as = as’

}
best_a = select_best(as);
d’ = update_desc(d, best_a);
return d’

Figure 4: Pseudo-code for the incremental learning step

PairRPair

Pint Sync "*"

Pair

Pint Sync "*"

Pair

Pint Sync "*"

input: "5*"

parse

(r1)

(r2)

(r3)

(d)

(d)

(d)

Error

PairR
input: "abc*"

parse

Int 8

PairR
input: "8$"

parse

Recovered("abc")

Fail

Int 5 Good

Figure 5: Result of parsing three input lines

function to produce a listrs of possible parses. We then call the
aggregate function to merge each parser in the current list of
parses with each aggregatea in the current list of aggregates. We
use ‘::’ to denote consing an element onto the front of a list. When
we finish parsing all the data lines and obtain a final list of aggre-
gatesas, we select the best aggregate according to some metric,
and finally update the previous descriptiond to produce the new
descriptiond’ using the best aggregate.

To illustrate the parsing and aggregation phases of the algorithm,
we introduce a simple example. Suppose we have a descriptiond,
comprised of a pair of an integer and a sync token “*”, and we are
given the following three lines of new input:

5*
abc*
8$

Figure 5 shows the three data representations that result from pars-
ing the lines, which we callr1, r2 andr3, respectively. Notice the
first line parsed without errors, the second line contains anerror for
Pint and some unparsable data “abc”, and the third contains a
Fail node because the sync token* was missing. Figure 6 shows
the aggregation ofr1 to r3 starting from an empty aggregate. In
general,Error andFail nodes in the data representation trigger
the creation ofOpt nodes in the aggregate, while unparsable data is

MergeOpts

B B B

S

Opt

Opt

S

B B B

S

B B B OptOptaggregate

Figure 7: MergeOpts rewriting rule

collected inLearn nodes.

4. IMPLEMENTATION
For purposes of presentation, we have described an idealized and
unoptimized algorithm. Our actual implementation includes a num-
ber of refinements to improve the quality of the description and/or
reduce the inference time. In this section, we discuss some of these
refinements.

4.1 Token families
So far, parsing aSync token yields one of three results:Good,
Fail or Recovered. In the actual implementation, aSync to-
ken can be not only a constant string, but also a constant integer,
an integer range or a combination thereof. Consider parsingthe
token Sync (Str "GET") when the current input starts with
“POST.” Theparse_base function indicates the result should
be Fail. In reality, the input “POST” is in the samefamily as
“GET,” i.e., a word, and it may very well be that thisSync to-
ken should have been an enumeration of words rather than a sin-
gle word. To handle such cases, we created a fourth type of parse
node, Partial, to indicate that the input belongs to the same
family as the expected token but does not match exactly,i.e., it is
partially correct. During aggregation, partial nodes cause the de-
scription to be specialized to include the additional values. In the
above example, the aggregate function will change the description to
Sync (Enum [Word "GET", Word "POST"]). Such par-
tial nodes reduce the number of parsing errors and produce more
compact and meaningful descriptions.

4.2 Rewriting rules
When the incremental learning algorithm produces a refined de-
scription from an aggregate, the algorithm applies rewriting rules
to the new description to improve its quality and readability. Most
of the rules are data-independent and inherited fromLEARNPADS,
such as removing degenerate lists and flattening nested structs and
unions. We introduce one newdata dependentrule calledMer-
geOptsto optimize a type pattern that occurs frequently during in-
cremental learning. Recall that the aggregate function introduces
Opt nodes above aBaseA or SyncA node whenever the corre-
spondingBase or Sync token in the description failed to parse.
When faced with an entirely new form of data, the algorithm islikely
to introduce a series ofOpt nodes as each type in the original de-
scription fails in succession. TheMergeOptsrule collapses these
consecutiveOpt nodes if they are correlated,i.e., either they are
all always present or all always absent. To verify this correlation,
the algorithm maintains a table that records the branching decisions
when parsing each data line. It uses this table to determine whether
to merge adjacentOpt nodes during rewriting. Figure 7 illustrates
the effect of this rule. In the figure,S denotes a struct andB a base
token.

(Final aggregate for d)

PairA

BaseA Pint SyncA "*"

PairA

Opt PairA

SyncA "*"Learn ["abc"]BaseA Pint

r3

aggregate
SyncA "*"

PairA

BaseA Pint
aggregate

r1

(Initial aggregate for d)

r2

aggregate

PairA

Opt PairA

Learn ["abc"]BaseA Pint Opt

SyncA "*"

Figure 6: Aggregation of three parses

4.3 Performance
The pseudo-code in Figure 4 suggests the number of aggregates is
of the orderO(mn), wherem is the maximum number of parses for
a line of input andn is the number of lines to aggregate. Clearly,
this algorithm will not scale unlessm andn are bounded.

We have implemented several optimizations to limit the number of
parses and aggregates. First, we do not return all possible parses
when parsing a description componentD. Instead, we rank the parses
by a metric that measures their quality and return only the topk. The
metric is a triple:m = (e, s, c), wheree is the number of errors,
s is the number of characters skipped duringSync token recovery,
andc is the number of characters correctly parsed. The metric is
consideredperfectif e = 0. Metric m1 is better thanm2 if m1 is
perfect andm2 is not, or if

c1

s1 + c1

>
c2

s2 + c2

.

