Tutorial

Bran & Yvonne

v

Homework, quiz

gl =EII =N =N =N =N = =S -

Coding Problems
in Homework

Java

e

gl =EII =N =N =N =N = =S -

Install

https://www.oracle.com/java/technologies/downloads/ (compiler,
interpreter and other tools)

IDE

Vscode (simple, lightweight)

Intelli) (powerful)

Online coding

https://www.tutorialspoint.com/compile java online.php

https://www.oracle.com/java/technologies/downloads/
https://www.tutorialspoint.com/compile_java_online.php

Hello World

#%, Execute | J» Share Source File = STDIN
public class HelloWorld{

public static void main(5tring [Jargs){

System.out.println{"Hello World™);

ih Result

$ijavac HelloWorld. java

EEjava@lEH]‘u‘[—J{m@{elluwuﬂd

Hello World

v

v

» HelloWorld.java

“javac” is the compiler, get HelloWorld.class

“java” is the interpreter, run HelloWorld.class

\ Memory limit, not necessary

Java vs. C++

#%, Execute | $» Share Source File STDIN
public class HelloWorld{

public static void main(5tring []args){

System.out.println{"Hello World");

¥

In Java, every variable, constant, and function (including main) must be inside some class.

1.There is no final semi-colon at the end of the class definition.

2.Function mainis a member of class “HelloWorld” (main is the function where the

whole program starts, which is similar to C++)

3.main must: (1) be inside some class. (2) Be public static void.

(3) Have one argument: an array of String. This array contains the command-line

arguments. You can use args.length to determine the number of arguments (the

number of Strings in the array).

#%, Execute | $» Share Source File STDIN
public class HelloWorld{

System.out.printin(...)

pulli static void main{ﬁtring [largs){

tem.out. prlntln{ Hello World™):

System.out.print(...)

public class HelloWorld{ uh Result

—

atic void main{String [Jargs){
m.out.print(“hello "); $java —Amx128M —Xms16M HelloWorld
em.out. prlntln{_-l,

] hello 16
em.out.println(s. .2}, 1.1

$javac HelloWorld. java

+ operator

The + operator can be useful when printing.

It is overloaded to work on Strings as follows:

If either operand is a String, it
1.converts the other operand to a String (if necessary)

2.creates a new String by concatenating both operands

public class HelloWorld{ i Result

public static void main(5tring [Jargs){ $javac HelloWorld. java

int x = 28, y = 18;)
; Y e . $iava —Xmx128M —Xm=s16M HelloWorld

. 20
w10

System.out.println{™x: " + x +

Test 1 public class HelloWorld{

static void main(5tring [Jargs){
= 28, y = 18;
out.println(x + y)};
out.println(x + vy + "!7);
.out.println(printir
.out.println{ " printin

|
(i

Ly
I_;-

)y

(i

I__.__

L™

LA I.|-'-| A LA
~r

Mm M M Mm

L™
T

I__.__

ih Result

$javac HelloWorld. java

$java Xmx128M —Xm=16M HelloWorld

a0
40!
printing: 2010
printing: 200

C++ Files vs Java Files

C++

Source Files: .h and .cc (or .cpp or .C)

created by: vou (the programmer)
contain : C++ source code
two kinds :
.h (header files)
contain class definitions and function specifications
(just headers — no bodies)
must be included by every file that uses the class / calls the
functions
.cc contain implementations of class member functions and “free” functions,
including the main function

C++

Object Files: .0

created by: the compiler, when called w/ —c flag; for example:
g++ —c main. cc
compiles main.cc creating main. o
contain : object code (not executable)
source code is compiled, but not linked/loaded

C++

Executable Files

created by: the compiler (no —c¢ flag)
contain : executable code
Code 1s compiled if necessary, then linked and loaded.
These are the files that vou can actually run, just by typing
the name of the file.
name : default = a.out
any other name is possible via the —o flag: for example:
g++ main. o —o test
creates an executable named “test”

Java source Files: java

created by : vou (the programmer)
contain : Java source code (one or more classes per file)
restrictions :

(1) each source file can contain at most one public class
(2) if there is a public class, then the class name and file name must match

Examples
If a source file contains the following:
public class Test { ... }
class Foo { ... }
class Bar {... }

then it must be in a file named Test. java

If a source file contains the following:
class Test { ... }
class Foo { ... }
class Bar {... }

then it can be in any 7. java” file

Java
Bytecode Files: .class

created by: the Java compiler

contain . Java bytecodes, ready to be “executed” — really interpreted — by
the Java interpreter
names : for each class in a source file (both public and non—public classes),

the compiler creates one ”.class” file, where the file name is the
same as the class name

Example
[f a source file contains the following:
public class Test { ... }
class Foo { ... }
class Bar {... }

then after compiling you will have three files:
Test. class
Foo. class
Bar. class

Test 2

Write a complete Java program that uses a loop to sum the numbers

from 1 to 10 and prints the result like this:

The sum i1s: xxXx

Note: Use variable declarations, and a foror while loop with the same
syntax as in C++.

