Homework 10 - Inference?2

x If there is any problem, please contact TA.
Name:_________ Student ID:_________ Email:

Problem 1. Prove the Lemma: If (S,q) — (5, ¢) then:

/

e T is complete for (S, q) iff T is complete for (57, ¢')

e T is principal for (5, q) iff T is principal for (5, ¢')

Proof.
(S-empty)
SI=1{}
S(a)=50) Sl=gq
S- 1
ST={a =5} Ug (Seanal
Lemma 1. If T(m) =T (n),T| = q, then T| = q[n/m)|
Proof. Prove: By induction on the derivation of S| = ¢
case S-empty: obviously
case S-equal: If m=a or m=b else (Here we skip the proof steps)
And it’s easy to prove the inversion lemma is also right, which is
If T(m)="T(n),T| = q[n/m], then T| = ¢
[

Lemma 2. IfT(a) =T(s),T <=8, then T <=[a=s]o S

Proof. Prove:Suppose T'=U o S
Let S’ =Uo[a = s]o S, for all variables x
If © # a, T(x) = U(S(x)), S'(x)=U(S(x)) = T(x)
If v = a,
if a € dom(95), S
if a ¢ dom(95), S
if s ¢ dom(9S)
if s € dom(S) T(a) = T(s) = U(S(s)), let 8" =Uo[s=S5(s)]ofa=s]0S8,
(s)) =

3

wn
e}
~
Il
X
vs)
&
S
&
=
0
@)
“«
AN
Il
B
Il
L
o
!
w0
o}
~

Now back to the problem.
By induction on the derivation of unification step

e Case:

(S, {int=int}Uq)—(S,q) (u-int)

Need to prove: T is complete for (S, {int = int} U q) iff T is complete for (.5, q)

1

a) —

(1) T is complete for (S,{int =int} U q) (by assumption)
(2) T <=5,

T|={int =int} Uq (by (1))
3)T|=q (by (2) and inversion of S — equal)
(4) T is complete for (S,q) (by (2) and (3))

b) «+

(1) T is complete for (S, q) (by assumption)

(2) T <=5,

Tl=q (by (1))

(3) T'(int) = T'(int)

(4) T| = {int =int} Uq (by (2),(3) and S — equal)

(5) T is complete for (S, {int = int} Uq) (by (2) and (4))

Need to prove: T is principal for (S, {int = int} Uq) iff T is principal for (S’,¢’)

a) —
(1) T is principal for (S,{int =int} Uq) (by assumption)
(2) T is complete for (S, {int = int} Uq) (by (1))
(3) T is complete for (S',q) (by (2))
(4) For any complete solution T' for (S',q),
T' is complete for (S,{int = int} Uq)
6) T <=T (by (1)
(6) T is principal for (S',q") (by (3) and (5))
b) «+
(1) T is principal for (S',q) (by assumption)
(2) T is complete for (S',q) (by (1))
(3) T is complete for (S,{int =int} Uq) (by (2))
(4) For any complete solution T" for (S, {int = int} Uq),
T' is complete for (S',q')
(6) T <=T (by (1))
(6) T is principal for (S,{int = int} Uq) (by (3) and (5))

e Case:

(S,{bool=boolt}Uq)—(S,q) (U-bOOl)

Similar to u-int.

e Case: (Sﬁ{a:a}uq)_)(s’q)(u-eq)

Similar to u-int.

e Case: (u-fun)

(S,{s11—s12=521—522 }Uq)—(S,{s11=521,512=522}Uq)
Need to prove: T is complete for (S, {s11 — S12 = S21 = S22} U q) iff T is complete for
(S, {511 = 521,512 = S22} U Q)

a) —
(1) T is complete for (S,{s11 — S12 = s91 = S22} U Q) (by assumption)
(2) T <=5,
T| = {s11 — s12 = 821 — s} Uq (by (1))
(3) T(s11 — s12) = T'(521 — S22)
—T(s11) = T(s12) = T(s21) — T(s92) (by (2) and inversion of S — equal
(4) T(s11) = T(s21), T(s12) = T(522) (by (3
(5) T| = {511 = 521,512 = S22} Ugq (by (4) and S — equa
(6) T is complete for (S,{s11 = s21, S12 = S22} U Q) (by (2) and (5
b)
(1) T is complete for (S,{s11 = sa1, 512 = S22} U q) (by assumption)
(2) T <=5,
T| = {s11 = 21,512 = S22} U ¢ (by (1))
3) Tl =q
T(s11) = T(s21)
T(s12) = T(s22) (by (2) and inversion of S — equal)
(4) T(s11 = s12) = T(s11) = T'(s12)
=T(s21) = T(s22) = T(s21 = 522) (by (3))
(5) T| = {s11 — s12 = 521 = s22} Uq (by (3),(4) and S — equal))
(6) T is complete for (S,{int =int} U q) (by (2) and (5))

