
CASE STUDY
OBJECT-ORIENTED PROGRAMMING

1

OUTLINE

¢ Prelude: Abstract Data Types
¢ The Object Model (Ada)
¢ Smalltalk

2

Ask not what you can do
for your classes,

Ask what your classes can do
for you.

Owen Astrachan
Duke University

PRELUDE: ABSTRACT DATA TYPES

¢ Imperative programming paradigm
� Algorithms + Data Structures = Programs [Wirth]
� Produce a program by functional decomposition

¢ Start with function to be computed
¢ Systematically decompose function into more primitive functions
¢ Stop when all functions map to program statements

4

PROCEDURAL ABSTRACTION

¢ Concerned mainly with interface
� Function
� What it computes
� Ignore details of how
� Example: sort(list, length);

5

DATA ABSTRACTION

¢ Or: abstract data types
¢ Extend procedural abstraction to include data

� Example: type float
¢ Extend imperative notion of type by:

� Providing encapsulation of data/functions
� Example: stack of int's
� Separation of interface from implementation

6

ENCAPSULATION

¢ Definition: Encapsulation is a mechanism
which allows logically related constants, types,
variables, methods, and so on, to be grouped into
a new entity.

¢ Examples:
� Procedures
� Packages
� Classes

7

SIMPLE STACK IN C

8

A STACK TYPE IN C

9

GOAL OF DATA ABSTRACTION

¢ Package
� Data type
� Functions

¢ Into a module so that functions provide:
� public interface
� defines type

10

GENERIC PROGRAMMING IN ADA

generic
type element is private;

package stack_pck is
type stack is private;
procedure push (in out s : stack; i : element);
procedure pop (in out s : stack) return element;
procedure isempty(in s : stack) return boolean;
procedure top(in s : stack) return element;

¢ Similar to C++ templates 11

private
type node;
type stack is access node;
type node is record

val : element;
next : stack;

end record;
end stack_pck;

12

package body stack_pck is
procedure push (in out s : stack; i : element) is

temp : stack;
begin

temp := new node;
temp.all := (val => i, next => s);
s := temp;

end push;

13

procedure pop (in out s : stack) return element is
temp : stack;
elem : element;

begin
elem := s.all.val;
temp := s;
s := temp.all.next;
dispose(temp);
return elem;

end pop;

14

procedure isempty(in s : stack) return boolean is
begin

return s = null;
end isempty;

procedure top(in s : stack) return element is
begin

return s.all.val;
end top;

end stack_pck;

15

THE OBJECT MODEL

¢ Problems remained:
� Automatic initialization and finalization
� No simple way to extend a data abstraction

¢ Concept of a class
¢ Object decomposition, rather than function

decomposition

16

CLASS

¢ Definition: A class is a type declaration which
encapsulates constants, variables, and functions
for manipulating these variables.

¢ A class is a mechanism for defining an ADT.

17

class MyStack {
class Node {

Object val;
Node next;
Node(Object v, Node n) { val = v;

next = n; }
}
Node theStack;

MyStack() { theStack = null; }

boolean empty() { return theStack == null; }
18

Object pop() {
Object result = theStack.val;
theStack = theStack.next;
return result;

}

Object top() { return theStack.val; }

void push(Object v) {
theStack = new Node(v, theStack);

}
}

19

CONCEPTS IN OOP

¢ Constructor
¢ Destructor
¢ Client of a class
¢ Class methods (Java static methods)
¢ Instance methods

20

CONCEPTS IN OOP (II)
¢ OO program: collection of objects which

communicate by sending messages
� A invokes a method of B and pass params
� A waits for return values from B

¢ Generally, only 1 object is executing at a time
¢ Object-based language (vs. OO language)
¢ Classes

� Determine type of an object
� Permit full type checking

21

VISIBILITY

¢ public
¢ protected
¢ private

22

INHERITANCE (SUBTYPING)

¢ Class hierarchy
� Subclass, parent or super class

¢ is-a relationship
� A stack is-a kind of a list
� So are: queue, deque, priority queue

¢ has-a relationship
� Identifies a class as a client of another class
� Aggregation
� A class is an aggregation if it contains other class objects

23

INHERITANCE (II)
¢ In single inheritance, the class hierarchy

forms a tree.
¢ Rooted in a most general class: Object
¢ Inheritance supports code reuse
¢ Remark: in Java a Stack extends a Vector

� Good or bad idea?
� Why?

¢ Single inheritance languages: Smalltalk,
Java

24

MULTIPLE INHERITANCE

¢ Allows a class to be a subclass of zero, one, or
more classes.

