
Structuring of the Windows
Operating System

2

Roadmap for This Lecture

!  Architecture Overview
!  Key windows system files

!  Design Attributes and Features

!  Key System Components
!  System Threads

!  System Processes / Services

3

Simplified OS Architecture

System
support

processes

Service
processes

User
applications

Environment
subsystems

Subsystem DLLs

Executive
Kernel Device drivers

Hardware Abstraction Layer (HAL)

Windowing
and graphics

User
Mode

Kernel
Mode

4

OS Architecture
!   Multiple personality OS design

!   user applications don't call the native Windows operating system
services directly

!   Subsystem DLLs is to translate a documented function into the
appropriate internal (and undocumented) Windows system service
calls.

!   Environment subsystem processes
!   Manage client processes in their world
!   Impose semantics such as process model, security

!   Originally three environment subsystems: Windows, POSIX, and
OS/2
!   POSIX: Portable Operating System Interface for Unix

!   Windows 2000 only included Windows and POSIX
!   Windows XP only includes Windows

!   Enhanced POSIX subsystem available with Services for Unix
!   Included with Windows Server 2003 R2

5

Kernel-Mode
Components: Core OS
!   Executive

!   base operating system services,

!   memory management, process and thread management,
!   security, I/O, interprocess communication.

!   Kernel
!   low-level operating system functions,

!   thread scheduling, interrupt and exception dispatching,
!   multiprocessor synchronization.

!   provides a set of routines and basic objects that the rest of the
executive uses to implement higher-level constructs.

!   Both contained in file Ntoskrnl.exe

6

!  Device drivers (*.sys)
!  hardware device drivers translate user I/O function calls into

specific hardware device I/O requests

!  virtual devices - system volumes and network protocols

!  Windowing and Graphics Driver (Win32k.sys)
!  graphical user interface (GUI) functions (USER and GDI)
!  windows, user interface controls, and drawing

!  Hardware Abstraction Layer (Hal.dll)
!  isolates the kernel, device drivers, and executive from hardware

!  Hides platform-specific hardware differences (motherboards)

Kernel-Mode
Components: Drivers

User-Mode
Processes
!   System support processes

!   Logon process, session manager, etc.

!   Services processes
!   Windows services independent of user logons

!   Task Scheduler, printer spooler, etc.

!   User applications
!   Windows 32-bit, 64-bit, Windows 3.1 16-bit, MS-DOS 16-bit

and POSIX 32-bit

!   Environment subsystems
!   OS environment a.k.a. personalities

!   Windows, POSIX, OS/2 (dropped after Windows 2000)

7

8

Key Windows System Files
Core OS components:
!   NTOSKRNL.EXE** Executive and kernel

!   HAL.DLL Hardware abstraction layer

!   NTDLL.DLL Internal support functions and system
 service dispatch stubs to executive functions

Core system (support) processes:
!   SMSS.EXE Session manager process

!   WINLOGON.EXE Logon process

!   SERVICES.EXE Service controller process
!   LSASS.EXE Local Security Authority Subsystem

Windows subsystem:
!   CSRSS.EXE* Windows subsystem process
!   WIN32K.SYS USER and GDI kernel-mode components

!   KERNEL32/USER32/GDI32.DLL Windows subsystem DLLs

9

NTOSKRNL.EXE
!   Core operating system image

!   contains Executive & Kernel
!   Also includes entry points for routines actually implemented in Hal.Dll
!   Many functions are exposed to user mode via NtDll.Dll and the environment

subsystems (t.b.d.)

