
Homework 10 - Inference2
∗ If there is any problem, please contact TA.

Name: Student ID: Email:

Problem 1. Prove the Lemma: If (S, q)→ (S ′, q′) then:

� T is complete for (S, q) iff T is complete for (S ′, q′)

� T is principal for (S, q) iff T is principal for (S ′, q′)

Proof.

S| − {}
(S-empty)

S(a) = S(b) S| = q

S| = {a = b} ∪ q
(S-equal)

Lemma 1. If T (m) = T (n), T | = q, then T | = q[n/m]

Proof. Prove: By induction on the derivation of S| = q
case S-empty: obviously
case S-equal: If m=a or m=b else (Here we skip the proof steps)

And it’s easy to prove the inversion lemma is also right, which is
If T (m) = T (n), T | = q[n/m], then T | = q

Lemma 2. If T (a) = T (s), T <= S, then T <= [a = s] ◦ S

Proof. Prove:Suppose T = U ◦ S
Let S ′ = U ◦ [a = s] ◦ S, for all variables x
If x 6= a, T(x) = U(S(x)), S’(x)=U(S(x)) = T(x)
If x = a,

if a ∈ dom(S), S’(a)=U(S(a)) = T(a).
if a /∈ dom(S), S’(a) = U([a=s](S(a))) = U([a=s](a)) = U(s)

if s /∈ dom(S), T(a) = T(s) = U(S(s)) = U(s) = S’(a)
if s ∈ dom(S) T(a) = T(s) = U(S(s)), let S ′ = U ◦ [s = S(s)] ◦ [a = s] ◦ S,

S’(a) = U(S(s)) = T(a)
So T = S ′. Because S ′ <= [a = s] ◦ S, so T <= [a = s] ◦ S

Now back to the problem.
By induction on the derivation of unification step

� Case:
(S,{int=int}∪q)→(S,q)

(u-int)

Need to prove: T is complete for (S, {int = int} ∪ q) iff T is complete for (S, q)

1

a) →

(1) T is complete for (S, {int = int} ∪ q) (by assumption)

(2) T <= S,

T | = {int = int} ∪ q (by (1))

(3) T | = q (by (2) and inversion of S − equal)
(4) T is complete for (S, q) (by (2) and (3))

b) ←

(1) T is complete for (S, q) (by assumption)

(2) T <= S,

T | = q (by (1))

(3) T (int) = T (int)

(4) T | = {int = int} ∪ q (by (2), (3) and S − equal)
(5) T is complete for (S, {int = int} ∪ q) (by (2) and (4))

Need to prove: T is principal for (S, {int = int} ∪ q) iff T is principal for (S ′, q′)

a) →

(1) T is principal for (S, {int = int} ∪ q) (by assumption)

(2) T is complete for (S, {int = int} ∪ q) (by (1))

(3) T is complete for (S ′, q′) (by (2))

(4) For any complete solution T ′ for (S ′, q′),

T ′ is complete for (S, {int = int} ∪ q)
(5) T ′ <= T (by (1))

(6) T is principal for (S ′, q′) (by (3) and (5))

b) ←

(1) T is principal for (S ′, q′) (by assumption)

(2) T is complete for (S ′, q′) (by (1))

(3) T is complete for (S, {int = int} ∪ q) (by (2))

(4) For any complete solution T ′ for (S, {int = int} ∪ q),
T ′ is complete for (S ′, q′)

(5) T ′ <= T (by (1))

(6) T is principal for (S, {int = int} ∪ q) (by (3) and (5))

� Case:
(S,{bool=boolt}∪q)→(S,q)

(u-bool)

Similar to u-int.

2

� Case:
(S,{a=a}∪q)→(S,q)

(u-eq)

Similar to u-int.

