Incremental Learning of System Log Formats

[Extended Abstract]

Kenny Q. Zhu
Shanghai Jiao Tong University

kzhu@cs.sjtu.edu.cn

ABSTRACT

System logs come in a large and evolving variety of formatsnyn
of which are semi-structured and/or non-standard. As asmuence,
off-the-shelf tools for processing such logs often do nasteforc-
ing analysts to develop their own tools, which is costly ainaet
consuming. In this paper, we present an incremental atgorthat
automatically infers the format of system log files. From tésult-
ing format descriptions, we can generate a suite of dataegsieg
tools automatically. The system can handle large-scakestatrces
whose formats evolve over time. Furthermore, it allows wsial
to modify inferred descriptions as desired and incorparatese
changes in future revisions.

Categories and Subject Descriptors
D.4.9 [Operating Systems]: Systems Programs and Utilities; D.3.4
[Programming L anguages]: Processors

General Terms
Languages, Algorithms

Keywords
Grammar induction, analysis of system logs, domain-spekfi-
guages, parsing, tool generation, ad hoc data, PADS

1. INTRODUCTION

At AT&T and elsewhere, system implementers and administsat
manipulate a wide variety of system logs on a daily basis. @om
tasks include data mining, querying, performing stat&tanalysis,
detecting errors, and transforming the data to standarddts. Be-
cause many of these logs are in non-standard formats, treeoftan
no ready-made tools to help process these logs. Often thedait
erarchical rather than relational in nature, making auticri@ading
into relational databases difficult. As a result, systemriree®ys have
to resort to writing one-off parsers, typically in Perl ortRgn, to in-
gest these data sources, a tedious, error-prone and costlygs.

To facilitate working with such log files, we developedDg2],

Kathleen Fisher
~ AT&T Labs Research
kfisher@research.att.com

David Walker
Princeton University
dpw@cs.princeton.edu

a high-level declarative specification language for désog the
physical formats of ad hoc data. BaDs description for a data
source precisely documents the format of the data, andAlms
system compiles such descriptions into a suite of usefudgssing
tools including an XML-translator, a query engine, a stat# ana-
lyzer, and programmatic libraries and interfaces. Analystn then
either use these generated tools to manage the logs or wstern
tools using the generated libraries.

A significant impediment to usingADS is the time and expertise
required to write @PADS description for a new data source. If such
a source is well-documented, writingpabs description is straight-
forward and requires time proportional to the existing dueata-
tion. Often, however, such data sources are not well docteden
and the user must adopt an iterative process to produce apesc
tion: write a partial description, use this description targe the
data, flag segments of the data that do not match the desorips-
fine the description to cover these cases, and repeat. Tdie$s is
time-consuming, often requiring days for complex formats.

As a first step towards addressing this problem, we develtiped
LEARNPADS' system [3, 5], which automatically infersraDs de-
scription from sample data, and thus eliminates the neetidnd-
written descriptions. TheEARNPADSsystem successfully produces
correct descriptions for a range of small data sources,ttmarinot
handle larger ones because the system includes a memensive
algorithm designed to process the entire data source at once

In this paper, we take the next step towards automaticalgyrrimg
descriptions of system log files by adaptingARNPADS to work
incrementally With this modification, the system takes as input an
initial description and a new batch of data. It returns a rfiedi
description that extends the initial description and cevee new
data as well. The initial description can be supplied by teeru
or the system can use the origin®@ ARNPADS system to infer it.
This iterative architecture also allows the user to takeaimput of
the system, make revisions such as replacing generatechfields
like I P_1 with more meaningful names liker ¢, and then use the
refined description as the basis for the next round of auticmeati-
sion.

In the rest of the paper, we give a brief overviewrafDs and the
original inference system (Section 2). We then describartbee-
mental inference algorithm (Section 3), discuss its im@atation
(Section 4), give some experimental results (Section ), famally

A demo is available from theaDs websitewww. padspr oj .
org.



