CASE STUDY
OBJECT-ORIENTED PROGRAMMING

OUTLINE

O Prelude: Abstract Data Types
O The Object Model (Ada)
O Smalltalk

Ask not what you can do
for your classes,
Ask what your classes can do
for you.
Owen Astrachan
Duke University

PRELUDE: ABSTRACT DATA TYPES

Imperative programming paradigm
Algorithms + Data Structures = Programs [Wirth]

Produce a program by functional decomposition
o Start with function to be computed
o Systematically decompose function into more primitive functions

o Stop when all functions map to program statements

PROCEDURAL ABSTRACTION

Concerned mainly with interface
Function
What 1t computes
Ignore details of how
Example: sort(list, length);

DATA ABSTRACTION

Or: abstract data types

Extend procedural abstraction to include data
Example: type float

Extend imperative notion of type by:
Providing encapsulation of data/functions

Example: stack of int's
Separation of interface from implementation

ENCAPSULATION

Definition: Encapsulation 1s a mechanism
which allows logically related constants, types,
variables, methods, and so on, to be grouped into
a new entity.

Examples:
Procedures
Packages
Classes

SIMPLE STACK IN C

#include <stdio.h>

struct Node |
int wval;
struct Node* next:

5

typedef struct Node* STACK;

STACK stack = NULL;

int empty() {
return stack == HNULL;

int pop() {

STACK tmp:

int rslt = 0;

if (lempty()) {
rslt = stack->val;
tmp =~ stack;
stack = stack->next;
fres(tmp):

}

return rslt;

void push(int newval} {
STACK tmp = (STACK)mallocc(sizeof(struct Node)):
tmp->val = newval:
tmp->next = stack:
stack = tmp:

int top() {
if (lempty())
return stack->val;

return 0;

A STACK TYPE IN C

struct Node {
int val;
struct Node* next;
¥
typedef struct Node* STACK;

int empty(STACK stack);

STACK newstack();

int pop(STACK stack);

void push(STACK stack, int newval);

int top(STACK stack): °

(GOAL OF DATA ABSTRACTION

Package
Data type
Functions
Into a module so that functions provide:

public interface
defines type

(GENERIC PROGRAMMING IN ADA

generic

type element 1s private;

package stack_pck 1s
type stack 1s private;
procedure push (in out s : stack; 1 : element);
procedure pop (1n out s : stack) return element;
procedure 1sempty(in s : stack) return boolean;
procedure top(in s : stack) return element;

private
type node;
type stack 1s access node;
type node 1s record
val : element;
next : stack;
end record;
end stack_pck;

package body stack_pck is

procedure push (in out s : stack; 1 : element) 1s
temp : stack;

begin
temp := new node;
temp.all := (val => 1, next => s);
S .= temp;

end push;

procedure pop (1n out s : stack) return element is

temp : stack;
elem : element;

begin
elem := s.all.val;
temp = s;
s := temp.all.next;
dispose(temp);
return elem;

end pop;

procedure 1sempty(in s : stack) return boolean is
begin
return s = null;

end 1sempty;

procedure top(in s : stack) return element 1s
begin
return s.all.val;
end top;
end stack_pck;

THE OBJECT MODEL

Problems remained:
Automatic initialization and finalization
No simple way to extend a data abstraction

Concept of a class

Object decomposition, rather than function
decomposition

CLASS

Definition: A class 1s a type declaration which
encapsulates constants, variables, and functions

for manipulating these variables.

A class 1s a mechanism for defining an ADT.

class MyStack {

class Node {
Object val;
Node next;
Node(Object v, Node n) { val = v;
next = n; }

§
Node theStack;

MyStack() { theStack = null; }

boolean empty() { return theStack == null; }

Object pop() {
Object result = theStack.val;
theStack = theStack.next;

return result;

Object top() { return theStack.val; }

void push(Object v) {
theStack = new Node(v, theStack);

CONCEPTS IN OOP

Constructor

Destructor

Client of a class

Class methods (Java static methods)

Instance methods

CONCEPTS IN OOP (II)

OO program: collection of objects which
communicate by sending messages

A invokes a method of B and pass params

A waits for return values from B
Generally, only 1 object 1s executing at a time
Object-based language (vs. OO language)

Classes

Determine type of an object

Permit full type checking

VISIBILITY

o public
O protected
O private

INHERITANCE (SUBTYPING)

Class hierarchy
Subclass, parent or super class
1s-a relationship
A stack 1s-a kind of a list
So are: queue, deque, priority queue
has-a relationship
Identifies a class as a client of another class
Aggregation
A class 1s an aggregation if it contains other class objects

INHERITANCE (II)

In single inheritance, the class hierarchy
forms a tree.