In practice,parse returns a list ofparse triples(r, m, j), where
r is the data representation of the parse,m is the metric associated
with r, andj is the position in the input after the parse. We define
a clean function that first partitions the triples into groups that
share the samespan, i.e., the substring of the input consumed by the
parse. For each group,clean retains all perfect parses. If none
exists, it retains the best parse in the group. We justify discarding
the other triples because given a descriptiond and a fixed span, we
always prefer the parse with the best metric. This idea is similar
to the dynamic programming techniques used in Earley Parsers [1].
Finally clean returns all the perfect triples plus up to the topk

non-perfect triples. Theclean function reduces the number of bad
parses to a constantk while guaranteeing that if there is a perfect
parse, it will be returned.

A second optimization, which we callparse cut-off, terminates a
candidate parse when parsing a struct with multiple fieldsf1, f2,
..., fn if the algorithm encounters a threshold number of errors in
succession. This technique may result in no possible parsesfor the
top-level description. In this case, we restart the processwith the
parse cut-off optimization turned off. A third optimization is memo-
ization. The program keeps a global memo table indexed by thepair
of a descriptionD and the beginning position for parsingD which
stores the result for parsingD at the specific position. Finally, we
bound the total number of aggregates the algorithm can produce by
selecting the topk aggregates with the fewest number ofOpt and
Learn nodes.

5. EVALUATION
To evaluate the incremental algorithm, we ran it and the original
LEARNPADS system on 10 different kinds of system logs of vari-

original incrementalFormats K Lines/KB
Time TC Time TC

interface 1.2/185 48.5 0.7 2.9 1.1
asl.log 1.5/552 31.9 0.9 13.5 1.5

error_log 4.5/409 93.1 0.1 0.9 0.1
access_log 8.2/551 130.5 0.3 2.8 0.3

coblitz 9.4/2561 - - 31.9 2.9
pws 17.4/3432 - - 133 5.7

ai.big 57.4/5608 - - 26.2 0.5
exlog 260.8/76720 - - 610 3.0

redirect 302.6/102404 - - 1852 17.1
getbig 550.4/92192 - - 668 8.8

Table 1: Exec. times (secs) and Type Complexities (KB)

ous sizes. We conducted the experiments on a PowerBook G4 with
a 1.67GHz PowerPC CPU and 2GB memory running Mac OS X
10.4. Table 1 summarizes the results. The second column lists the
number of lines and the size of each log. The time columns give
the total running time in seconds, and theTC columns give the type
complexity of the final description. In general, a lower typecom-
plexity means a more compact description. For all benchmarks, the
initial learn sizeN is 500 lines and the incremental learn sizeM

is 100 lines. A “-” indicates the original system failed to produce
a description within thirty minutes. Table 1 shows the incremental
algorithm learns descriptions that are slightly less compact than the
original but in a much shorter time.

To measure the correctness of the inferred descriptions, wegen-
erated parsers from each description and used them to parse the
data. All formats parsed with zero errors except for thepws for-
mat, a form of Apache server log, which contains a number of er-
rors. These errors arise becausePADSuses greedy matching to parse
unions. We are developing a smarter parser implementation to re-
solve this problem.

The second experiment measures the execution time of learning de-
scriptions for a series of web server logs ranging in size from 200k
to one million lines. This data source is private to AT&T, so we ran
the experiments on an AT&T internal server which runs GNU/Linux
and has a 1.60GHz Intel Xeon CPU with 8GB of memory. Figure 8
suggests the incremental algorithm scales linearly with the num-
ber of lines. In particular, the algorithm learns a description for a
million-line web log in under 10 minutes. The inferred description
yields a parser that correctly parses all lines in the log.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 300 400 500 600 700 800 900 1000

T
ot

al
 E

xe
c

T
im

e
(s

ec
s)

Number of Lines (in 1000’s)

Learning Time for Large Web Logs

Figure 8: Scaling of increment algorithm

6. CONCLUSION
We have presented an incremental algorithm for inferring system log
formats. We experimentally verified that this algorithm canproduce
quality descriptions within minutes when run on files with hundreds
of thousands of lines. Our experience suggests that the quality of
the final description is very sensitive to the quality of the initial de-
scription. Hence, we intend to work in the future on improving the
original algorithm to produce better initial descriptions.

Acknowledgments
This material is based upon work supported by the NSF under grants
0612147 and 0615062, and a gift from Google. Any opinions, find-
ings, and conclusions or recommendations expressed in thismaterial
are those of the authors and do not necessarily reflect the views of
the NSF or Google.

7. REFERENCES
[1] J. Earley. An efficient context-free parsing algorithm.

Communications of the ACM, 13(2):94–102, 1970.
[2] K. Fisher and R. Gruber. PADS: A domain specific language

for processing ad hoc data. InPLDI, pages 295–304, June
2005.

[3] K. Fisher, D. Walker, K. Zhu, and P. White. From dirt to
shovels: Fully automatic tool generation from ad hoc data. In
POPL, January 2008.

[4] P. D. Grünwald.The Minimum Description Length Principle.
MIT Press, May 2007.

[5] Q. Xi, K. Fisher, D. Walker, and K. Q. Zhu. Ad hoc data and
the token ambiguity problem. InPADL’09, 2009.