¢ Class hierarchy is a directed graph
¢ Advantage: facilitates code reuse
¢ Disadvantage: more complicated semantics

� Re: Design Patterns book mentions multiple
inheritance in conjunction with only two of its many
patterns.

25

OBJECT ORIENTED LANGUAGE

¢ Definition: A language is object-oriented if it
supports
� an encapsulation mechanism with information hiding

for defining abstract data types,
� virtual methods, and
� inheritance

26

POLYMORPHISM

¢ Polymorphic - having many forms

¢ Definition: In OO languages polymorphism
refers to the late binding of a call to one of
several different implementations of a method in
an inheritance hierarchy.

27

¢ Consider the call: obj.m();
� obj of type T
� All subtypes must implement method m()
� In a statically typed language, verified at compile

time
� Actual method called can vary at run time depending

on actual type of obj

� Subtyping polymorphism

28

for (Drawable obj : myList)
obj.paint();

// paint method invoked varies
// each graphical object paints itself
// essence of OOP

29

POLYMORPHISM (CONT’D)
¢ Definition: A subclass method is substitutable

for a parent class method if the subclass’s method
performs the same general function.

¢ Thus, the paint method of each graphical object
must be transparent to the caller. E.g.,
� Button
� Panel
� Choice Box

¢ The code to paint each graphical object depends
on the principle of substitutability.

30

TEMPLATES OR GENERICS

¢ A kind of class generator
¢ Can restrict a Collections class to holding a particular

kind of object
¢ Definition: A template defines a family of classes

parameterized by one or more types.
¢ Prior to Java 1.5, clients had to downcast an object

retrieved from a Collection class.

¢ Universal or parametric polymorphism:∀ A.AàA

31

ArrayList<Drawable> list = new
ArrayList<Drawable> ();
...
for (Drawable d : list)

d.paint(g);

32

ABSTRACT CLASSES

¢ Definition: An abstract class is one that is either
declared to be abstract or has one or more abstract
methods.

¢ Definition: An abstract method is a method that
contains no code beyond its signature.

33

¢ Any subclass of an abstract class that does not
provide an implementation of an inherited abstract
method is itself abstract.

¢ Because abstract classes have methods that cannot
be executed, client programs cannot initialize an
object that is a member an abstract class.

¢ This restriction ensures that a call will not be made
to an abstract (unimplemented) method.

34

EXPRESSION ABSTRACT SYNTAX

abstract class Expression { ... }
class Variable extends Expression { ... }
abstract class Value extends Expression { ... }

class IntValue extends Value { ... }
class BoolValue extends Value { ... }
class FloatValue extends Value { ... }
class CharValue extends Value { ... }

class Binary extends Expression { ... }
class Unary extends Expression { ... }

35

INTERFACES

¢ Definition: An interface encapsulates a
collection of constants and abstract method
signatures.

¢ An interface may not include either variables,
constructors, or non-abstract methods.

¢ Difference between interface and abstract
classes:
� Interface:

¢ All methods must be abstract
¢ Only constants

� Abstract class:
¢ Some methods can be implemented
¢ Objects can be declared 36

public interface Map {
public abstract boolean containsKey(Object key);
public abstract boolean containsValue(Object value);
public abstract boolean equals(Object o);
public abstract Object get(Object key);
public abstract Object remove(Object key);
...

}

37

INTERFACE AND MULTIPLE INHERITANCE

¢ Because it is not a class, an interface does not have a
constructor, but an abstract class does.

¢ Some like to think of an interface as an alternative to
multiple inheritance.

¢ Strictly speaking, however, an interface is not quite the
same since it doesn't provide a means of reusing code;
i.e., all of its methods must be abstract.

¢ An interface is similar to multiple inheritance in the
sense that an interface is a type.

¢ A class that implements multiple interfaces appears to
be many different types, one for each interface.

38

VIRTUAL METHOD TABLE (VMT)
¢ How the appropriate virtual method is called at

run time.
¢ At compile time the actual run time class of any

object may be unknown.

MyList myList;
...
System.out.println(myList.toString());

39

VMT (CONT’D)
¢ Each class has its own VMT, with each instance

of the class having a reference (or pointer) to the
VMT.

¢ A simple implementation of the VMT would be a
hash table, using the method name (or signature,
in the case of overloading) as the key and the run
time address of the method invoked as the value.

¢ For statically typed languages, the VMT is kept
as an array.