Rooted 1n a most general class: Object

Inheritance supports code reuse

Remark: in Java a Stack extends a Vector Ohlegt
Good or bad idea? / \
Why? Vector

Single inheritance languages: Smalltalk, l

Java Stack

MULTIPLE INHERITANCE

Allows a class to be a subclass of zero, one, or
more classes.

Class hierarchy is a directed graph
Advantage: facilitates code reuse

Disadvantage: more complicated semantics

Re: Design Patterns book mentions multiple
inheritance in conjunction with only two of its many
patterns.

OBJECT ORIENTED LANGUAGE

Definition: A language is object-oriented if it
supports
an encapsulation mechanism with information hiding
for defining abstract data types,

virtual methods, and

inheritance

POLYMORPHISM

Polymorphic - having many forms

Definition: In OO languages polymorphism
refers to the late binding of a call to one of
several different implementations of a method in
an inheritance hierarchy.

Consider the call: obj.m();
obj of type T
All subtypes must implement method m()
In a statically typed language, verified at compile
time
Actual method called can vary at run time depending
on actual type of obj

for (Drawable obj : myList)
obj.paint();

// paint method invoked varies

// each graphical object paints itself

// essence of OOP

POLYMORPHISM (CONT’D)

Definition: A subclass method 1s substitutable
for a parent class method if the subclass’s method
performs the same general function.

Thus, the paint method of each graphical object
must be transparent to the caller. E.g.,
Button

Panel
Choice Box

The code to paint each graphical object depends
on the principle of substitutability.

TEMPLATES OR GENERICS

A kind of class generator

Can restrict a Collections class to holding a particular
kind of object

Definition: A template defines a family of classes
parameterized by one or more types.

Prior to Java 1.5, clients had to downcast an object
retrieved from a Collection class.

ArrayList<Drawable> list = new
ArrayList<Drawable> ();

for (Drawable d : list)
d.paint(g);

ABSTRACT CLASSES

Definition: An abstract class 1s one that 1s either
declared to be abstract or has one or more abstract
methods.

Definition: An abstract method 1s a method that
contains no code beyond 1ts signature.

Any subclass of an abstract class that does not
provide an implementation of an inherited abstract
method is i1tself abstract.

Because abstract classes have methods that cannot
be executed, client programs cannot 1nitialize an
object that 1s a member an abstract class.

This restriction ensures that a call will not be made
to an abstract (unimplemented) method.

EXPRESSION ABSTRACT SYNTAX

abstract class Expression { ... }
class Variable extends Expression { ... }
abstract class Value extends Expression { ... }
class IntValue extends Value { ... }
class BoolValue extends Value { ... }
class FloatValue extends Value { ... }
class CharValue extends Value { ... }
class Binary extends Expression { ... }
class Unary extends Expression { ... }

INTERFACES

Definition: An interface encapsulates a
collection of constants and abstract method
signatures.

An interface may not include either variables,
constructors, or non-abstract methods.

Difference between interface and abstract
classes:
Interface:

All methods must be abstract
Only constants

Abstract class:

Some methods can be implemented
Objects can be declared

public interface Map {
public abstract boolean containsKey(Object key);
public abstract boolean containsValue(Object value);
public abstract boolean equals(Object o0);
public abstract Object get(Object key);
public abstract Object remove(Object key);

INTERFACE AND MULTIPLE INHERITANCE

Because 1t 1s not a class, an interface does not have a
constructor, but an abstract class does.

Some like to think of an interface as an alternative to
multiple inheritance.

Strictly speaking, however, an interface is not quite the
same since 1t doesn't provide a means of reusing code;
1.e., all of 1ts methods must be abstract.

An 1nterface 1s similar to multiple inheritance in the
sense that an interface 1s a type.

A class that implements multiple interfaces appears to
be many different types, one for each interface.

VIRTUAL METHOD TABLE (VMT)

How the appropriate virtual method 1s called at
run time.

At compile time the actual run time class of any
object may be unknown.

MyList myList;

System.out.printin(myList.toString());

VMT (CONT’D)

Each class has 1its own VMT, with each instance
of the class having a reference (or pointer) to the

VMT.

A simple implementation of the VMT would be a

hash table, using the method name (or signature,
in the case of overloading) as the key and the run
time address of the method invoked as the value.

For statically typed languages, the VMT 1s kept
as an array.

