
Due: 2020/4/5

Homework 5 - Extend
∗ If there is any problem, please contact TA.

Name:_________ Student ID:_________ Email: ____________

Problem 1. (30 points) Consider the following program which is written in C syntax.

int x = 1;

void f1() {
int x = 2;
f2();
printf(x)
}

void f2() {
int x = 3;
printf(x)
}

int main() {
f1();
printf(x)
}

(a) What will be printed after running main() when it uses static scoping? dynamic scoping?

Solution.
static: 3 2 1
dynamic: 3 2 1

Problem 2. (40 points) Extend tuples to records, and write the (a) syntax and (b) semantic
rules for records. Example usage:

• Elements are indexed by labels:

– {y = 10}
– {id = 1, salary = 50000, active = true}

• The order of the record fields is insignificant:

– {y = 10, x = 5} is the same as {x = 5, y = 10}

1

• To access fields of a record:

– a.id

– b.salary

Solution.
(a) Syntax: (x and xi are names)

e ::= ... | {x1 = e1, . . . , xn = en} | e.x
v ::= ... | {x1 = v1, . . . , xn = vn}
t ::= ... | {(x1, t1), . . . , (xn, tn)}

(b) Semantics:
ei → e′i

{x1 = v1, . . . , xi−1 = vi−1, xi = ei, . . . } → {x1 = v1, . . . , xi−1 = vi−1, xi = e′i, . . . }
(E-record1)

e → e′

e.x → e′.x (E-label1)
{x1 = v1, . . . , xn = vn}.xi → vi (E-label2)

Γ ⊢ ei : ti
Γ ⊢ {x1 = e1, . . . , xn = en} : {(x1, t1), . . . , (xn, tn)} (T-record)

Γ ⊢ e : {(x1, t1), . . . , (xn, tn)}
Γ ⊢ e.xi : ti (T-label)

Problem 3. (30 points) Another way of defining let as derived form might be to desugar
it by ”executing” it immediately-i.e., to regard Let x=t1 in t2 as an abbreviation for the
substituted body t2[t1/x]. Is this a good idea ?

Solution. No. It changes the order of evaluation: the rules E-LETV and E-LET specify
a call-by-value order, where t1 in let x = t1 in t2 must be reduced to a value before we are
allowed to substitute it for x and begin working on t2.
For another thing, although the validity of the typing rule is preserved by this translation—
this follows directly from the substitution lemma—the property of ill-typedness of terms is
not preserved. For example, the ill-typed term:

let x = unit(unit) in unit

is translated to the well-typed term unit: since x does not appear in the body unit, the
ill-typed subterm unit(unit) simply disappears.

2

59929
高亮

59929
高亮

59929
高亮

59929
高亮

59929
高亮

59929
铅笔

