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The Basics

Functions

Tuples, Lists, and Pattern Matching

User-Defined Types

Modules and Compilation

A Complete Interpreter in Three Slides

Exceptions; Directed Graphs

Standard Library Modules
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An Endorsement?

A PLT student accurately summed up using OCaml:

Never have I spent
so much time
writing so little
that does so much.

I think he was complaining, but I’m not sure.
Other students have said things like

It’s hard to get it to compile, but once it compiles, it
works.
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Why OCaml?

It’s Great for Compilers
I’ve written compilers in C++, Python, Java, and OCaml,
and it’s much easier in OCaml.

Ï

It’s SuccinctÏ

Ï

Would you prefer to write 10 000 lines of code or 5 000?
Its Type System Catches Many Bugs
It catches missing cases, data structure misuse, certain
off-by-one errors, etc. Automatic garbage collection
and lack of null pointers makes it safer than Java.
Lots of Libraries
All sorts of data structures, I/O, OS interfaces, graphics,
support for compilers, etc.

Ï

Ï Lots of Support
Many websites, free online books and tutorials, code
samples, etc.
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OCaml in One Slide

Apply a function to each list element; save results in a list

“Is recursive” Passing a function

Case Pattern
splitting # let rec map f = function

[] -> []
Matching

PolymorphicLocal name
declaration

| head :: tail ->
let r = f head in
r :: map f tail;; Types inferred

List support

Recursion
val map : (’a -> ’b) -> ’a list -> ’b list

# map (function x -> x + 3) [1;5;9];;

- : int list = [4; 8; 12]Anonymous
functions
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The Basics
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Hello World in OCaml: Interpret or Compile
Create a “hello.ml” file:
print_endline "Hello World!"

Run it with the interpreter:
$ ocaml hello.ml
Hello World!

Compile a native executable and run:
$ ocamlopt -o hello hello.ml
$ ./hello
Hello World!

Use ocamlbuild (recommended):
$ ocamlbuild hello.native
$ ./hello.native
Hello World!
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Hello World in OCaml: REPL
The interactive Read-Eval-Print Loop
$ ocaml

OCaml version 4.02.3

# print_endline "Hello World!";;
Hello World!
- : unit = ()
# #use "hello.ml";;
Hello World!
- : unit = ()
# #quit;;
$

Double semicolons ;;mean “I’m done with this expression”

#quit terminates the REPL

Other directives enable tracing, modify printing, and display
types and values

Use ledit ocaml or utop instead for better line editing
(history, etc.) 8



Comments

OCaml C/C++/Java
( This is a multiline / This is a multiline* *

*

*

comment in OCaml comment in C */

( Comments / C comments*

)

(* like these /
nest

do not*
do nest

/*

(
(

OCaml has no
single-line comments

// C++/Java also has
// single-line comments

*
*

*)

*)

*)
*)
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Basic Types and Expressions
# 42 + 17;;
- : int = 59
# 42.0 +. 18.3;;
- : float = 60.3 Integers
# 42 + 60.3;; Floating-point numbers
Error: This expression has type
float but an expression was
expected of type int

Floating-point operators
must be explicit (e.g.,
+.)# 42 + int_of_float 60.3;;

- : int = 102
# true || (3 > 4) && not false;;
- : bool = true

Only explicit
conversions, promotions
(e.g., int_of_float)# "Hello " ^ "World!";;

- : string = "Hello World!"
# String.contains "Hello" ’o’;;
- : bool = true Booleans

Strings# ();;
- : unit = ()

The unit type is like
“void” in C and Java

# print_endline "Hello World!";;
Hello World!
- : unit = () 10



Standard Operators and Functions

+ - / mod Integer arithmetic*
+. -. . /. Floating-point arithmetic* **
ceil floor sqrt exp
log log10 cos sin
tan acos asin atan

Floating-point functions

Boolean operatorsnot && ||

= <>
== !=

Structual comparison (polymorphic)
Physical comparison (polymorphic)

< > <= >= Comparisons (polymorphic)
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Structural vs. Physical Equality

==, != Physical equality =, <> Structural equality
compares pointers compares values
# 1 == 3;; # 1 = 3;;
- : bool = false - : bool = false
# 1 == 1;; # 1 = 1;;
- : bool = true - : bool = true
# 1.5 == 1.5;; # 1.5 = 1.5;;
- : bool = false ( Huh? )

)

- : bool = true* *

*

# let f = 1.5 in f == f;;
- : bool = true

# let f = 1.5 in f = f;;
- : bool = true

# "a" == "a";;
- : bool = false

# "a" = "a";;
- : bool = true( Huh?*

# let a = "hello" in a == a;;
- : bool = true

Use structural equality to avoid headaches
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If-then-else

if expr then expr else expr
3

1 2

If-then-else in OCaml is an expression. The else part is
compulsory, expr1must be Boolean, and the types of expr2
and expr3must match.

# if 3 = 4 then 42 else 17;;
- : int = 17
# if "a" = "a" then 42 else 17;;
- : int = 42
# if true then 42 else "17";;
This expression has type string but is here used with type int
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Let is Not Assignment

Let can be used to bind a succession of values to a name.
This is not assignment: the value disappears in the end.