!   Four retail variations:
!   NTOSKRNL.EXE Uniprocessor
!   NTKRNLMP.EXE Multiprocessor

!   Windows 2000 adds PAE (page address extension) versions –
must boot /PAE (32-bit Windows only); also used for processors with hardware
no execute support (explained in Memory Management unit)
!   NTKRNLPA.EXE Uniprocessor w/extended addressing support
!   NTKRPAMP.EXE Multiprocessor w/extended addressing support

!   Two checked build (debug) variations:
!   NTOSKRNL.EXE,
!   NTKRNLMP.EXE Debug multiprocessor
!   NTKRNLPA.EXE,
!   NTKRPAMP.EXE Debug multiprocessor w/extended addressing

10

Portability
!   When Windows NT was designed, there was no dominant processor

architecture
!   Therefore it was designed to be portable

!   How achieved?
!   Most Windows OS code and device drivers is written in C

!   HAL and kernel contain some assembly language

!   Some components are written in C++:
!   windowing/graphics subsystem driver
!   volume manager

!   Hardware-specific code is isolated in low level layers of the OS (such as
Kernel and the HAL)
!   Provides portable interface

!   XP and Server 2003 support
!   Intel Itanium IA-64
!   AMD64
!   Intel 64-bit Extension Tech (EM64T)

11

Reentrant and Asynchronous
Operation
!  Windows kernel is fully reentrant

!   Kernel functions can be invoked by multiple threads
simultaneously

!   No serialization of user threads when performing
system calls

!   I/O system works fully asynchronously
!   Asynchronous I/O improves application’s throughput

!   Synchronous wrapper functions provide ease-of-
programming

12

Symmetric Multiprocessing (SMP)

!   No master processor
!   All the processors share just one memory space

!   Interrupts can be serviced on any processor

!   Any processor can cause another processor to
reschedule what it’s running

!   Maximum # of CPUs stored in registry
!   HKLM\System\CurrentControlSet

 \Control\Session Manager
 \LicensedProcessors

!   Current implementation limit is # of bits in a native
word
!   32 processors for 32-bit systems
!   64 processors for 64-bit systems
!   Not an architectural limit—just implementation

Memory I/O

CPUs

L2
Cache

SMP

13

UP vs MP File Differences

!   These files are updated when moving from UP to MP:

!   Everything else is the same (drivers, EXEs, DLLs)
!   NT4: Win32k.sys, Ntdll.dll, and Kernel32.dll had uniprocessor

versions

Name of file on
system disk

Name of uniprocessor
version on CD-ROM

Name of multiprocessor version
on CD-ROM

 NTOSKRNL.EXE

\I386\NTOSKRNL.EXE

\I386\NTKRNLMP.EXE

NTKRNLPA.EXE

\I386\NTKRNLMP.EXE

\I386\NTKRPAMP.EXE

 HAL.DLL

Depends on system type

Depends on system type

14

Hyperthreading

!   New technology in newer Intel processors
!   Makes a single processor appear as multi-processor to the OS

!   Also called simultaneous multithreading technology (SMT)

!   Chip maintains many separate CPU states (“logical
processors”)
!   Execution engine & onboard cache is shared

!   XP & Server 2003 and later Windows are
“hyperthreading aware”
!   Logical processors don’t count against physical processor limits

!   Scheduling algorithms take into account logical vs physical
processors

!   Applications can also optimize for it (new Windows
function in Server 2003)

15

NUMA
!   NUMA (non uniform memory

architecture) systems
!   Groups of physical processors (called

“nodes”) that have local memory
!   Connected to the larger system through

a cache-coherent interconnect bus

!   Still an SMP system (e.g. any processor
can access all of memory)
!   But node-local memory is faster

!   Scheduling algorithms take this into account
!   Tries to schedule threads on processors within the same node
!   Tries to allocate memory from local memory for processes with

threads on the node

!   New Windows APIs to allow applications to optimize

16

SMP Scalability
!   Scalability is a function of parallelization and resource

contention
!   Can’t make a general statement
!   Depends on what you are doing and if the code involved scales

well
!   Kernel is scalable

!   OS can run on any available processor and on multiple processors
at the same time

!   Fine-grained synchronization within the kernel as well as within
device drivers allows more components to run concurrently on
multiple processors

!   Concurrency has improved with every release
!   Applications can be scalable

!   Threads can be scheduled on any available CPU
!   Processes can contain multiple threads that can execute

simultaneously on multiple processors
!   Programming mechanisms provided to facilitate scalable server

applications
!   Most important is I/O completion ports

Differences between Client and
Server Versions

!   Number of CPUs supported (# of packages, not cores)
!   Amount of physical memory supported

!   Number of concurrent networks

!   Support for Tablet PC and Media Center Ed.

