
An Introduction to OCaml

1

adapted from course by Stephen Edwards @ Columbia

The Basics

Functions

Tuples, Lists, and Pattern Matching

User-Defined Types

Modules and Compilation

A Complete Interpreter in Three Slides

Exceptions; Directed Graphs

Standard Library Modules

2

An Endorsement?

A PLT student accurately summed up using OCaml:

Never have I spent
so much time
writing so little
that does so much.

I think he was complaining, but I’m not sure.
Other students have said things like

It’s hard to get it to compile, but once it compiles, it
works.

3

Why OCaml?

It’s Great for Compilers
I’ve written compilers in C++, Python, Java, and OCaml,
and it’s much easier in OCaml.

Ï

It’s SuccinctÏ

Ï

Would you prefer to write 10 000 lines of code or 5 000?
Its Type System Catches Many Bugs
It catches missing cases, data structure misuse, certain
off-by-one errors, etc. Automatic garbage collection
and lack of null pointers makes it safer than Java.
Lots of Libraries
All sorts of data structures, I/O, OS interfaces, graphics,
support for compilers, etc.

Ï

Ï Lots of Support
Many websites, free online books and tutorials, code
samples, etc.

4

OCaml in One Slide

Apply a function to each list element; save results in a list

“Is recursive” Passing a function

Case Pattern
splitting # let rec map f = function

[] -> []
Matching

PolymorphicLocal name
declaration

| head :: tail ->
let r = f head in
r :: map f tail;; Types inferred

List support

Recursion
val map : (’a -> ’b) -> ’a list -> ’b list

map (function x -> x + 3) [1;5;9];;

- : int list = [4; 8; 12]Anonymous
functions

5

The Basics

6

Hello World in OCaml: Interpret or Compile
Create a “hello.ml” file:
print_endline "Hello World!"

Run it with the interpreter:
$ ocaml hello.ml
Hello World!

Compile a native executable and run:
$ ocamlopt -o hello hello.ml
$./hello
Hello World!

Use ocamlbuild (recommended):
$ ocamlbuild hello.native
$./hello.native
Hello World!

7

Hello World in OCaml: REPL
The interactive Read-Eval-Print Loop
$ ocaml

OCaml version 4.02.3

print_endline "Hello World!";;
Hello World!
- : unit = ()
#use "hello.ml";;
Hello World!
- : unit = ()
#quit;;
$

Double semicolons ;;mean “I’m done with this expression”

#quit terminates the REPL

Other directives enable tracing, modify printing, and display
types and values

Use ledit ocaml or utop instead for better line editing
(history, etc.) 8

Comments

OCaml C/C++/Java
(This is a multiline / This is a multiline* *

*

*

comment in OCaml comment in C */

(Comments / C comments*

)

(* like these /
nest

do not*
do nest

/*

(
(

OCaml has no
single-line comments

// C++/Java also has
// single-line comments

*
*

*)

*)

*)
*)

9

Basic Types and Expressions
42 + 17;;
- : int = 59
42.0 +. 18.3;;
- : float = 60.3 Integers
42 + 60.3;; Floating-point numbers
Error: This expression has type
float but an expression was
expected of type int

Floating-point operators
must be explicit (e.g.,
+.)# 42 + int_of_float 60.3;;

- : int = 102
true || (3 > 4) && not false;;
- : bool = true

Only explicit
conversions, promotions
(e.g., int_of_float)# "Hello " ^ "World!";;

- : string = "Hello World!"
String.contains "Hello" ’o’;;
- : bool = true Booleans

Strings# ();;
- : unit = ()

The unit type is like
“void” in C and Java

print_endline "Hello World!";;
Hello World!
- : unit = () 10

Standard Operators and Functions

+ - / mod Integer arithmetic*
+. -. . /. Floating-point arithmetic* **
ceil floor sqrt exp
log log10 cos sin
tan acos asin atan

Floating-point functions

Boolean operatorsnot && ||

= <>
== !=

Structual comparison (polymorphic)
Physical comparison (polymorphic)

< > <= >= Comparisons (polymorphic)

11

Structural vs. Physical Equality

==, != Physical equality =, <> Structural equality
compares pointers compares values
1 == 3;; # 1 = 3;;
- : bool = false - : bool = false
1 == 1;; # 1 = 1;;
- : bool = true - : bool = true
1.5 == 1.5;; # 1.5 = 1.5;;
- : bool = false (Huh?)

)

- : bool = true* *

*

let f = 1.5 in f == f;;
- : bool = true

let f = 1.5 in f = f;;
- : bool = true

"a" == "a";;
- : bool = false

"a" = "a";;
- : bool = true(Huh?*

let a = "hello" in a == a;;
- : bool = true

Use structural equality to avoid headaches

12

If-then-else

if expr then expr else expr
3

1 2

If-then-else in OCaml is an expression. The else part is
compulsory, expr1must be Boolean, and the types of expr2
and expr3must match.

if 3 = 4 then 42 else 17;;
- : int = 17
if "a" = "a" then 42 else 17;;
- : int = 42
if true then 42 else "17";;
This expression has type string but is here used with type int

13

14

Let is Not Assignment

Let can be used to bind a succession of values to a name.
This is not assignment: the value disappears in the end.

let a = 4 in
let a = a + 2 in
let a = a
a;;

2 in*

- : int = 12

a;;
Unbound value a

This looks like sequencing, but it is really data dependence.