# let a = 4 in
let a = a + 2 in
let a = a
a;;

2 in*

- : int = 12

# a;;
Unbound value a

This looks like sequencing, but it is really data dependence.
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Let is Really Not Assignment
OCaml picks up the values in effect where the function (or
expression) is defined.

Global declarations are not like C’s global variables.
# let a = 5;;
val a : int = 5

# let adda x = x + a;;
val adda : int -> int = <fun>

# let a = 10;; (* a here is a diff var (copy) *)
val a : int = 10

# adda 0;;
- : int = 5 ( adda sees a = 5 )

*

* *

# let adda x = x + a;;
val adda : int -> int = <fun>

# adda 0;;
- : int = 10 (* adda sees a = 10 )
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Functions
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Functions
A function is just another type whose value can be defined
with an expression.

# fun x -> x
- : int -> int = <fun>

x;;*

# (fun x -> x
- : int = 25

x) 5;; ( function application *)* *

# fun x -> (fun y -> x y);;*
- : int -> int -> int = <fun>
# fun x y -> x y;; shorthand* )(**
- : int -> int -> int = <fun>
# (fun x -> (fun y -> (x+1)
- : int = 20

y)) 3 5;;*

# let square = fun x -> x
val square : int -> int = <fun>
# square 5;;

x;;*

- : int = 25
# let square x = x
val square : int -> int = <fun>
# square 6;;

x;; ( shorthand* *

- : int = 36

*)
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Let is Like Function Application

let name = expr1 in expr2

(fun name -> expr2) expr1

Both mean “expr , with name replaced by expr ”2 1

# let a = 3 in a + 2;;
- : int = 5
# (fun a -> a + 2) 3;;
- : int = 5

Semantically equivalent; let is easier to read
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Recursive Functions

OCaml
let rec gcd a b =
if a = b then
a

C/C++/Java
int gcd(int a, int b)
{
while (a != b) {

else if a > b then
gcd (a - b) b

else

if (a > b)
a -= b;

else
b -= a;gcd a (b - a)

}
return a;

}

let rec allows for recursion

Use recursion instead of loops

Tail recursion runs efficiently in OCaml
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Recursive Functions
By default, a name is not visible in its defining expression.
# let fac n = if n < 2 then 1 else n
Unbound value fac

fac (n-1);;*

The rec keyword makes the name visible.
# let rec fac n = if n < 2 then 1 else n
val fac : int -> int = <fun>
# fac 5;;

fac (n-1);;*

- : int = 120

The and keyword allows for mutual recursion.
# let rec fac n = if n < 2 then 1 else n
and fac1 n = fac (n - 1);;

val fac : int -> int = <fun>
val fac1 : int -> int = <fun>
# fac 5;;

fac1 n*

- : int = 120 21



First-Class and Higher Order Functions
First-class functions: name them, pass them as arguments
# let appadd = fun f -> (f 42) + 17;;
val appadd : (int -> int) -> int = <fun>

# let plus5 x = x + 5;;
val plus5 : int -> int = <fun>

# appadd plus5;;
- : int = 64

Higher-order functions: functions that return functions
# let makeInc i = fun x -> x + i;;
val makeInc : int -> int -> int = <fun>

# let i5 = makeInc 5;;
val i5 : int -> int = <fun>

# i5 10;;
- : int = 15
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Tuples, Lists, and Pattern
Matching
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Tuples
Pairs or tuples of different types separated by commas.

Very useful lightweight data type, e.g., for function
arguments.

# (42, "Arthur");;
- : int string = (42, "Arthur")*
# (42, "Arthur", "Dent");;
- : int string string = (42, "Arthur", "Dent")* *

# let p = (42, "Arthur");;
val p : int
# fst p;;

string = (42, "Arthur")*

- : int = 42
# snd p;;
- : string = "Arthur"

# let trip = ("Douglas", 42, "Adams");;
val trip : string int string = ("Douglas", 42, "Adams")* *
# let (fname, _, lname) = trip in (lname, fname);;
- : string string = ("Adams", "Douglas")*
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Some Useful List Functions

Three great replacements for loops:

List.map f [a1; ... ;an] = [f a1; ... ;f an]
Apply a function to each element of a list to produce
another list.

Ï

Ï List.fold_left f a [b1; ...;bn] =
f (...(f (f a b1) b2)...) bn
Apply a function to a partial result and an element of
the list to produce the next partial result.
List.iter f [a1; ...;an] =
begin f a1; ... ; f an; () end
Apply a function to each element of a list; produce a
unit result.