!   Features like BitLocker, DVD burning, WinFax and 100+
config values

!   Layered services unique for Servers, e.g. directory
services and clustering

17

18

Built On the Same Core OS
!   Through Windows 2000, core operating system

executables were identical
!   NTOSKRNL.EXE, HAL.DLL, xxxDRIVER.SYS, etc.
!   As stated earlier, XP & Server 2003 have different kernel versions

!   Registry indicates system type (set at install time)
!   HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control

 \ProductOptions
! ProductType: WinNT=Workstation, ServerNT=Server not a domain

controller, LanManNT=Server that is a Domain Controller

! ProductSuite: indicates type of Server (Advanced, Datacenter, or for
NT4: Enterprise Edition, Terminal Server, …)

19

Built On the Same Core OS (Cont’d)

!   Code in the operating system tests these values and
behaves slightly differently in a few places
!   Licensing limits (number of processors, number of network

connections, etc.)
!   Boot-time calculations (mostly in the memory manager)
!   Default length of time slice
!   See DDK: MmIsThisAnNtasSystem (check if it’s server)

20

Debug Version (“Checked Build”)
!   Special debug version of system called “Checked Build”

!   Multiprocessor versions only (runs on UP systems)
!   helps catch synchronization bugs that are more visible on MP systems

!   Primarily for driver testing, but can be useful for catching timing bugs in
multithreaded applications

!   Built from same source files as “free build” (aka “retail build”)
!   But with “DBG” compile-time symbol defined
!   This enables:

!   error tests for “can’t happen” conditions in kernel mode (ASSERTs)
!   validity checks on arguments passed from one kernel mode routine to another

!   Since no checked Windows 2000 Server provided, can copy checked
NTOSKRNL, HAL, to a normal Server system
!   Select debug kernel & HAL with Boot.ini /KERNEL=, /HAL= switches

!   Windows Server 2003 has its own checked build
!   See Knowledge base article 314743 (HOWTO: Enable Verbose Debug

Tracing in Various Drivers and Subsystems)

#ifdef DBG

 if (something that should never happen has happened)
 KeBugCheckEx(…)

#endif

21

Key System Components

Windows POSIX

Environment
Subsystems

User
Application
Subsystem DLL

Windows
User/GDI
Device
Driver

Executive
Device Drivers Kernel

Hardware Abstraction Layer (HAL)

User
Mode

Kernel
Mode

System
& Service
Processes

Windows DLL
Windows

22

Multiple OS Personalities
!   Windows was designed to support multiple “personalities”,

called environment subsystems
!   Programming interface
!   File system syntax
!   Process semantics

!   Environment subsystems provide exposed, documented
interface between application and Windows native API
!   Each subsystem defines a different set of APIs and semantics
!   Subsystems implement these by invoking native APIs

!   Example: Windows CreateFile in Kernel32.Dll calls native
NtCreateFile

!   .exes and .dlls you write are associated with a subsystem
!   Specified by LINK /SUBSYSTEM option
!   Cannot mix calls between subsystems

23

Environment Subsystems
!   Three environment subsystems originally provided with NT:

!   Windows –Windows API (originally 32-bit, now also 64-bit)
!   OS/2 - 1.x character-mode apps only

!   Removed in Windows 2000

!   Posix - only Posix 1003.1 (bare minimum Unix services - no
networking, windowing, threads, etc.)
!   Removed in XP/Server 2003 – enhanced version ships with Services