15

Let is Really Not Assignment
OCaml picks up the values in effect where the function (or
expression) is defined.

Global declarations are not like C’s global variables.
let a = 5;;
val a : int = 5

let adda x = x + a;;
val adda : int -> int = <fun>

let a = 10;; (* a here is a diff var (copy) *)
val a : int = 10

adda 0;;
- : int = 5 (adda sees a = 5)

*

* *

let adda x = x + a;;
val adda : int -> int = <fun>

adda 0;;
- : int = 10 (* adda sees a = 10)

16

Functions

17

Functions
A function is just another type whose value can be defined
with an expression.

fun x -> x
- : int -> int = <fun>

x;;*

(fun x -> x
- : int = 25

x) 5;; (function application *)* *

fun x -> (fun y -> x y);;*
- : int -> int -> int = <fun>
fun x y -> x y;; shorthand*)(**
- : int -> int -> int = <fun>
(fun x -> (fun y -> (x+1)
- : int = 20

y)) 3 5;;*

let square = fun x -> x
val square : int -> int = <fun>
square 5;;

x;;*

- : int = 25
let square x = x
val square : int -> int = <fun>
square 6;;

x;; (shorthand* *

- : int = 36

*)

18

Let is Like Function Application

let name = expr1 in expr2

(fun name -> expr2) expr1

Both mean “expr , with name replaced by expr ”2 1

let a = 3 in a + 2;;
- : int = 5
(fun a -> a + 2) 3;;
- : int = 5

Semantically equivalent; let is easier to read

19

Recursive Functions

OCaml
let rec gcd a b =
if a = b then
a

C/C++/Java
int gcd(int a, int b)
{
while (a != b) {

else if a > b then
gcd (a - b) b

else

if (a > b)
a -= b;

else
b -= a;gcd a (b - a)

}
return a;

}

let rec allows for recursion

Use recursion instead of loops

Tail recursion runs efficiently in OCaml

20

Recursive Functions
By default, a name is not visible in its defining expression.
let fac n = if n < 2 then 1 else n
Unbound value fac

fac (n-1);;*

The rec keyword makes the name visible.
let rec fac n = if n < 2 then 1 else n
val fac : int -> int = <fun>
fac 5;;

fac (n-1);;*

- : int = 120

The and keyword allows for mutual recursion.
let rec fac n = if n < 2 then 1 else n
and fac1 n = fac (n - 1);;

val fac : int -> int = <fun>
val fac1 : int -> int = <fun>
fac 5;;

fac1 n*

- : int = 120 21

First-Class and Higher Order Functions
First-class functions: name them, pass them as arguments
let appadd = fun f -> (f 42) + 17;;
val appadd : (int -> int) -> int = <fun>

let plus5 x = x + 5;;
val plus5 : int -> int = <fun>

appadd plus5;;
- : int = 64

Higher-order functions: functions that return functions
let makeInc i = fun x -> x + i;;
val makeInc : int -> int -> int = <fun>

let i5 = makeInc 5;;
val i5 : int -> int = <fun>

i5 10;;
- : int = 15

22

Tuples, Lists, and Pattern
Matching

23

Tuples
Pairs or tuples of different types separated by commas.

Very useful lightweight data type, e.g., for function
arguments.

(42, "Arthur");;
- : int string = (42, "Arthur")*
(42, "Arthur", "Dent");;
- : int string string = (42, "Arthur", "Dent")* *

let p = (42, "Arthur");;
val p : int
fst p;;

string = (42, "Arthur")*

- : int = 42
snd p;;
- : string = "Arthur"

let trip = ("Douglas", 42, "Adams");;
val trip : string int string = ("Douglas", 42, "Adams")* *
let (fname, _, lname) = trip in (lname, fname);;
- : string string = ("Adams", "Douglas")*

24

25

Some Useful List Functions

Three great replacements for loops:

List.map f [a1; ... ;an] = [f a1; ... ;f an]
Apply a function to each element of a list to produce
another list.

Ï

Ï List.fold_left f a [b1; ...;bn] =
f (...(f (f a b1) b2)...) bn
Apply a function to a partial result and an element of
the list to produce the next partial result.
List.iter f [a1; ...;an] =
begin f a1; ... ; f an; () end
Apply a function to each element of a list; produce a
unit result.

Ï

Ï List.rev [a1; ...; an] = [an; ... ;a1]
Reverse the order of the elements of a list.