Ï

Ï List.rev [a1; ...; an] = [an; ... ;a1]
Reverse the order of the elements of a list.
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List Functions Illustrated
# List.map (fun a -> a + 10) [42; 17; 128];;
- : int list = [52; 27; 138]

# List.map string_of_int [42; 17; 128];;
- : string list = ["42"; "17"; "128"]

# List.fold_left (fun s e -> s + e) 0 [42; 17; 128];;
- : int = 187

# List.iter print_int [42; 17; 128];;
4217128- : unit = ()

# List.iter (fun n -> print_int n; print_newline ())
[42; 17; 128];;

42
17
128
- : unit = ()
# List.iter print_endline (List.map string_of_int [42; 17; 128]);;
42
17
128
- : unit = ()
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Example: Enumerating List Elements
To transform a list and pass information between elements,
use List.fold_left with a tuple:
# let (l, _) = List.fold_left

(fun (l, n) e -> ((e, n)::l, n+1)) ([], 0) [42; 17; 128]
in List.rev l;;

- : (int int) list = [(42, 0); (17, 1); (128, 2)]*

Result accumulated in the (l, n) tuple, List.rev reverses the
result (built backwards) in the end. Can do the same with a
recursive function, but List.fold_left separates list traversal
from modification:
# let rec enum (l, n) = function

[] -> List.rev l
| e::tl -> enum ((e, n)::l, n+1) tl
in
enum ([], 0) [42; 17; 128];;

- : (int int) list = [(42, 0); (17, 1); (128, 2)]*
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Pattern Matching
A powerful variety of multi-way branch that is adept at
picking apart data structures. Unlike anything in C/C++/Java.

# let xor p = match p
with (false, false) -> false

| (false, true) -> true
| ( true, false) -> true
| ( true, true) -> false;;

val xor : bool
# xor (true, true);;
- : bool = false

bool -> bool = <fun>*

A name in a pattern matches anything and is bound when
the pattern matches. Each may appear only once per
pattern.
# let xor p = match p
with (false, x) -> x

| ( true, x) -> not x;;
val xor : bool
# xor (true, true);;
- : bool = false

bool -> bool = <fun>*
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Case Coverage

The compiler warns you when you miss a case or when one
is redundant (they are tested in order):

# let xor p = match p
with (false, x) -> x

| (x, true) -> not x;;
Warning P: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
(true, false)
val xor : bool bool -> bool = <fun>*

# let xor p = match p
with (false, x) -> x

| (true, x) -> not x
| (false, false) -> false;;

Warning U: this match case is unused.
val xor : bool bool -> bool = <fun>*
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Wildcards
Underscore (_) is a wildcard that will match anything, useful
as a default or when you just don’t care.

# let xor p = match p
with (true, false) | (false, true) -> true

| _ -> false;;
val xor : bool
# xor (true, true);;
- : bool = false

bool -> bool = <fun>*

# xor (false, false);;
- : bool = false
# xor (true, false);;
- : bool = true

# let logand p = match p
with (false, _) -> false

| (true, x) -> x;;
val logand : bool
# logand (true, false);;
- : bool = false

bool -> bool = <fun>*

# logand (true, true);;
- : bool = true
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Pattern Matching with Lists

# let length = function ( let length = fun p -> match p with *)*
[] -> "empty"

| [_] -> "singleton"
| [_; _] -> "pair"
| [_; _; _] -> "triplet"
| hd :: tl -> "many";;

val length : ’a list -> string = <fun>

# length [];;
- : string = "empty"

# length [1; 2];;
- : string = "pair"

# length ["foo"; "bar"; "baz"];;
- : string = "triplet"

# length [1; 2; 3; 4];;
- : string = "many"
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Pattern Matching with when and as

The when keyword lets you add a guard expression:
# let tall = function
| (h, s) when h > 180 -> s ^ " is tall"
| (_, s) -> s ^ " is short";;

val tall : int string -> string = <fun>*
# List.map tall [(183, "Stephen"); (150, "Nina")];;
- : string list = ["Stephen is tall"; "Nina is short"]

The as keyword lets you name parts of a matched structure:
# match ((3,9), 4) with

(_ as xx, 4) -> xx
| _ -> (0,0);;

- : int int = (3, 9)*
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Application: Length of a list
let rec length l =
if l = [] then 0 else 1 + length (List.tl l);;

Correct, but not very elegant. With pattern matching,
let rec length = function

[] -> 0
| _::tl -> 1 + length tl;;

Elegant, but inefficient because it is not tail-recursive (needs
O(n) stack space). Common trick: use an argument as an
accumulator.
let length l =
let rec helper len = function

[] -> len
| _::tl -> helper (len + 1) tl

in helper 0 l

This is the code for the List.length standard library function.34



OCaml Can Compile This Efficiently
ocamlopt generates this x86
assemblyOCaml source code

let length list =
let rec helper len = function

camlLength__helper:
.L101:
cmpl $1, %ebx[] -> len # empty?

| _::tl -> helper (len + 1) tl
in helper 0 list

je
movl 4(%ebx), %ebx # get tail
addl $2, %eax # len++

.L100

jmp
.L100:
ret

.L101Arguments in registersÏ

Ï Pattern matching
reduced to a conditional
branch

camlLength__length:
movl %eax, %ebx
movl $camlLength__2, %eax
movl $1, %eax # len = 0
jmp camlLength__helper

Tail recursion
implemented with jumps

Ï

Ï LSB of an integer
always 1
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