Solution 7 - IMP

x If there is any problem, please contact TA.
Name: Student 1D: Email:

Problem 1. (30 points) Wouldn’t it be simpler just to require the programmer to annotate
error with its intended type in each context where it is used ? Why 7

Solution. Annotating error with its intended type would break the type preservation prop-
erty. For example, the well-typed term

(Az : Nat.x) ((Ay : Bool.5) (error as Bool));

(where error as T is the type-annotated syntax for exceptions) would evaluate in one step
to an ill-typed term:
(Ax : Nat.x) (error as Bool);

As the evaluation rules propagate an error from the point where it occurs up to the top-level
of a program, we may view it as having different types. The flexibility in the T-ERROR rule
permits us to do this. Il

Problem 2. (35 points) In lecture Going Imperative, the language is extended with while
loop. In this problem, you are required to define the syntax and the semantics (including
evaluation rules and typing rules) of while loop with break and continue

Solution.
(a) Syntax: (z and x; are names)
e = ... | while e; do ey | break | continue

(Because we define the type of break and continue as unit, here we don’t need to extend
values and types)

(b) Semantics:

 Evaluation Rules (We introduce < eq, ey >)

E-whil
(M, while ey do e3) — (M,if ey then < e2,while e; do ey > else ()) (E-while)

(M7 61) — (M/vell)
(M, < er,eg >) — (M, < e}, es >)

(E-whilePair)

E-whilePairBreak
(M, < break, e >) — (M, ()) (E-whilePairBreak)

E-whilePairConti
(M, < continue, e >) - (]\47 e) ( whileFairCon lnue)
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E-break
(M, < break; er, 3 >) — (M, ()) (E-breakSeq)

E-continueSe
(M, < continue; ey, ea >) — (M, e2) ( W

E-whilePairUnit
OL< 0,2 >) = (ea) ( )

« Typing Rules (We don’t need to define typing rules for < e, e5 >)

YoI'F ey :bool YT F ey :unit
;' while ey do ey : unit

(T-while)

YT F break : unit (T-break)

T-conti
;' continue : unit (T-continue)

It’s really hard to implement break and continue without introducing new statements
like < ey, e9 >

O]

Problem 3. (35 points)

Proof Preservation Theorem: If 3;T'F e : ¢, 5,1 - M, and (M,e) — (M’',¢€'), then for
some ¥ O N YT F e t, X F M. (¥ O X means ¥ agrees with ¥ on all the old
locations.)

Hint: You don’t need to write “need to prove...” in this problem since in all cases it’s quite
similar. Also, you can use directly the following two lemma whose proofs are quite easy:

Lemma 1. Substitution: If ;0 x : t1 F ety and 3,0 F v @ ty, then ST F efv/x] : ty
(similar to the proof of previous substitution lemma)

Lemma 2. If¥;T'Fe:t and X' O X, then X;T' F e : t (easy induction)



Proof.

T
S TFa:D(z) (T = Var)
Yil'w:tiFe:ty
T — Ab
Z;Fl—)\x:tl.e:tlétg ( 8)
Z;Fl—el:t1—>t2 E;FFEQItl
T—A
STk e ety (T = App)
T — Unit
;U F () : unit ( Unit)
()=t
T—1L
ST Hi:tref (T’ = Loc)
oT'ke:t
Y T—
YiI'Frefe:tref ( hef)
Y;I'Fe:tref
’ T—-D
X:I'Hle:t ( chef)
YikFep:t YilkFeg:t
’ citref % © (T — Assign)

Yk epi=ey:unit

(Here I don’t list Boolean an Condition rules since they are not in the slides. Actually we
should also proof these rules and the proof of these rules are similar.)
By induction on the derivation of ;' e : ¢

1. case

S Fa:T(2)
Can’t happen (There are no evaluations rules).
Yol tiFe:ty
E;FI—Am:tl.e:tl — 19
Can’t happen.
Yi'kFep ity =ty ;0 Feg:ty
Yo'k ep ety

2. case

3. case

<M761) — (M/aell)
(M, (€1 €2)) — (M, €} €2)
1) X:T ke ty = ta,(M,er) — (M, €)) (by assumption

1
2) DU YT He) ity = 6, X ;T M (by 1LH.
1

(3) ;T F ey : t1 (by assumption)
4) ¥ T'Fey:ty (by (2), (3) and Lemma 2
(
(5) X' F €] e ity (by (2), (4) and T-App)

e Subcase E-Appl:




. case

. case

. case

(M, e2) = (M, )
(M, (01 €2)) = (M', v} €3)
1) ;0 F eg:tg, (M, e3) — (M, €l) (by assumption
2

(2) B DX, ¥ T'F el te,X;T'F M (by LH.)