TeSt 2 public class HelloWorld{

public static void main{String [Jargs){

1 <= 18; i++) {

1h Result

$iavac HelloWorld. java
$ijava Xmx128M —Xm=16M HelloWorld

The =um 1=z: &b

Java Types

In Java, there are two "categories" of types: primitive types and reference types:

Primitive Types Reference Types
boolean same as bool in C++ arrays
char holds one character classes
byte 8-bit signed integer
short 16-bit signed integer
Int 32-bit signed integer
long 64-bit signed integer
float floating-point number
double double precision floating-point number

Notes:

1. no struct, union, enum, unsigned, typedef
2. arrays and classes are really pointers!!

C++ Arrays vs Java Arrays

In C++, when you declare an array, storage for the array is allocated. In Java, when you
declare an array, you are really only declaring a pointer to an array; storage for the array

itself is not allocated until you use "new":

C++

int A[10]: // A is an array of length 10

AlO] = 5: // set the lst element of arrav A
JAVA
int [] A // A is a pointer to an array
A = new int [10]: // now A points to an array of length 10

AlO] = 5: // set the lst element of the arrayv pointed to by A

C++ Arrays vs Java Arrays

In both C++ and Java you can initialize an array using values in curly braces. Here's example

Java code:

int [] A= {1, 222, 0}: // A points to an array of length 3
// containing the values 1, 222, and 0

C++ Arrays vs Java Arrays

In Java, a default initial value is assigned to each element of a newly allocated array if no

initial value is specified. The default value depends on the type of the array element:

Type Value
boolean false
char "\u0000'

byte, int, short, int, long, float, double||0

any pointer null

C++ Arrays vs Java Arrays

In Java, an out-of-bounds array index always causes a runtime error.

In Java, you can determine the current length of an array (at runtime)

using ".length":

int [] A = new int[10];
A. length ... // this expression evaluates to 10
A = new int[20]:
A. length ... // now it evaluates to 20

Test 3

Write a Java function called NonZeros, using the header given below. NonZeros should
create and return an array of integers containing all of the non-zero values in its

parameter A, in the same order that they occur in A.

public static int[] NonZeros(int [] A)

Test NonZeros function in main function. Print the passed arrays and returned arrays as

follow:

passing L0, 1,2, 3,2] got back [1, 2,3, 2]

h Result

Test 3

int nonz = B;

for (int k=8; k<A.length; k++)} if (A[k] != @) nonz++; $javac HelloWorld. java

$java —Xmx128M —-Xm=s16M HelloWorld

int[] result = new int[nonz]; passing [0 1 2 3 2] got back [1 2 3 2]
int j - o;
for (int k=B; k<A.
if (A[k] !- @)
result[j] =
J++;

length; k++) {
i

Alk]:

JL
JL
return result;

}

public static void PrintArray{ int[] A) {
em.out _print(“[");
(int k=9; k<A.length; k++) {
System.out.print{A[k]);
if (k < (A.length - 1)) System.out.print(” "};

System.out _print(”]");

}

public static void main{S5tring[] args) {
int[] A = {0,1,2,3,2};
System.out _print(“passing
PrintArray(A);
A = NonZeros(A);
System.out.print(” got back
PrintArray(A);
System.out.println();

Arraycopy

In Java, you can copy an array using the arraycopy function. Like the output function printin,

arraycopy is provided in java.lang.System, so you must use the name System.arraycopy. The

function has five parameters:

src. the source array (the array from which to copy)
srcPos. the starting position in the source array

dst. the destination array (the array into which to copy)
dstPos. the starting position in the destination array
count. how many values to copy

Arraycopy

Here's an example:

int [] A, B;
A = new int[10];
— code to put values into A —
B = new int[b];
System. arraycopy (A, 0, B, 0, 5) // copies first b values from A to B
System. arraycopy (A, 9, B, 4, 1) // copies last value from A into
// last element of B

Arraycopy

The destination array must already exist and it must be large enough to hold all copied

values.