26

List Functions Illustrated
List.map (fun a -> a + 10) [42; 17; 128];;
- : int list = [52; 27; 138]

List.map string_of_int [42; 17; 128];;
- : string list = ["42"; "17"; "128"]

List.fold_left (fun s e -> s + e) 0 [42; 17; 128];;
- : int = 187

List.iter print_int [42; 17; 128];;
4217128- : unit = ()

List.iter (fun n -> print_int n; print_newline ())
[42; 17; 128];;

42
17
128
- : unit = ()
List.iter print_endline (List.map string_of_int [42; 17; 128]);;
42
17
128
- : unit = ()

27

Example: Enumerating List Elements
To transform a list and pass information between elements,
use List.fold_left with a tuple:
let (l, _) = List.fold_left

(fun (l, n) e -> ((e, n)::l, n+1)) ([], 0) [42; 17; 128]
in List.rev l;;

- : (int int) list = [(42, 0); (17, 1); (128, 2)]*

Result accumulated in the (l, n) tuple, List.rev reverses the
result (built backwards) in the end. Can do the same with a
recursive function, but List.fold_left separates list traversal
from modification:
let rec enum (l, n) = function

[] -> List.rev l
| e::tl -> enum ((e, n)::l, n+1) tl
in
enum ([], 0) [42; 17; 128];;

- : (int int) list = [(42, 0); (17, 1); (128, 2)]*
28

Pattern Matching
A powerful variety of multi-way branch that is adept at
picking apart data structures. Unlike anything in C/C++/Java.

let xor p = match p
with (false, false) -> false

| (false, true) -> true
| (true, false) -> true
| (true, true) -> false;;

val xor : bool
xor (true, true);;
- : bool = false

bool -> bool = <fun>*

A name in a pattern matches anything and is bound when
the pattern matches. Each may appear only once per
pattern.
let xor p = match p
with (false, x) -> x

| (true, x) -> not x;;
val xor : bool
xor (true, true);;
- : bool = false

bool -> bool = <fun>*
29

Case Coverage

The compiler warns you when you miss a case or when one
is redundant (they are tested in order):

let xor p = match p
with (false, x) -> x

| (x, true) -> not x;;
Warning P: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
(true, false)
val xor : bool bool -> bool = <fun>*

let xor p = match p
with (false, x) -> x

| (true, x) -> not x
| (false, false) -> false;;

Warning U: this match case is unused.
val xor : bool bool -> bool = <fun>*

30

Wildcards
Underscore (_) is a wildcard that will match anything, useful
as a default or when you just don’t care.

let xor p = match p
with (true, false) | (false, true) -> true

| _ -> false;;
val xor : bool
xor (true, true);;
- : bool = false

bool -> bool = <fun>*

xor (false, false);;
- : bool = false
xor (true, false);;
- : bool = true

let logand p = match p
with (false, _) -> false

| (true, x) -> x;;
val logand : bool
logand (true, false);;
- : bool = false

bool -> bool = <fun>*

logand (true, true);;
- : bool = true

31

Pattern Matching with Lists

let length = function (let length = fun p -> match p with *)*
[] -> "empty"

| [_] -> "singleton"
| [_; _] -> "pair"
| [_; _; _] -> "triplet"
| hd :: tl -> "many";;

val length : ’a list -> string = <fun>

length [];;
- : string = "empty"

length [1; 2];;
- : string = "pair"

length ["foo"; "bar"; "baz"];;
- : string = "triplet"

length [1; 2; 3; 4];;
- : string = "many"

32

Pattern Matching with when and as

The when keyword lets you add a guard expression:
let tall = function
| (h, s) when h > 180 -> s ^ " is tall"
| (_, s) -> s ^ " is short";;

val tall : int string -> string = <fun>*
List.map tall [(183, "Stephen"); (150, "Nina")];;
- : string list = ["Stephen is tall"; "Nina is short"]

The as keyword lets you name parts of a matched structure:
match ((3,9), 4) with

(_ as xx, 4) -> xx
| _ -> (0,0);;

- : int int = (3, 9)*

33

Application: Length of a list
let rec length l =
if l = [] then 0 else 1 + length (List.tl l);;

Correct, but not very elegant. With pattern matching,
let rec length = function

[] -> 0
| _::tl -> 1 + length tl;;

Elegant, but inefficient because it is not tail-recursive (needs
O(n) stack space). Common trick: use an argument as an
accumulator.
let length l =
let rec helper len = function

[] -> len
| _::tl -> helper (len + 1) tl

in helper 0 l

This is the code for the List.length standard library function.34

OCaml Can Compile This Efficiently
ocamlopt generates this x86
assemblyOCaml source code

let length list =
let rec helper len = function

camlLength__helper:
.L101:
cmpl $1, %ebx[] -> len # empty?

| _::tl -> helper (len + 1) tl
in helper 0 list

je
movl 4(%ebx), %ebx # get tail
addl $2, %eax # len++

.L100

jmp
.L100:
ret

.L101Arguments in registersÏ

Ï Pattern matching
reduced to a conditional
branch

camlLength__length:
movl %eax, %ebx
movl $camlLength__2, %eax
movl $1, %eax # len = 0
jmp camlLength__helper

Tail recursion
implemented with jumps

Ï

Ï LSB of an integer
always 1

35