Need to prove: T is principal for (S, {s11 — S$12 = S21 = S22} U q) iff T is principal for
(S, {511 = 521, 8512 = S22} U Q)

Similar to u-int.

e Case:

S Ta=sT0a) S (a=so5.a57a] (a not in FV(s))(u-varl)

Need to prove: T is complete for (S, {a = s}Uq) iff T is complete for ([a = s]o.S, ¢[s/al)

a) —

(1) T is complete for (S,{a = s}Uq) (by assumption)
(2) T <=5,

T|={a=s}Ugq (by (1))
(3) T(a) = T(s)

Tl=q (by (2) and inversion of S — equal)
(4) T| = q[s/a (by (3) and lemmdl))
(5) T <=la=s]oS (by (2), (3) and lemmd2)

(6) T is complete for (Ja = s]o S, q[s/a])
b) «

(1) T is complete for ([a = s] o S, q[s/a])
(2) T <=la=s]0S,

T| = q[s/al (by (1))
B)T=Uola=s]oS <=5 (by (2)
(4) a ¢ dom(S), s ¢ dom(S)

(5) T(a) = T(s) (by (4))
6) T = (by (2), (5) and inversion of lemmd[l)
(M) T)= {a =s}Ugq (by (5),(6) and S — equal)
(7) T is complete for (S,{a = s}Uq) (by (3) and (6))
Need to prove: T is principal for (S, {a = s}Uq) iff T is principal for ([a = s]o S, ¢[s/a])
Similar to u-int.
o Case: o Sasosal/a] (a not in FV(s))(u-var2)
Similar to u-var2
[

Problem 2. Given the following variant of untyped lambda calculus:

e:
X (varlables)

| ¢ (constants)
| \x.e

| el e2

| el bop e2 (binary op)
| uwop e (unary op)

| let x = el in e2

(by (4) and (5))

(by assumption)

| if el then e2 else e3
| letfun f(x) = el in e2 (defining a recursive function f(x) for use in e2)
| {el, e2}
| e.1

| e.2

| inl e
| inr e

| case el of inl x => e2 | inr x => e3
| nil

| el :: e2

| case el of nil => e2 | x1 :: x2 => e3
|

(e)

(a) Inductively define the constraint generation judgement:
G |- u==e:t, q

(b) Give the detailed derivation of the following expressions and obtain the set of equa-
tions, then solve these equations to get the principle solution and give the universal

polymorphic types:

letfun sum(l) = case 1 of nil => 0 | x1 :: x2 => x1 + sum(x2)
in sum(12::10::0::nil)

(a) Solution.

G Fi(i) . :tt, O (CT —Var)
GFecocoint, {}(c is integer) (CT — Int)
Grem o bool, {}(c is true or false) (CT — Bool)

Gx:tiFt=1:13,q (T — Abs)

G, \x:ti.t:t; = a, gU{a=1ty}

G|_U1:>€15t1,ql GFU2:>622t2,QQ

CT - A
G|_U1U2:>€1622a, Q1UQQU{t1:t2—>CL} (pp)
Ghu =e :t Ghuy=eg:t
U1 €1:11,q1 U2 €2 1 12,2 (C’T—Bop)
G F uy bop uy = ey bop e = a, g1 Uqg U{t; =ty =a}
GFu=ce:tq
d CT-U
G uop u=uope:a, qU{t=a} (op)
Ghu =e :t Ghuy=eg:t
7{1 €1:11,q1 .Uz €2 1 12,2 (CT—Let)
Grletx=wuyinus=letx =€ iney:a, qUqgU{ts=a}
Gl—u1:>61:t1,q1 G'_U2:>622t2,q% G}_U2:>€22t2,QQ (CT—[f)

G & if uy then ug else uz3 = if ey then es else ez : a,
¢ Uge UqzU{t; = bool,ty =t3 = a}
G, f:a—=bx:abu =e :t1,q1 G, f(x):bFuy= ety qo
G letfun f(z) =uy in ug = letfun f(x:a) :b=-e; ines:c,
qUq@UqgU{ti =0t =c}
Ghu=e ti,q1 GFus=eg:ty,q

(CT — Letfun)