For Unix 3.0

!   Of the three, the Windows subsystem provides access to the
majority of native OS functions

!   Of the three, Windows is required to be running
!   System crashes if Windows subsystem process exits
!   POSIX and OS/2 subsystems are actually Windows applications
!   POSIX & OS/2 start on demand (first time an app is run)

!   Stay running until system shutdown

24

App calls Subsystem
!   Function entirely implemented in user mode

!   No message sent to environment subsystem process

!   No Windows executive system service called
!   Examples: PtInRect(), IsRectEmpty()

!   Function requires one/more calls to Windows executive
!   Examples: Windows ReadFile() / WriteFile() implemented using

I/O system services NtReadFile() / NtWriteFile()

!   Function requires some work in environment subsystem
process (maintain state of client app)
!   Client/server request (message) to env. Subsystem (LPC facility)
!   Subsystem DLL waits for reply before returning to caller

!   Combinations of 2/3: CreateProcess() / CreateThread()

25

Windows Subsystem

!   Environment subsystem process (CSRSS.EXE):
!   Console (text) windows
!   Creating and deleting processes and threads
!   Portions of the support for 16-bit virtual DOS machine (VDM)
!   Other func: GetTempFile, DefineDosDevice, ExitWindowsEx

!   Kernel-mode device driver (WIN32K.SYS):
!   Window manager: manages screen output;
!   input from keyboard, mouse, and other devices
!   user messages to applications.
!   Graphical Device Interface (GDI)

26

Windows Subsystem (contd.)

!   Subsystem DLLs (such as USER32.DLL,
ADVAPI32.DLL, GDI32.DLL, and KERNEL32.DLL)
!   Translate Windows API functions into calls to NTOSKRNL.EXE

and WIN32K.SYS.

!   Graphics device drivers
!   graphics display drivers, printer drivers, video miniport drivers

 Prior to Windows NT 4.0, the window manager and
graphics services were part of the user-mode Win32
subsystem process.

 Is Windows Less Stable with Win32 USER and GDI in Kernel
Mode?

27

Executive
!  Upper layer of the operating system
!  Provides “generic operating system” functions (“services”)

!   Process Manager
!   Object Manager
!   Cache Manager
!   LPC (local procedure call) Facility
!   Configuration Manager
!  Memory Manager
!   Security Reference Monitor
!   I/O Manager
!   Power Manager
!   Plug-and-Play Manager

!  Almost completely portable C code
!  Runs in kernel (“privileged”, ring 0) mode
!  Most interfaces to executive services not documented

28

Kernel

!   Lower layers of the operating system
!   Implements processor-dependent functions (x86 vs. Itanium

etc.)
!   Also implements many processor-independent functions that

are closely associated with processor-dependent functions

!   Main services
!   Thread waiting, scheduling & context switching
!   Exception and interrupt dispatching
!   Operating system synchronization primitives (different for MP

vs. UP)
!   A few of these are exposed to user mode

!   Not a classic “microkernel”
!   shares address space with rest of kernel-mode components

29

HAL - Hardware Abstraction Layer

!   Responsible for a small part of “hardware abstraction”
!  Components on the motherboard not handled by drivers

!  System timers, Cache coherency, and flushing
!  SMP support, Hardware interrupt priorities

!   Subroutine library for the kernel & device drivers
!  Isolates Kernel and Executive from platform-specific details
!  Presents uniform model of I/O hardware interface to drivers

!   Reduced role as of Windows 2000
!  Bus support moved to bus drivers
!  Majority of HALs are vendor-independent

30

HAL - Hardware Abstraction Layer
(Cont’d)
!   HAL also implements some functions that appear to be in the

Executive and Kernel
!   Selected at installation time

!  See \windows\repair\setup.log to find out which one
!  Can select manually at boot time with /HAL= in boot.ini

!   HAL kit
!  Special kit only for vendors that must write custom HALs (requires

approval from Microsoft)
!  see http://www.microsoft.com/whdc/ddk/HALkit/default.mspx