� Case:
(S,{s11→s12=s21→s22}∪q)→(S,{s11=s21,s12=s22}∪q)(u-fun)

Need to prove: T is complete for (S, {s11 → s12 = s21 → s22} ∪ q) iff T is complete for
(S, {s11 = s21, s12 = s22} ∪ q)

a) →

(1) T is complete for (S, {s11 → s12 = s21 → s22} ∪ q) (by assumption)

(2) T <= S,

T | = {s11 → s12 = s21 → s22} ∪ q (by (1))

(3) T (s11 → s12) = T (s21 → s22)

→T (s11)→ T (s12) = T (s21)→ T (s22) (by (2) and inversion of S − equal)
(4) T (s11) = T (s21), T (s12) = T (s22) (by (3))

(5) T | = {s11 = s21, s12 = s22} ∪ q (by (4) and S − equal)
(6) T is complete for (S, {s11 = s21, s12 = s22} ∪ q) (by (2) and (5))

b) ←

(1) T is complete for (S, {s11 = s21, s12 = s22} ∪ q) (by assumption)

(2) T <= S,

T | = {s11 = s21, s12 = s22} ∪ q (by (1))

(3) T | = q

T (s11) = T (s21)

T (s12) = T (s22) (by (2) and inversion of S − equal)
(4) T (s11 → s12) = T (s11)→ T (s12)

=T (s21)→ T (s22) = T (s21 → s22) (by (3))

(5) T | = {s11 → s12 = s21 → s22} ∪ q (by (3), (4) and S − equal))
(6) T is complete for (S, {int = int} ∪ q) (by (2) and (5))

Need to prove: T is principal for (S, {s11 → s12 = s21 → s22} ∪ q) iff T is principal for
(S, {s11 = s21, s12 = s22} ∪ q)
Similar to u-int.

� Case:
(S,{a=s}∪q)→([a=s]◦S,q[s/a])(a not in FV(s))(u-var1)

Need to prove: T is complete for (S, {a = s}∪q) iff T is complete for ([a = s]◦S, q[s/a])

3

a) →

(1) T is complete for (S, {a = s} ∪ q) (by assumption)

(2) T <= S,

T | = {a = s} ∪ q (by (1))

(3) T (a) = T (s)

T | = q (by (2) and inversion of S − equal)
(4) T | = q[s/a] (by (3) and lemma1)

(5) T <= [a = s] ◦ S (by (2), (3) and lemma2)

(6) T is complete for ([a = s] ◦ S, q[s/a]) (by (4) and (5))

b) ←

(1) T is complete for ([a = s] ◦ S, q[s/a]) (by assumption)

(2) T <= [a = s] ◦ S,
T | = q[s/a] (by (1))

(3) T = U ◦ [a = s] ◦ S <= S (by (2))

(4) a /∈ dom(S), s /∈ dom(S)

(5) T (a) = T (s) (by (4))

(6) T | = q (by (2), (5) and inversion of lemma1)

(7) T | = {a = s} ∪ q (by (5), (6) and S − equal)
(7) T is complete for (S, {a = s} ∪ q) (by (3) and (6))

Need to prove: T is principal for (S, {a = s}∪q) iff T is principal for ([a = s]◦S, q[s/a])

Similar to u-int.

� Case:
(S,{s=a}∪q)→([a=s]◦S,q[s/a])(a not in FV(s))(u-var2)

Similar to u-var2

Problem 2. Given the following variant of untyped lambda calculus:

e::=

x (variables)

| c (constants)

| \x.e

| e1 e2

| e1 bop e2 (binary op)

| uop e (unary op)

| let x = e1 in e2

4

| if e1 then e2 else e3

| letfun f(x) = e1 in e2 (defining a recursive function f(x) for use in e2)

| {e1, e2}

| e.1

| e.2

| inl e

| inr e

| case e1 of inl x => e2 | inr x => e3

| nil

| e1 :: e2

| case e1 of nil => e2 | x1 :: x2 => e3

| (e)

(a) Inductively define the constraint generation judgement:

G |- u ==> e:t, q

(b) Give the detailed derivation of the following expressions and obtain the set of equa-
tions, then solve these equations to get the principle solution and give the universal
polymorphic types:

letfun sum(l) = case l of nil => 0 | x1 :: x2 => x1 + sum(x2)

in sum(12::10::0::nil)

(a) Solution.