The source array must have enough values to copy (i.e., the length of the source array must
be at least srcPos+count).

For arrays of primitive types, the types of the source and destination arrays must be the
same (so for example, you cannot copy from an array of int to an array of double or vice

versa).

For arrays of non-primitive types, System.arraycopy(A, j, B, k, n) is OK if the assignment B[0]
= A[0] would be OK.

Arraycopy

The arraycopy function also works when the source and destination arrays are the same array;

so for example, you can use it to "shift" the values in an array:

public class HelloWorld{
public static void main(5tring [Jargs){
int []J] A={e, 1, 2, 2, 4};
System.arraycopy(A, 8, A, 1, 4);
PrintArray(A); $java —Xmx128M —Xm=s16M HelloWorld
} 001 23]

1.h Result

$iavac HelloWorld. java

public static void PrintArray(int[] A) {

System.out.print{"[");

for (int k=08; k<A.length; k++) {
System.out.print(A[k]);
if (k < (A.length - 1)) System.out.print{(” ");

Multidimensional

As in C++, Java arrays can be mul/tidimensional. For example, a 2-dimensional array is an
array of arrays. Two-dimensional arrays need not be rectangular. Each row can be a different

length. Here's an example:

int [][] A: // A is a two—dimensional array

A = new int[b][]; // A now has 5 rows, but no columns vet
A[O] = new int [1]: // A’s first row has 1 column

A[l] = new int [2]: // A’ s second row has 2 columns

A[2] = new int [3]: // A’ s third row has 3 columns

Al3] = new int |5]: / A" s fourth row has 5 columns

Ald]l = new int |[5H]: / As fifth row also has 5 columns

Test 4

Draw the value of “A”. If run error, just write “error”. Here are two
examples:

Int [] A; - A

Int [] A = new Int [4]; > A -~ 0
0
0

Test 4

int [][] A = new Int[4][3]; - A

Int [][] A = new Int[4][]; - A
A[1] = new Int[4];
A[3] = new Int[2];

Test 4

int [] A = new int[4] .
int[] B ={0,1,2,3,4,5,6,7,8,9};
System.arraycopy(B,2,A,0,4);
Int [] A = new Int[4]; = error

int [] B = {2,3,4};
System.arraycopy(B,0,A,0,4);

Test 4

Int [] A = new Int[4];
int[] B ={0,1,2,3,4,5,6,7,8,9};
System.arraycopy(B,8,A,0,4);

error

int[] A={1,1,1,1};
int[] B ={2,2,2};
System.arraycopy(A,0,B,1,2);
System.arraycopy(B,0,A,0,3);

C++ Classes vs Java Classes

In C++, when you declare a variable whose type is a class, storage is
allocated for an object of that class, and the class's constructor function

is called to initialize that instance of the class.

In Java, you are really declaring a pointer to a class object; no storage is

allocated for the class object, and no constructor function is called until

you use "new".

Assume that you have defined a List class as follows:

class List {
public void AddToEnd(...)
1

.
:
f
C++
List L: // L is a List: the List constructor function is called to
// initialize L.
List *p: // p 1s a pointer to a List:

// no list object exists vet, no constructor function has
// been called
p = new List: // now storage for a List has been allocated
// and the constructor function has bheen called
L.AddToEnd(...) // call L’s AddToEnd function
p—>AddToEnd(...) // call the AddToEnd function of the List pointed to bv p

Assume that you have defined a List class as follows:

class List {
public void AddToEnd(...)
1

{ ...}

o

JAVA
List L; // L 1s a pointer to a List: no List object exists vet
L = new List(): // now storage for a List has been allocated
// and the constructor function has bheen called;
// note that vou must use parentheses even when yvou are not
// passing any arguments to the constructor function
L. AddToEnd(...) // no —> operator in Java — Jjust use .