¢ The method being invoked is converted to an
index into the VMT at compile time. 40

class A {
Obj a;
void am1() { ... }
void am2() { ... }

}
class B extends A {

Obj b;
void bm1() { ... }
void bm2() { ... }
void am2() { ... }

}
41

RUN TIME TYPE IDENTIFICATION

¢ Definition: Run time type identification (RTTI)
is the ability of the language to identify at run
time the actual type or class of an object.

¢ All dynamically typed languages have this
ability, whereas most statically typed imperative
languages, such as C, lack this ability.

¢ At the machine level, recall that data is basically
untyped.

42

¢ In Java, for example, given any object reference, we
can determine its class via:

¢ Class c = obj.getClass();

43

REFLECTION

¢ Reflection is a mechanism whereby a program
can discover and use the methods of any of its
objects and classes.

¢ Reflection is essential for programming tools that
allow plugins (such as Eclipse -- www.eclipse.org)
and for JavaBeans components.

44

http://www.eclipse.org

¢ In Java the Class class provides the following
information about an object:
� The superclass or parent class.
� The names and types of all fields.
� The names and signatures of all methods.
� The signatures of all constructors.
� The interfaces that the class implements.

45

Class class = obj.getClass();
Constructor[] cons = class.getDeclaredConstructors();
for (int i=0; i < cons.length; i++) {

System.out.print(class.getName() + "(");
Class[] param = cons[i].getParameterTypes();
for (int j=0; j < param.length; j++) {

if (j > 0) System.out.print(", ");
System.out.print(param[j].getName();

}
System.out.println(")");

}

46

SMALLTALK

¢ The original object-oriented language
¢ Developed in 1970s at Xerox PARC
¢ Xerox Alto

� Smalltalk system
� OS
� IDE
� mouse based GUI
� Steve Jobs visit - Macintosh

47

GENERAL CHARACTERISTICS

¢ Simple language
¢ Most of the class libraries written in Smalltalk
¢ Everything is an object, even control structures
¢ Excluding lexical productions, grammar has 21

production rules (3 pages)

48

¢ The value of every variable is an object; every object
is an instance of some class.

¢ A method is triggered by sending a message to an
object.
� The object responds by evaluating the method of the

same name, if it has one.
� Otherwise the message is sent to the parent object.
� The process continues until the method is found;

otherwise an error is raised.
¢ All methods return a value (object).

49

¢ Precedence
� Unary messages, as in: x negated
� Binary messages, as in: x + y
� Keyword messages, as in: Turtle go: length

¢ In the absence of parentheses, code is evaluated from
left to right.

50

¢ Examples:
� x + y * z squared
� a max: b - c
� anArray at: i put: (anArray at: i + 1)

¢ By default, Smalltalk uses infinite precision,
fractional arithmetic.
� 1/3 + 2/6 + 3/9 evaluates to 1.

51

(a > b) ifTrue: [max := a]
ifFalse: [max := b].

¢ [] - uninterpreted block
¢ A block is like an object, too
¢ Boolean methods: ifFalse: and ifTrue:
¢ ifTrue: If the object is the true object, it executes the

code block it has been handed. If it is the false object,
it returns without executing the code block.

¢ ifFalse: symmetrical

52

BLOCKS

sum := 0.
1 to: n do: [:i | sum := sum + (a at: i)].

sum := 0.
a do: [:x | sum := sum + x].

sum := 0.
i := 1.
[i <= n] whileTrue: [

sum := sum + (a at: i).
i := i + 1]. 53

"True methods"
ifTrue: trueBlock ifFalse: falseBlock

^ trueBlock value
ifTrue: aBlock

^ aBlock value
ifFalse: aBlock

^ nil
ifFalse: falseBlock ifTrue: trueBlock

^ trueBlock value

54

EXAMLE: POLYNOMIALS

¢ Represent Polynomials: 3x2 + 5x - 7
¢ Representation: #(-7 5 3)
¢ Subclass of Magnitude

55

Magnitude subclass: #Polynomial
instanceVariableNames: 'coefficient'
classVariableNames:: ''
poolDictionaries: ''

new
"Unary class constructor: return 0*x^0"
^ self new: #(0)

new: array
"Keyword class constructor"
^ (super new) init: array

56

init: array
"Private: initialize coefficient"
coefficient := array deepCopy

degree
"Highest non-zero power"
^ coefficient size - 1

coefficient: power
"Coefficient of given power"
(power >= coefficient size) ifTrue: [^ 0].
^ coefficient at: power + 1

57

asArray
^ coefficient deepCopy

= aPoly
^ coefficient = aPoly asArray

!= aPoly
^ (self = aPoly) not

< aPoly
"not defined"
^ self shouldNotImplement

58