HalGetInterruptVector
HalGetAdapter
WRITE_PORT_UCHAR

Sample HAL routines:

31

Kernel-Mode Device Drivers
!   Separate loadable modules (drivername.SYS)

!   Linked like .EXEs
!   Typically linked against NTOSKRNL.EXE and HAL.DLL
!   Only one version of each driver binary for both uniprocessor (UP) and multiprocessor

(MP) systems…
!  … but drivers call routines in the kernel that behave differently for UP vs. MP Versions

!   Defined in registry
!   Same area as Windows services (t.b.d.) - differentiated by Type value

!   Several types:
!   “ordinary”, file system, NDIS miniport, SCSI miniport (linked against port drivers), bus

drivers
!  More information in I/O subsystem section

!   To view loaded drivers, run drivers.exe
!   Also see list at end of output from pstat.exe – includes addresses of each driver

!   To update & control:
!   System propertiesàHardware TabàDevice Manager
!   Computer ManagementàSoftware EnvironmentàDrivers

32

hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager

Explorer

SvcHost.Exe

WinMgt.Exe

SpoolSv.Exe

Service
Control Mgr.

LSASS

O
bject
M

gr.

Windows
USER,

GDI

 File

 System

 C
ache

I/O Mgr

Environment
Subsystems

User
Application

Subsystem DLLs

System Processes Services Applications

Original copyright by Microsoft Corporation.
Used by permission.

System
Threads

User
Mode

Kernel
Mode

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session Manager Services.Exe
 POSIX

Windows DLLs

Plug and
Play M

gr.

Pow
er

M
gr.

Security
R

eference
M

onitor

Virtual
M

em
ory

Processes
&

Threads

Local
Procedure

C
all Graphics

Drivers

Kernel

Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

Windows Architecture

C
onfigura-
tion M

gr
(registry)

Windows

33

Background System
Processes
!  Core system processes,

!   logon process, the session manager, etc.

!   not started by the service control manager

!  Service processes
!   Host Windows services

!   i.e.; Task Scheduler and Spooler services

!   Many Windows server applications, such as Microsoft
SQL Server and Microsoft Exchange Server, also
include components that run as services.

34

System Threads

!   Functions in OS and some drivers that need to run as real
threads
!   E.g., need to run concurrently with other system activity, wait on

timers, perform background “housekeeping” work
!   Always run in kernel mode
! Preemptible (unless they raise IRQL to 2 or above)
!   For details, see DDK documentation on PsCreateSystemThread

!   What process do they appear in?
!   “System” process (NT4: PID 2, W2K: PID 8, XP: PID 4)
!   In Windows 2000 & later, windowing system threads (from

Win32k.sys) appear in “csrss.exe” (Windows subsystem process)

35

!  Memory Manager
!  Modified Page Writer for mapped files
!  Modified Page Writer for paging files
!   Balance Set Manager
!   Swapper (kernel stack, working sets)
!   Zero page thread (thread 0, priority 0)

!   Security Reference Monitor
!   Command Server Thread

!   Network
!   Redirector and Server Worker Threads

!   Threads created by drivers for their exclusive use
!   Examples: Floppy driver, parallel port driver

!   Pool of Executive Worker Threads
!   Used by drivers, file systems, …
!  Work queued using ExQueueWorkItem
!   System thread (ExpWorkerThreadBalanceManager) manages pool

Examples of System Threads

36

Identifying System Threads:
Process Explorer
!   With Process Explorer:

!   Double click on System
process

!   Go to Threads tab – sort by
CPU time

!   As explained before, threads run
between clock ticks (or at high
IRQL) and thus don’t appear to
run
!   Sort by context switch delta

column

! Cswitch Delta: number of context
switches per Process Explorer
refresh interval

37

Process-Based Code

!   OS components that run in separate executables (.exe’s), in their
own processes
!   Started by system
!   Not tied to a user logon