Punion client _t {
Pi p ip; /1 207.136.97.49
Phost nanme host ; /1 ks38. knms. com

In general, base types describe atomic pieces of data suabeas
gers Pi nt) and floats Pf | oat ), characterschar ) and strings
}: (Pstring(:’ ’':)), dates Pdat e) and times Pt i me), paths
Puni on auth_id_t {
Pchar unaut horized : unauthorized == "-";
Pstring(:" ':) id;

ory they could go on forever, 98st r i ng takes a parameter which
specifies when the string stops: in this case, when it reachpace.
To account for more general stopping conditions, a programm

Pstruct request _t { may use the base typgest ri ng_ME, which takes a regular ex-

" GE:I'I-TP’ " E??Bgt ﬁ?: g ver: pression as a parameter. With this type, the correspondigs
e - is the longest that matches the regular expression. Thebfasich
}; of thePuni onaut h_i d_t illustrates the use of eonstraint It
Precord Pstruct entry_t { specifies that thanaut hor i zed character must be equal’te’ .
o glult ﬁnf att f'e'ng?tel 5 If the constraint fails to hold, the next branch of the unioifi e
T auth_id_t aut h; ’ considered.
" ["; Pdate dat e; . . . . .
T Ptine tine: In addition to the features illustrated in Figure RADS provides
"] "; request _t request ; arrays, which describe sequences of data all of the same dype
"', Pint response; tions, which describe data that may be present; and switchieas,
. "'y Pint I'engt h; which describe unions where a value earlier in the data céters
b which branch to take. Such unions illustrate thabs supportsde-

Figure2: pADS/C description for thewl format )
later portions.

conclude (Section 6). Space considerations preclude simmuof ~ The goal of theLEARNPADS format inference engine is to infer

related work; however, our earlier paper [3] contains areesive PADS descriptions like the one in Figure 2 from raw data. From

discussion of other grammar induction systems. such a description, theaps compiler can produce end-to-end pro-
cessing tools fully automatically. A full description ofethEARN-

2. PADSAND THE ORIGINAL LEARNPADS PADSalgorithm appears in an earlier paper [3]. We give only afbrie

We use a simple web server log format, which we e4l| to illus- summary here.
trate the principal features of theaDs data description language.
Figure 1 shows a fragment of such data, which is comprised of
sequence of records, separated by newlines. Each recotdit®n
a number of fields delimited by white space. For example, tisé fi
record starts with an IP address, then has two dashes, atémg s

fxgl%igdéps Sqruha;igggﬁlée::"cggzﬁfvssfgnz r\?:ﬁ;ﬁgﬁ’ fg4gnaﬁen type is defined by a regular expression. Intuitivelyséhtokens
gers. : carrespond tePADS base types. In thetructure discoveryphase,

ﬁzss becomes a hostname and the second dash becomes ian |deL ARNPADscompu_tes a freguency distrit_)utipn for each token type
) and then uses that information to determine if the top-Istreicture

f the data source is a base typst r uct, Par r ay, or Puni on.
sed on that determination, the algorithm partitions taa dnto
new contexts and recursively analyzes each of those centeon-
structing the corresponding description as it recursesis phase
terminates with a candidate description. In foemat refinement
phase, the algorithm uses an information-theoretic sgdtinction
to guide the application of rewriting rules. These ruleskste
minimize the size of the description while improving its gisgon
by performing structural transformations (such as mergidigicent

Ferminated records and that each record is an instance detieed
description. From such an input, it uses a a three-phaseithlgo
to produce a description. In thtekenizationphase,LEARNPADS
onverts each input line into a sequences of tokens, whetetea

PADS uses a type-based metaphor to describe ad hoc data. Ea
PADS type plays a dual role: it specifies a grammar by which to
parse the data and a data-specific data structure in whitbrthe
results of the parseeADS/C is the variant oPADSthat uses C as its
host language. Henceabs/c types are drawn by analogy from C,
and the generated data structures and parsing code are in C.

Figure 2 shows @ADS/C specification that describes each of the
records in Figure 1. The specification consists of a seriedeof
larations. Types must be declared before they are usedesash
declarationent ry_t describes the entirety of a record, while the
earlier declarations describe data fragments. Tgpery_t is a
Precor d, mean_ing .it com_prises a full line in the input, _and Is a The scoring function, which is based on thenimum description
Pst r uct, meaning it consists of a sequence of named fields, eacp
with its own type. For convenienc®st r ucts can also contain
anonymous literal fields, such &s[ ", which denote constants in
the input source. The generated representatiorefarr y_t will

be a C struct with one field for each of the named fields in the dec
laration. The typel i ent _t is aPuni on, meaning the described
data matchesneof its branches, by analogy with C unions. In par-
ticular, acl i ent _t is either an IP addres®i(p) or a host name
(Phost nane), wherePi p andPhost nane arePADS/C base types
describing IP addresses and hostnames, respectively.