G(x) = t

G ` x⇒ x : t, {}
(CT − V ar)

G ` c⇒ c : int, {}
(c is integer) (CT − Int)

G ` c⇒ c : bool, {}
(c is true or false) (CT −Bool)

G, x : t1 ` t⇒ t : t2, q

G, λx : t1.t : t1 → a, q ∪ {a = t2}
(CT − Abs)

5

G ` u1 ⇒ e1 : t1, q1 G ` u2 ⇒ e2 : t2, q2
G ` u1 u2 ⇒ e1 e2 : a, q1 ∪ q2 ∪ {t1 = t2 → a}

(CT − App)

G ` u1 ⇒ e1 : t1, q1 G ` u2 ⇒ e2 : t2, q2
G ` u1 bop u2 ⇒ e1 bop e2 : a, q1 ∪ q2 ∪ {t1 = t2 = a}

(CT −Bop)

G ` u⇒ e : t, q

G ` uop u⇒ uop e : a, q ∪ {t = a}
(CT − Uop)

G ` u1 ⇒ e1 : t1, q1 G ` u2 ⇒ e2 : t2, q2
G ` let x = u1 in u2 ⇒ let x = e1 in e2 : a, q1 ∪ q2 ∪ {t2 = a}

(CT − Let)

G ` u1 ⇒ e1 : t1, q1 G ` u2 ⇒ e2 : t2, q2, G ` u2 ⇒ e2 : t2, q2
G ` if u1 then u2 else u3 ⇒ if e1 then e2 else e3 : a,

(CT − If)

q1 ∪ q2 ∪ q3 ∪ {t1 = bool, t2 = t3 = a}
G, f : a→ b, x : a ` u1 ⇒ e1 : t1, q1 G, f(x) : b ` u2 ⇒ e2 : t2, q2
G ` letfun f(x) = u1 in u2 ⇒ letfun f(x : a) : b = e1 in e2 : c,

(CT − Letfun)

q1 ∪ q2 ∪ q3 ∪ {t1 = b, t2 = c}
G ` u1 ⇒ e1 : t1, q1 G ` u2 ⇒ e2 : t2, q2

G ` {u1, u2} ⇒ {e1, e2} : a ∗ b, q1 ∪ q2 ∪ {t1 = a, t2 = b}
(CT − Pair)

G ` u⇒ {e1, e2} : t1 ∗ t2, q
G ` u.1⇒ e1 : a, q ∪ {t1 = a}

(CT − Proj1)

G ` u⇒ {e1, e2} : t1 ∗ t2, q
G ` u.2⇒ e2 : a, q ∪ {t2 = a}

(CT − Proj2)

G ` u⇒ e : t, q

G ` inl[a+ b] u⇒ inl[a+ b] e : a+ b, q ∪ {t = a}
(CT − Inl)

G ` u⇒ e : t, q

G ` inr[a+ b] u⇒ inr[a+ b] e : a+ b, q ∪ {t = b}
(CT − Inr)

G ` u⇒ e : t1 + t2, q1 G, x1 : t1 ` u1 ⇒ e1 : t, q2 G, x2 : t2 ` u2 ⇒ e2 : t, q3
G ` (case u of inl x1 ⇒ u1|inr x2 ⇒ u2)⇒ (case e : a+ b of inl x1 ⇒ e1|

(CT − Case)

inr x2 ⇒ e2) : c, q1 ∪ q2 ∪ q3 ∪ {t1 = a, t2 = b, t = c}

G ` u⇒ nil[t] : t list,
(CT −Ni)

G ` u1 ⇒ e1 : t, q1 G ` u2 ⇒ e2 : t list, q2
G ` u1 :: u2 ⇒ e1 :: e2 : a, q1 ∪ q2 ∪ {a = t list}

(CT − Cons)

G ` u⇒ e : t1 list, q1 G ` u1 ⇒ e1 : t, q2 G, x1 : t,x2 : t1 list ` u2 ⇒ e2 : t, q3
G ` (case u of nil[a]⇒ u1|x1 :: x2 ⇒ u2)⇒ (case e : a list of nil[a]⇒ e1|

(CT − Casel)

x1 :: x2 ⇒ e2) : b, q1 ∪ q2 ∪ q3 ∪ {t1 = a, t = b}
G ` u⇒ e : t, q

G ` u⇒ e : unit, q ∪ {t = unit}
(CT − Unit)

6

(b) letfun sum(l) = case l of nil => 0 | x1 :: x2 => x1 + sum(x2)

in sum(12::10::0::nil)