!   Three types:
!   Environment Subsystems (already described)
!   System startup processes

!   note, “system startup processes” is not an official MS-defined name

!   Windows Services

!   Let’s examine the system process “tree”
!   Use Tlist /T or Process Explorer

38

System Startup Processes
!   First two processes aren’t real processes

!   not running a user mode .EXE
!   no user-mode address space
!   different utilities report them with different names
!   data structures for these processes (and their initial threads) are “pre-

created” in NtosKrnl.Exe and loaded along with the code

(Idle) Process id 0
 Part of the loaded system image
 Home for idle thread(s) (not a real process nor real
 threads)
 Called “System Process” in many displays

(System) Process id 2 (8 in Windows 2000; 4 in XP)
 Part of the loaded system image
 Home for kernel-defined threads (not a real process)
 Thread 0 (routine name Phase1 Initialization)
 launches the first “real” process, running smss.exe...
 ...and then becomes the zero page thread

39

System Startup Processes (cont.)
smss.exe Session Manager

The first “created” process
Takes parameters from \HKEY_LOCAL_MACHINE\System
\CurrentControlSet
 \Control\Session Manager
Launches required subsystems (csrss) and then winlogon

csrss.exe Windows subsystem
winlogon.exe Logon process: Launches services.exe & lsass.exe; presents first login

prompt
When someone logs in, launches apps in \Software\Microsoft\Windows
NT\WinLogon\Userinit

services.exe Service Controller; also, home for many Windows-supplied services
Starts processes for services not part of services.exe (driven by \Registry
\Machine\System\CurrentControlSet\Services)

lsass.exe Local Security Authentication Server
userinit.exe Started after logon; starts Explorer.exe (see \Software\Microsoft\Windows

NT\CurrentVersion\WinLogon\Shell) and exits (hence Explorer appears to
be an orphan)

explorer.exe and its children are the creators of all interactive apps

40

Where are Services Defined?
!   Defined in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
!   one key per installed service

!  Mandatory information kept on each service:
!   Type of service (Windows, Driver, ...)
!   Imagename of service .EXE

!   Note: some .EXEs contain more than one service
!   Start type (automatic, manual, or disabled)

!   Optional information:
!   Display Name
!   New in W2K: Description
!   Dependencies
!   Account & password to run under

!   Can store application-specific configuration parameters
!   “Parameters” subkey under service key

41

Service
Controller/
Manager

(Services.Exe)

Life of a Service

!   Install time
!   Setup application tells Service

Controller about the service

!   System boot/initialization
!   SCM reads registry, starts

services as directed

!   Management/maintenance
!   Control panel can start and stop

services and change startup
parameters

Setup
Application

CreateService
Registry

Service
Processes

Control
Panel

42

Process Explorer: Service
Information

!   Process Explorer identifies Service Processes
!   Click on Options->Highlight Services

43

Service Processes

!  A process created & managed by the Service
Control Manager (Services.exe)
!   Similar in concept to Unix daemon processes

!   Typically configured to start at boot time (if started
while logged on, survive logoff)

!   Typically do not interact with the desktop

!  Note: Prior to Windows 2000 this was the only
way to start a process on a remote machine
!   Now you can do it with WMI (Win Management

Instrumentation)

44

Service Control Tools

!   Net start/stop – local system only
!   Sc.exe (built in to XP/2003; also in Win2000 Resource Kit)

!   Command line interface to all service control/configuration functions
!   Works on local or remote systems

!   Psservice (Sysinternals) – similar to SC
!   Other tools in Resource Kit

!   Instsrv.exe – install/remove services (command line)
!   Srvinstw.exe – install/remove services (GUI)
!   Why are service creation tools included in Reskit?