of various base type®.g, converting a general integer to a 32-bit
integer.

by calculating the number of bits necessary to transmit kbéh
description and the datgiven the description We use the terms
typeanddata complexityo refer to the number of bits necessary to
encode the description and the data given the descriptespec-
tively. This function penalizes overly general descripp such
asPst ri ng, which have a low type complexity but a very high
data complexity. It also penalizes overly specific desiois that
painstakingly describe each character in the data. Suahipggsns

(Ppat h), etc. Strings represent an interesting case because in the-

pendenciesearlier portions of the data can determine how to parse

LEARNPADS assumes that the input data is a sequence of newline-

Pst r ucts), adding data dependencies, and constraining the range

ength principle[4], measures how well a description describes data



207.136.97. 49
ks38. kns. com -

[ 05/ May/ 2009: 16: 37: 20 - 0400]
ki m [ 10/ May/ 2009: 18: 38: 35 - 0400]

"GET / README. t xt HTTP/ 1. 1" 404 216
"GET /doc/prev.gif HTTP/1.1" 304 576

Figurel: A fragment from aweb server loginw format

have a low data complexity but a high type complexity.

This algorithm produces good results for the small log fitext tve
have experimented with, but it has two limitations: perfanoe
and adaptability. In terms of performance, the algorithmurees
space quadratic in the input file size to perform the data nidgecy
analysis, so it cannot be used on log files larger than theregfa
the size of usable memory. In terms of adaptability, the ratigm
only considers its input data in constructing a descriptidance if
tomorrow’s log file has a new kind of record, the algorithm rain
modify the existing description; it must start from scratch

3. THEINCREMENTAL ALGORITHM

To address these problems, we extendedRNPADSto work incre-
mentally. Given a candidate descriptibnthe new algorithm uses
D to parse the records in the data source. It discards recbads t
parse successfully, since these records are already cbive® but

it collects records that fail to parse. When the algorithrouseu-
latesM such records, wher/ is a parameter of the algorithm, it
invokes the incremental learning step, described belowraduce

a refined descriptio®' . This refined description subsumBsand
describes théd/ new records. In addition, the algorithm attempts to
preserve as much of the structurel®&s possible, so users supply-
ing initial descriptions can recognize the resulting diggimms. The
algorithm then take®' to be the new candidate description and re-
peats the process until it has consumed all the input datinitial
descriptionD can either be supplied by a user or it can be inferred
automatically by applying the original algorithm ¥ records se-
lected from the data source, whekgis another parameter.

Intuitively, the incremental learning step works by atteimg to
parse each of thé/ records according to the current description
D. It discards the portions of each record that parse coxedfl

a portion fails to parse, that failure will be detected at dipalar
node in the descriptioD. It collects these failed portions in an ag-
gregation data structusthat mirrors the structure d. After thus
aggregating all the failures in th&f records, the algorithm trans-

Descri pti ons
Bas Pint |
D::=

Base
| Sync s
| Pair (D_1, D 2)
| Union (D_1, D 2)
| Array(D, s, t) (Array)
| Option D (Option)
Data representation
BaseR ::= Str s | Int i | Error
SyncR ::= Good | Fail | Recovered s
R::=

BaseR
| SyncR
| PairR (R_1, R 2)
| UnionlR R | Union2R R
| ArrayR (R 1list, SyncRIist,
| OptionR R
Aggregation structure
A

PstringME(re)

(Base token)
(Synchroni zi ng t oken)
(Pair)

('Uni on)

SyncR)

BaseA Base

| SyncA s

| PairA(A_1, A 2)

| UnionA(A_l, ATr)

| ArrayA (A_elem A _sep, Aternm
| OptionA A

|

Opt A

Learn [s]

Figure 3. Data structuresused in incremental inference

A term with typeRis a parse tree obtained from parsing data using
a descriptiorD. Parsing a base type can result in a string, an integer
or an error. Parsing a sync tok&ync s can give three different
results: Good, meaning the parser fourglat the beginning of the
input; Fai | , meanings is not a substring of the current input; or
Recovered s’ , meanings is not found at the beginning of the
input, but can beecoveredafter “skipping” strings’ . The parse of

a pair is a pair of representations, and the parse of a unieithisr

forms D to accommodate the places where differences were foundhe parse of the first branch or the parse of the second brariah.
(i.e., by introducing options where a piece of data was missing omparse of an array includes a list of parses for the elemerg, typ

unions where a new type of data was discovered). It then hges t
original LEARNPADS algorithm to infer descriptions for the aggre-
gated portions of bad data.