3) X; '+ vy it — ty (by assumption
( y
(
(

e Subcase E-App2:

4) ¥ T'F vyt — te (by (2), (3) and Lemma 2)
5) X' wy et ty (by (2), (4) and T-App)
e Subcase E-AppAbs:

(M, \x : t1.e3 vo) — (M, e3[ve/x])
(1) ;T F Az : ty.e3 : t; — to (by assumption)

(2) X;T.x s t1 - e3 : ty (by inversion of T-Abs)

(3) 3;T F vy : £ (by assumption)

(4) Z ['Fes[va/z] : ty (by (2), (3) and Lemma 1)
(5) ¥' = ¥ satisfies.

;TR () - unit
Can’t happen.
()=t
Y:I'Fl:tref
Can’t happen.
“iI'kFe:t
Yo'k refe:tref

[ ¢ dom(M)
(M,ref v) = (M,l — v),l)
(1) Let &' =%, ¢
(2) ¥'(1) =t (by (1))
(3)X;THl:tref (by (2))
(4)2F|—M(byIH)
(5) M
(6)
(7)

¢ Subcase E-RefV:

1
2

5) M'(l) =

6) 3;T'F v :t (by assumption and ¥’ D X)

7) X5 T = M (by (2), (4), (5), (6) and definition of ;1" - M)
(M,e) — (M',¢€)

(M,ref e) — (M',ref €)

(1) 5T Fe:t,(M,e) — (M e) (by assumption)

(2) B ¥ THe ¢, %;TF M (by (1) and L.H.)

(3) X;T'Fref € :tref (by (2) and T-Ref)

¢ Subcase E-Ref:




7. case

8. case

Y;I'Fe:tref

X;'Hle:t
Subcase E-DeRefLoc:

(M) — (M, M(1))
(1) Let M(l) =vand ¥’ =X
Now we only need to prove ;' v : ¢
(2) ;T F M (by LH.)
(3) ;T ! : t (by assumption)
(4) S(1) =t (by (3))
(5) ;' F ot (by (1), (2), (4) and the definition of ¥;I" - M)
(M,e) — (M',¢)
Subcase E-DeRef: ABESUAR
(1) ;T Fe:tref and (M,e) — (M’ ¢') (by assumption)
(2) I D8 ¥ T'Fetref and X' M’ (by (1) and I.H.)
(3) ;T Hle' - t (by (2) and T-DeRef)

Yok ep:tref S;TFeg:t

YN eq =69 unat

(Ma 61) — (M/, 6/1)
(M, ey :=e3) = (M' €| :=ey)
(1) ;T ke stref, 8;T Fey:tand (M,e;) — (M, €)) (by assumption)
(2) B D8, ¥ T'ke:tref and ¥+ M (by (1) and I.H.)
(3) X'k €} := ey : unit (by (1), (2) and T-Assign)
(M, ez) — (M’ e5)
(M,vy == e3) = (M’ vy := ¢€})
(1) ;T kv tref, 5;T Feg:tand (M, ey) — (M, €}) (by assumption)
(2) B DX, ¥ T'Feg:tand X'+ M (by (1) and L.H.)
(3) ¥;T'F vy == €} - unit (by (1), (2) and T-Assign)
Subcase E-Assign:

Subcase E-Assignl:

Subcase E-Assign2:

(M,l:=v) = (M[l—v]),()
(1) Let ¥ =%,1:t

(2) ;T F () : unit (by T-unit)

(3) ST F M (by LIL)

(5) ¥'(I) =t and M'(l) =

(6) X, T'Fuv:t (by assumptlon and Lemma 2)
(7) ;' M’ (by definition of ;" = M)