Aliasing Problems in Java

The fact that arrays and classes are really pointers in Java can

lead to some problems:

conceptual picture

Java code

(all emptv boxes contain zeros)

+——+

| -|——> |

+——+

A:

int [] A = new int[3],

_I__

+———p———+

+——+

B = new int[2];

e+

+——t

| ~—> | 5 |

A:

Al0] = 5:

seksk NOTE sk
' the value of A[0]

|~ | 2 |

+——+

A:

Bl0O] = 2;

void f(int [] A)

{
A[O] = 10: // change an element of parameter A
A = null: // change A itself
}
void g()
{
int [] B = new int [3]:
B[0] = 5;
f(B):

%% B 1s not null here, because B itself was passed by value
*®k*k however, B[0] is now 10, because function f changed the first element

dkk of the arrayv

Aliasing Problems in Java

Solution: arraycopy or class’s clone operation

Test 5

1. int A[5]:
. 2. int [] A, B:
For each of the following B -0
Java code fragments, say 3. int [] A= (L2 3
whether it causes a é“i EJ B:
compile-time error, a run- 4 ot 0] A
time error, or no error. If ALO] = 0;
there is an error, explain 5. int [] A = new int[20];
int [] B = new int[10]:

VVh)L A =B:

Al15] = 0;

Test 5

int A[5]:
Compile—time error: Can t specify arrav dimension in a declaration.
This is C/C++ syntax.

int [] A, B:

B =0;
Compile—time error: Incompatible type for =. Can t convert int to
int[]. B is an array reference, not an int, and 0 is not equiv to
null as in C/C++.

int [] A = {1,2,3};
int [] B;
B = A;

No errors.

Test 5

int [] A:

AlO] = 0;
Compile—time error: Variable A mav not have been initialized.
The array was never allocated.

int [] A = new int[20]:
int [J] B = new int[10]:
A = B;
A[15] = 0:
Runtime error: ArravIndexOutOfBoundsException: 15
A now references the same arrav as B, which only has length 10

Type Conversion

Type conversion

Java is much more limited than C++ in the type conversions that are allowed. Here

we discuss conversions among primitive types. Conversions among class objects

will be discussed later.

Booleans cannot be converted to other types.

For the other primitive types (char, byte, short, int, long, float, and double), there are

two kinds of conversion: /implicit and explicit.

Implicit conversion

An implicit conversion means that a value of one type is changed to a value of another

type without any special directive from the programmer.

A char can be implicitly converted to an int, a long, a float, or a double.

For example, the following will compile without error:

»

char ¢ = "a’;
int k = ¢;
long x = c;
float v = ¢;
double d = ¢;

Implicit conversion

For the other (numeric) primitive types, the basic rule is that implicit conversions can be
done from one type to another if the range of values of the first type is a subset of the

range of values of the second type.

For example,
a byte can be converted to a short, int, long or float;

a short can be converted to an int, long, float, or double, etc.

Explicit conversion

Explicit conversions are done via casting. the name of the type to which you

want a value converted is given, in parentheses, in front of the value.

double d = 5.6;
int k = (int)d:
short s = (short) (d * 2.0):

Casting can be used to convert among any of the primitive types except boolean.

casting can lose information; for example, floating-point values are truncated when

they are cast to integers (e.g., the value of k in the code fragment given above is 5)

casting among integer types can produce wildly different values (because upper bits,

possibly including the sign bit, are lost)

Test 6

Fill in the table below as follows:
« If the declaration will compile as is, put a check in the second column, and write the

value of the declared variable in the last column.

* If the declaration will not compile as is, but can be made to compile by adding an
explicit cast, rewrite the declaration with the correct explicit cast in the third column,

and write the value of the declared variable in the last column.

« If the declaration will not compile, and cannot be fixed by adding an explicit cast, put

a check in the fourth column.

Test 6

Declaration

Correct

Rewrite with cast

Never correct

Variable's value

double d = 5;

X

5.0

intk = 5.6;

long x = 5.4;

short n = 99999;

int b = true;

char ¢ = 97;

shorts = -10.0;

Test 6

Declaration Correct Rewrite with cast Never correct Variable s value
double d = 5; X 5.0

int kK = 5.6; int kK = (int) 5.6 5

long x = 5.4: long x = (long) 5.4 5

short n = 99999: short n = (short) 99999 -31073

int b = true: X

char ¢ = 97; X a’

short s = —-10.0: short s = (short) -10.0 -10

Reference

https://pages.cs.wisc.edu/~hasti/cs368/JavaTutorial/

Final Project

Goal

In this project, you are required to implement an interpreter for the
programming language SimPL(pronounced simple). SimPL is a
simplified dialect of ML, which can be used for both functional and

imperative programming.

Principles

Syntax, Names, Types, Semantics

let add = fn x => fn y => x + ¥y
in add 1 2

end
(x ==> 3 %)

Thansk