Figure 3 defines the data structures for descriptibpndata repre-
sentationsR, and aggregate structurés In these definitions, vari-
abler e ranges over regular expressiossandt over strings, and
i over integers. A value with typB is the abstract syntax tree of
pADSsdescription: it is what we want to learn. For simplicity ofpr
sentation, we assume just two base types: integers andssttiat
match a regular expression. Synchronizing tokenssyorc tokens
for short, correspond to string literals #"DS descriptions. Such
tokens, which are often white space or punctuation, serdges-
iters in the data and are useful for detecting errors. We ursarp
pairs and unions to account for thst r ucts andPuni ons in

list of parses for the separator and a parse for the terminetah
appears at the end of the array.

An aggregate structure is tliecumulatiorof parse trees; it collects
the data that cannot be parsed and therefore must be reetearhe
aggregation structure mirrors the structure of the deonD with
two additional nodes: a@pt node, and dear n node. An invari-
ant is that arOpt node always wraps BaseA or aSyncA node,
where it indicates that the underlying base or sync tokenigs-m
ing in some of the parses being aggregated, and therefare¢hiha
wrapped token should be made optional. Tle@&r n node accumu-
lates the bad portions of the data that need to be learnedn&lky
learned sub-descriptions will be spliced into the origihedcription
to get the new description.

PADS/C descriptions. An array has an element type described byFigure 4 gives pseudo-code for the incremental learning. side
D, a separator string that appears between array elements, and d ni t _aggr egat e function initializes an empty aggregate accord-

terminator string.. Opt i on DindicatesDis optional.

ing to descriptiord. Then for each data record we use thepar se



increnental _step(d, xs) =
= [init_aggregatgd)];

as _
foreach x in xs {
rs = parse(d, x);
as’' = [], aggregate MergeOpts

foreach r in rs { {
ofoto

foreach a in as {
a'’ = aggregate(a, r);

as’ = a :: as’
} ! Figure 7: MergeOptsrewritingrule
as = as’
]{)est_a = sel ect _best(as); collected inLear n nodes.
d’ = update_desqd, best_a);
return d’
4, IMPLEMENTATION
Figure4: Pseudo-code for theincremental learning step For purposes of presentation, we have described an iddadine
unoptimized algorithm. Our actual implementation inclsidenum-
Pair mput g PairR ber of refinements to improve the quality of the descriptiod/ar
reduce the inference time. In this section, we discuss sdrtieese
/ \ parse / \ refinements.
Pint Sync "*" Int5 Good
“ 4.1 Token families
pair paiR So_ far, parsing &ync token yields one of three_resultﬁood,
,nput "abc* Fai | or Recovered. In the actual implementation, 8ync to-
/ \ / \ ken can be not only a constant string, but also a constargente
parse an integer range or a combination thereof. Consider partirg
Pint Syne ™ Error Reco"ered( ‘abc) token Sync (Str "GET") when the current input starts with
“POST.” The par se_base function indicates the result should
Pair PairR be Fai | . In reality, the input “POST” is in the samamily as

|nput 8" “GET,” i.e,, a word, and it may very well be that thBync to-
/ \ / \ ken should have been an enumeration of words rather than-a sin
ot Sync parse 8 Eail gle word. T_o handle_ su_ch cases, we c_reated a fourth type e€par
@ ) nod_e, Parti al , to indicate that the input belongs t(_) th(_e same
family as the expected token but does not match exaiotly,it is
Figure5: Result of parsingthreeinput lines partially correct. During aggregation, partial nodes cause the de-
scription to be specialized to include the additional valuén the
above example, the aggregate function will change the igiéiser to
function to produce a lists of possible parses. We then call the Sync (Enum [Word "GET", Word "POST"]). Such par-
aggr egat e function to merge each parsein the current list of  tial nodes reduce the number of parsing errors and produge mo
parses with each aggregadn the current list of aggregates. We compact and meaningful descriptions.
use ‘ : 'to denote consing an element onto the front of a list. When
we finish parsing all the data lines and obtain a final list ajrag
gatesas, we select the best aggregate according to some metri
and finally update the previous descriptidnto produce the new
descriptiond’ using the best aggregate.