CT — Pai
Gt {ui,us} = {er, e} :axb, ¢y UqgU{t; =a,ty = b} (air)
GFu={e, e}ty *ta,q .
CT — Projl
Grul=e :a, qU{t; =a} (rojl)
GhFu={e, e}ty *ta,q .
T—-P
GFru2=ey:a, qU{ty =a} (© roj2)
GFru=-e:t,q
d CT — Inl
GFinlla+0bl u=inlla+ble:a+b, qU{t=a} (nl)
Gru=-e:tq
T -1
GrFinrla+bu=inrla+ble:a+b, qU{t=>b} (© nr)
Gru=e:ti+ty,qn Gox1:t1Fu = e :t,q0 G,xg:ta - us = €5 :t,q3 (CT — Case)
G I (case u of inl 1 = uslinr x5 = uy) = (case e:a+b of inl 1 = e|
inr xo =e3):c,q1 UqpUqU{t; =a,ty =b,t =c}
T — Nz
Gt u= nil[t] : t list, (© 2
Ghu =e :t,q1 GFuy=ey:tlist,q (CT — Cons)
Ghuyiug= e :ey:a, gqgUgU{a=tlist} ons
Ghru=e:tylist, s GFus = e :t,q G,xy 1t by list-uy = €91 t,q3 (CT — Casel)
— Case
Gt (case w of nilla] = uy|zy 2 x2 = ug) = (case e : a list of nilla] = e|
Ty xe =€) b,n UqgpUqgsU{t; =a,t =0}
GFru=ce:tq
T Uni
Gt u=e:unit,qU {t = unit} (© Unit)
O

(b) letfun sum(l) = case 1 of nil => 0 | x1 :: x2 => x1 + sum(x2)

in sum(12::10::0::nil)

Solution.
derivation:
(letfun sum(l:a) = case l of nil : b list =>0Jzl:c:22:d=>z14 sum(22):d — e
in sum(12 :: 10 :: 0 :: nil), {})
(by CT-Bop)
—(let fun sum(l : a) = case l of nil : b list => 0|zl :c:: 22 :d=> (x1 + sum(z2)) : f
in sum(12::10 :: 0 :: nil),{d =a,c=e, f = ¢}
(by CT-Casel)
—(let fun sum(l : a) = (case | of nil list => 0]zl :: 22 => z1 + sum(x2)) : g
in sum(12 :: 10 :: 0 :: nil) : e,
{d=a,c=e,f=c,a=>blist,c =int, f =int,int = g}
(by CT-Letfun)
—((let fun sum(l : a) = (case | of nil list => 0]zl :: 22 => x1 + sum(x2)) : g
in sum(12 :: 10 :: 0 :: nil) : e)h,
{d=a,c=e,f=c,a=0blist,c='int, f =int,int = g,g = e, h = e}
(by CT-Cons)
—(letfun sum(l : a) = (case | of nil list => 0|x1 :: 22 => x1 + sum(z2)) : g
in sum(12:: 10 :: 0 :: nil) : e,
{d=a,c=¢,f=c,a=0blist,c=int, f =int,int = g,g = e,h = e,d = int list}

solve constraint set:

(I,{d=a,c=e,f=c,a=0blist,c=1int, f =int,int = g,g = e,h =e,d = int list}

—([d=alol,{c=e,f=ca=0blist,c=int, f =int,int = g,g = e,h = e,a = int list})
—([e=¢elold=a]o,{f =e,a=0blist,e =int, f =int,int = g,g =e,h =e,a = int list})
—([f=e€]olc=¢e€]old=a]ol,{a=0blist,e =int,int = g,g = e,h = e,a = int list})
—(l[a=blistlo[f =e|ofc=¢€]o|d=alol,{e=intint =g,g =e,h=eblist =int list})
—([e=int]jola=blist|lo[f =¢elo[c=¢€]o[d=a]ol,{int =g,h=int,blist = int list})
—([g =int]o[e =int]ofa =D list]o[f =e]o[c=¢€]o[d=a]ol,{h=1int,blist =int list})
—([h =1int]o[g =int]o[e=int]o[a="0blist|jo[f =e]o|c=¢]o[d=a]ol,{blist =int list})
—([b=int]o[h=int]o[g=1int]lole=int]ola=0blist|lo[f =e|olc=¢]lo[d=a]ol,{})

pincipal solution: S(b)=S(c)=S(e)=S(f)=S(g)=S(h)int, S(d)=S(a)int list

universal polymorphic types:
let fun sum(l : int list) :int = case | of nil :int list => 0|zl :int 2 22 :int => x1 + sum(22)
in sum(12 :: 10 :: 0 :: nal)

sant
O]

Problem 3. Show why type checking let expression using [t-LetPoly] is exponential in time
and give an amortised linear implementation of let polymorphism instead.

Solution. Suppose the length of the input term eq is n. eg is a let expression like let x =
epin x x x x...and ey = let © = ey in x x x.... The length of e; is n/2. Repeat this
step so that eq, es, e3 have the same formulations as eg. In this case the time complexity is
O(n/2) * O(n/4) * O(n/8).... = O(n'°e™), which is exponential.

We can solve let x = ey in ey in this way:

1. Once we get the principal type t; of e;, we don’t bind it with z in context I'. We find
all free variables in t;. Suppose they are x1,..,z,. Now we bind x with a special type
scheme Vxi...z,.t;.

2. We do typecheck for e;. Each time we encounter an occurrence of = in e;, we generate
type variables y1, ...y, and use them to instantiate Vy...x,,.t1, yielding t1[y1 /21, ..., Yn/Tn)

]