The method being invoked 1s converted to an
index into the VMT at compile time.

class A {
Obj a;
void am1() { ... }
void am2() { ... }
5
class B extends A {
Obj b;
void bm1() { ... }
void bm2() { ... }
void am2() { ... }

oB1

B’s vtable

aml

am2’

A’s vtable

aml

bml

bm2

am2

0A

RUN TIME TYPE IDENTIFICATION

Definition: Run time type identification (RTTI)
1s the ability of the language to 1dentify at run
time the actual type or class of an object.

All dynamically typed languages have this
ability, whereas most statically typed imperative
languages, such as C, lack this ability.

At the machine level, recall that data 1s basically
untyped.

In Java, for example, given any object reference, we
can determine its class via:

Class ¢ = obj.getClass();

REFLECTION

Reflection is a mechanism whereby a program
can discover and use the methods of any of its
objects and classes.

Reflection is essential for programming tools that

allow plugins (such as Eclipse -- www.eclipse.org)
and for JavaBeans components.

http://www.eclipse.org

In Java the Class class provides the following
information about an object:

The superclass or parent class.

The names and types of all fields.

The names and signatures of all methods.
The signatures of all constructors.

The interfaces that the class implements.

Class class = obj.getClass();
Constructor[] cons = class.getDeclaredConstructors();
for (int i=0; i < cons.length; i++) {

System.out.print(class.getName() + "(");

Class[] param = consli].getParameterTypes();

for (int j=0; j < param.length; j++) {

if (j > 0) System.out.print(", ");
System.out.print(param[j].getName();

}
System.out.printin(")");

SMALLTALK

The original object-oriented language
Developed 1in 1970s at Xerox PARC

Xerox Alto
Smalltalk system
O0S
IDE
mouse based GUI
Steve Jobs visit - Macintosh

GENERAL CHARACTERISTICS

Simple language
Most of the class libraries written in Smalltalk
Everything 1s an object, even control structures

Excluding lexical productions, grammar has 21
production rules (3 pages)

The value of every variable 1s an object; every object
1s an Instance of some class.

A method is triggered by sending a message to an
object.

The object responds by evaluating the method of the
same name, 1f 1t has one.

Otherwise the message 1s sent to the parent object.

The process continues until the method 1s found,;
otherwise an error is raised.

All methods return a value (object).

Precedence
Unary messages, as in: X hegated
Binary messages, asin: X +Y
Keyword messages, as in: Turtle go: length

In the absence of parentheses, code 1s evaluated from
left to right.

Examples:
X +y * z squared
amax:b-c
anArray at: i put: (anArray at: i+ 1)

By default, Smalltalk uses infinite precision,
fractional arithmetic.

1/3 + 2/6 + 3/9 evaluates to 1.

(a>b) ifTrue: [max := a]
ifFalse: [max := b].

[] - uninterpreted block
A block 1s like an object, too
Boolean methods: ifFalse: and ifTrue:

1fTrue: If the object is the true object, it executes the
code block it has been handed. If it 1s the false object,
1t returns without executing the code block.

1fFalse: symmetrical

BLOCKS

sum := 0.
1 to:ndo:[:ilsum:=sum + (aat:i)].

sum := 0.
ado: [:xIsum:=sum + x].

sum := 0.

1= 1.

[i <=n] whileTrue: [
sum := sum + (a at: i).
=1+ 1].

"True methods"

IfTrue: trueBlock ifFalse: falseBlock
A trueBlock value

IfTrue: aBlock
A aBlock value

IfFalse: aBlock
A nil

IfFalse: falseBlock ifTrue: trueBlock
A trueBlock value

EXAMLE: POLYNOMIALS

Represent Polynomials: 3x2 + 5x - 7
Representation: #(-7 5 3)
Subclass of Magnitude

Magnitude subclass: #Polynomial
instanceVariableNames: 'coefficient'
classVariableNames:: "
poolDictionaries: "

new
"Unary class constructor: return 0*xAQ"
A self new: #(0)

new: array
"Keyword class constructor"
A (super new) init: array

Init: array
"Private: initialize coefficient"
coefficient := array deepCopy

degree
"Highest non-zero power"
A coefficient size - 1

coefficient: power
"Coefficient of given power"
(power >= coefficient size) ifTrue: [A O].
A coefficient at: power + 1

asArray
A coefficient deepCopy

= aPoly
A coefficient = aPoly asArray

I= aPoly
A (self = aPoly) not

< aPoly
"not defined"
A self shouldNotimplement