Solution.
derivation:

(letfun sum(l : a) = case l of nil : b list => 0|x1 : c :: x2 : d => x1 + sum(x2) : d→ e

in sum(12 :: 10 :: 0 :: nil), {})
(by CT-Bop)

→(letfun sum(l : a) = case l of nil : b list => 0|x1 : c :: x2 : d => (x1 + sum(x2)) : f

in sum(12 :: 10 :: 0 :: nil), {d = a, c = e, f = c}
(by CT-Casel)

→(letfun sum(l : a) = (case l of nil list => 0|x1 :: x2 => x1 + sum(x2)) : g

in sum(12 :: 10 :: 0 :: nil) : e,

{d = a, c = e, f = c, a = b list, c = int, f = int, int = g}
(by CT-Letfun)

→((letfun sum(l : a) = (case l of nil list => 0|x1 :: x2 => x1 + sum(x2)) : g

in sum(12 :: 10 :: 0 :: nil) : e)h,

{d = a, c = e, f = c, a = b list, c = int, f = int, int = g, g = e, h = e}
(by CT-Cons)

→(letfun sum(l : a) = (case l of nil list => 0|x1 :: x2 => x1 + sum(x2)) : g

in sum(12 :: 10 :: 0 :: nil) : e,

{d = a, c = e, f = c, a = b list, c = int, f = int, int = g, g = e, h = e, d = int list}

solve constraint set:

(I, {d = a, c = e, f = c, a = b list, c = int, f = int, int = g, g = e, h = e, d = int list}
→([d = a] ◦ I, {c = e, f = c, a = b list, c = int, f = int, int = g, g = e, h = e, a = int list})
→([c = e] ◦ [d = a] ◦ I, {f = e, a = b list, e = int, f = int, int = g, g = e, h = e, a = int list})
→([f = e] ◦ [c = e] ◦ [d = a] ◦ I, {a = b list, e = int, int = g, g = e, h = e, a = int list})
→([a = b list] ◦ [f = e] ◦ [c = e] ◦ [d = a] ◦ I, {e = int, int = g, g = e, h = e, b list = int list})
→([e = int] ◦ [a = b list] ◦ [f = e] ◦ [c = e] ◦ [d = a] ◦ I, {int = g, h = int, b list = int list})
→([g = int] ◦ [e = int] ◦ [a = b list] ◦ [f = e] ◦ [c = e] ◦ [d = a] ◦ I, {h = int, b list = int list})
→([h = int] ◦ [g = int] ◦ [e = int] ◦ [a = b list] ◦ [f = e] ◦ [c = e] ◦ [d = a] ◦ I, {b list = int list})
→([b = int] ◦ [h = int] ◦ [g = int] ◦ [e = int] ◦ [a = b list] ◦ [f = e] ◦ [c = e] ◦ [d = a] ◦ I, {})

pincipal solution: S(b)=S(c)=S(e)=S(f)=S(g)=S(h)int, S(d)=S(a)int list

7

universal polymorphic types:

letfun sum(l : int list) : int = case l of nil : int list => 0|x1 : int :: x2 : int => x1 + sum(x2)

in sum(12 :: 10 :: 0 :: nil)

: int

Problem 3. Show why type checking let expression using [t-LetPoly] is exponential in time
and give an amortised linear implementation of let polymorphism instead.

Solution. Suppose the length of the input term e0 is n. e0 is a let expression like let x =
e1 in x x x x... and e1 = let x = e2 in x x x.... The length of e1 is n/2. Repeat this
step so that e1, e2, e3 have the same formulations as e0. In this case the time complexity is
O(n/2) ∗O(n/4) ∗O(n/8).... = O(nlogn), which is exponential.

We can solve let x = e1 in e2 in this way:

1. Once we get the principal type t1 of e1, we don’t bind it with x in context Γ. We find
all free variables in t1. Suppose they are x1, .., xn. Now we bind x with a special type
scheme ∀x1...xn.t1.

2. We do typecheck for e2. Each time we encounter an occurrence of x in e2, we generate
type variables y1, ...yn and use them to instantiate ∀x1...xn.t1, yielding t1[y1/x1, ..., yn/xn]

8