!   Because Reskit comes with several services that are not installed as
services when you install the Reskit

45

Services Infrastructure
!   Windows 2000 introduced generic Svchost.exe

!   Groups services into fewer processes
!   Improves system startup time
!   Conserves system virtual memory

!   Not user-configurable as to which services go in which processes
!   3rd parties cannot add services to Svchost.exe processes

!   Windows XP/2003 have more Svchost processes due to two new less
privileged accounts for built-in services
!   LOCAL SERVICE, NETWORK SERVICE
!   Less rights than SYSTEM account

!   Reduces possibility of damage if system compromised

!   On XP/2003, four Svchost processes (at least):
!   SYSTEM
!   SYSTEM (2nd instance – for RPC)
!   LOCAL SERVICE
!   NETWORK SERVICE

Lab: Which version of
NTOSKRNL?
!   Programs/ Administrative Tools/Event Viewer

!   Select System Log

!   Double-click an Event Log entry with an Event ID of 6009

!   Check if it’s booted with PAE version(win2000 or winXp):
!   Registry entry: HKLM\SYSTEM\CurrentControlSet\Control

\SystemStartOptions

! Uniprocess or multiprocessor:
!   right-click on Ntoskrnl.exe in your \Windows\System32 folder,

and select Properties

46

47

Lab: Task Manager (Set Priority, etc.)

!   Processes tab: List of
processes

“Running” means
waiting for window
messages

!   Applications tab: List of top
level visible windows

Right-click on a
window and select
“Go to process”

Lab: Identifying System Threads in the
System Process (Process Explorer)
 !   You can see that the threads inside the System process must be

kernel-mode system threads because the start address for each
thread is greater than the start address of system space (which by
default begins at 0x80000000, unless the system was booted with
the /3GB Boot.ini switch).

!   Also, if you look at the CPU time for these threads, you’ll see that
those that have accumulated any CPU time have run only in kernel
mode. To find out which driver created the system thread, look up
the start address of the thread (which you can display with
Pviewer.exe) and look for the driver whose base address is closest
to (but before) the start address of the thread. Both the Pstat utility
(at the end of its output) as well as the !drivers kernel debugger
command list the base address of each loaded device driver.

48

Lab: Determining If You Are
Running the Checked(debug) Build
 !   There is no built-in tool.
!   However, this information is available through the “Debug” property

of the Windows Management Instrumentation (WMI)
Win32_OperatingSystem class. (wbemtest.exe)

!   The following sample Visual Basic script displays this property:

49

strComputer= "."
Set objWMIService = GetObject("winmgmts:" &
"{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
Set colOperatingSystems = objWMIService.ExecQuery ("SELECT * FROM
Win32_OperatingSystem")
For Each objOperatingSystem in colOperatingSystems
 wscript.Echo "Caption: " & objOperatingSystem.Caption
 wscript.Echo "Debug: " & objOperatingSystem.Debug
 wscript.Echo "Version: " & objOperatingSystem.Version
 NEXT
	

50

Lab: Mapping Services to Service
Processes

! Tlist /S (Debugging Tools) or Tasklist /svc (XP/2003) list
internal name of services inside service processes

!   Process Explorer shows more: external display name
and description

51

Source Code References
!   Windows Research Kernel sources

!   Processes

!   Threads

!   LPC

!   Virtual memory

!   Scheduler

!   Object manager

!   I/O manager

!   Synchronization

!   Worker threads

!   Kernel heap manager

!   Core components of Ntoskrnl.exe

Source Code References (Cont’d)

!   Does not include the code for these modules:
!   Windowing system driver (Csrss.exe, Win32k.sys)

!   Windows API DLLs (Kernel32, User32, Gdi32, etc)

!   Core system processes (Smss, Winlogon, Services, Lsass)

52

53

Further Reading

!  Mark E. Russinovich , et al., Windows Internals,
5th Edition, Microsoft Press, 2009.

!  Chapter 2 - System Architecture
!   Operating System Model (from pp. 34)

!   Architecture Overview (from pp. 35)

!   Key System Components (from pp. 49)