4.2 Rewriting rules

SVhen the incremental learning algorithm produces a refined d
scription from an aggregate, the algorithm applies remgitiules

to the new description to improve its quality and readapilMost

of the rules are data-independent and inherited ft@aRNPADS,
such as removing degenerate lists and flattening nestectsstind
unions. We introduce one nedata dependentule calledMer-
geOptsto optimize a type pattern that occurs frequently during in-
cremental learning. Recall that the aggregate functioroghices

To illustrate the parsing and aggregation phases of therittigg
we introduce a simple example. Suppose we have a descrigtion
comprised of a pair of an integer and a sync tokel ‘and we are
given the following three lines of new input:

5+ Opt nodes above 8aseA or SyncA node whenever the corre-
abc* spondingBase or Sync token in the description failed to parse.
8% When faced with an entirely new form of data, the algorithiikisly

to introduce a series ddpt nodes as each type in the original de-
Figure 5 shows the three data representations that reseuitfiars-  scription fails in succession. THdergeOptsrule collapses these
ing the lines, which we calt;, 2 andrs, respectively. Notice the consecutiveOpt nodes if they are correlatedg., either they are
first line parsed without errors, the second line containsraor for all always present or all always absent. To verify this datien,
Pi nt and some unparsable databt”, and the third contains a the algorithm maintains a table that records the branchéwistbns
Fai | node because the sync tokenvas missing. Figure 6 shows when parsing each data line. It uses this table to determivegher
the aggregation of, to r3 starting from an empty aggregate. In to merge adjacerpt nodes during rewriting. Figure 7 illustrates
general Er r or andFai | nodes in the data representation trigger the effect of this rule. In the figure§ denotes a struct anét a base
the creation ofOpt nodes in the aggregate, while unparsable data igoken.



PairA

PairA
PairA PairA / \ / \
rl r2 ) 3 Opt PairA
% % Opt PairA %
aggregate aggregate / \ aggregate / \
Basi

BaseA Pint SyncA "*" BaseA Pint SyncA "*"
(Initial aggregate for d)

eA Pint  Learn ["abc” Opt
BaseA Pint Learn['abc"]  SyncA ™" [ 1 p

inal ford) SyncA™"
Figure 6: Aggregation of three parses (Final aggregate for &
4.3 Perfor mance _ Formats | K Lines/kg |_onginal [ incremental
The pseudo-code in Figure 4 suggests the number of aggseigate Time [ TC [ Time ] TC
of the orderO(m™), wherem is the maximum number of parses for interface 1.2/185 485 [ 0.7 29 1.1
a line of input andn is the number of lines to aggregate. Clearly, asl.log 1.5/552 31909 135 15
this algorithm will not scale unless andn are bounded. error_log 24.5/409 931101 09 | 01
) o o access_log 8.2/551 13051 03| 2.8 | 0.3
We have implemented several optimizations to limit the nendf Coblitz 9.4/7561 - N 310 2.0
parses and aggregates. First, we do not return all possérkep pws 17 4/3432 - - 133 | 5.7
when parsing a description compon&ntnstead, we rank the parses —— : -
; . . ai.big 57.4/5608 - - 26.2 | 0.5
by a metric that measures their quality and return only tpetorhe I 560.8/76720 610 | 3.0
metric is a triple:m = (e, s, c), wheree is the number of errors ex1og - - - -
) A ' redirect | 302.6/102404| - - | 1852 17.1
s is the number of characters skipped durlgnc token recovery, i 550 4/92192 568 T 88
and c is the number of characters correctly parsed. The metric is getbig . - - .

consideredgoerfectif e = 0. Metric m; is better thann if m; is

perfect andn is not, or if Table 1: Exec. times (secs) and Type Complexities (KB)

C1 C2
s1+ ¢ = s2+ca ous sizes. We conducted the experiments on a PowerBook &4 wit
a 1.67GHz PowerPC CPU and 2GB memory running Mac OS X
10.4. Table 1 summarizes the results. The second colunsittist
number of lines and the size of each log. The time columns give
the total running time in seconds, and ffi€' columns give the type
complexity of the final description. In general, a lower tyqsm-
plexity means a more compact description. For all benchgahe
initial learn sizeN is 500 lines and the incremental learn sixe
is 100 lines. A “-” indicates the original system failed tooduce
a description within thirty minutes. Table 1 shows the imceatal
algorithm learns descriptions that are slightly less corhffzan the
original but in a much shorter time.

In practice par se returns a list ofparse triples(r, m, j), where

r is the data representation of the parsejs the metric associated
with r, andj is the position in the input after the parse. We define
a cl ean function that first partitions the triples into groups that
share the sam&pan i.e., the substring of the input consumed by the
parse. For each groug,| ean retains all perfect parses. If none
exists, it retains the best parse in the group. We justifgatiding
the other triples because given a descripticend a fixed span, we
always prefer the parse with the best metric. This idea islaim
to the dynamic programming techniques used in Earley Pafser
Finally cl ean returns all the perfect triples plus up to the tbp
non-perfect triples. Thel ean function reduces the number of bad
parses to a constait while guaranteeing that if there is a perfect
parse, it will be returned.

To measure the correctness of the inferred descriptionsgeve
erated parsers from each description and used them to pgagse t
data. All formats parsed with zero errors except for fves for-
mat, a form of Apache server log, which contains a number -of er
rors. These errors arise becawe®suses greedy matching to parse
unions. We are developing a smarter parser implementatioa-t
solve this problem.

A second optimization, which we callarse cut-off terminates a
candidate parse when parsing a struct with multiple figldsfs,
..., f» if the algorithm encounters a threshold number of errors in
succession. This technique may result in no possible péosdise
top-level description. In this case, we restart the proeess the
parse cut-off optimization turned off. A third optimizatidss memo-
ization. The program keeps a global memo table indexed byahe
of a descriptionD and the beginning position for parsiigwhich
stores the result for parsing at the specific position. Finally, we
bound the total number of aggregates the algorithm can pety
selecting the tog: aggregates with the fewest number@gdt and
Lear n nodes.

The second experiment measures the execution time of hepde-
scriptions for a series of web server logs ranging in sizenf@00k

to one million lines. This data source is private to AT&T, se ran

the experiments on an AT&T internal server which runs GNUI(L%
and has a 1.60GHz Intel Xeon CPU with 8GB of memory. Figure 8
suggests the incremental algorithm scales linearly with itim-
ber of lines. In particular, the algorithm learns a desaoiptfor a
million-line web log in under 10 minutes. The inferred degtion
yields a parser that correctly parses all lines in the log.

5. EVALUATION

To evaluate the incremental algorithm, we ran it and theiaig
LEARNPADS system on 10 different kinds of system logs of vari-



Le‘ammg Time &or Large Wéb Logs —

Total Exec Time (secs)

50 L L L L L L L
200 300 400 500 600 700 800 900 1000

Number of Lines (in 1000's)

Figure 8: Scaling of increment algorithm

6. CONCLUSION

We have presented an incremental algorithm for inferrirgjeay log
formats. We experimentally verified that this algorithm gaaduce
guality descriptions within minutes when run on files witmdeeds
of thousands of lines. Our experience suggests that thétyjoél
the final description is very sensitive to the quality of thiial de-
scription. Hence, we intend to work in the future on impraythe
original algorithm to produce better initial descriptions

Acknowledgments

This material is based upon work supported by the NSF undertgr
0612147 and 0615062, and a gift from Google. Any opinionsl-fin
ings, and conclusions or recommendations expressed imttirial
are those of the authors and do not necessarily reflect thes\oé
the NSF or Google.

7. REFERENCES

[1] J. Earley. An efficient context-free parsing algorithm.
Communications of the ACM3(2):94-102, 1970.

[2] K. Fisher and R. Gruber. PADS: A domain specific language
for processing ad hoc data. RLDI, pages 295-304, June
2005.

[3] K. Fisher, D. Walker, K. Zhu, and P. White. From dirt to
shovels: Fully automatic tool generation from ad hoc data. |
POPL, January 2008.

[4] P. D. Grunwald.The Minimum Description Length Principle
MIT Press, May 2007.

[5] Q. Xi, K. Fisher, D. Walker, and K. Q. Zhu. Ad hoc data and
the token ambiguity problem. IRADL’09, 2009.



