
TYPE INFERENCE (II)
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SOLVING CONSTRAINTS (RECAP)
¢ Judgement form:

� !"#$$ %"&&'"(")"*+",
� %"-."%/*01(2 (314(..-5/
� (")"*"-."6"*(47".89(7(
� ,"-."6".(*"5:"85/.*46-/*.

¢ A solution to a system of type constraints is a 
substitution S
� a function from type variables to type schemes
� substitutions are defined on all type variables (a total 

function), but only some of the variables are actually 
changed:
¢ S(a) = a     (for most variables a)
¢ S(a) = s      (for some a and some type scheme s)

� dom(S) = set of variables s.t. S(a) ¹ a
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SUBSTITUTIONS

¢ Given a substitution S, we can define a function S* from 
type schemes (as opposed to type variables) to type 
schemes:
� S*(int) = int
� S*(bool) = bool
� S*(s1 à s2) = S*(s1) à S*(s2)
� S*(a) = S(a)

¢ For simplicity, next I will write S(s) instead of S*(s) 
¢ s denotes type schemes, whereas a, b, c denote type 

variables
¢ This function replaces all type variables in a type scheme.
¢ There’s no variable binding in the language of type 

scheme, hence no danger of capturing! 3



EXTENSIONS TO SUBSTITUTION

¢ Substitution can be extended pointwise to the 
typing context:
G := . | G, x : s

S( .) = .
S(G, x:s) = S(G), x: S(s)

Similarly, substitution can be applied to the type 
annotations in an expression, e.g.:

S(x) = x
S(\x:s.e) = \x:S(s).S(e) 
S(nil[s]) = nil[S(s)] 4



COMPOSITION OF SUBSTITUTIONS

¢ Composition (U o S) applies the substitution S 
and then applies the substitution U:
� (U o S)(a) = U(S(a))

¢ We will need to compare substitutions
� T <= S if T is “more specific” than S
� T <= S if T is “less general” than S
� Formally: T <= S if and only if T = U o S for some U
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COMPOSITION OF SUBSTITUTIONS

¢ Examples:
� example 1: any substitution is less general than the 

identity substitution I:
¢ S <= I because S = S o I

� example 2:
¢ S(a) = int, S(b) = c à c
¢ T(a) = int, T(b) = c à c, T(c) = int
¢ we conclude: T <= S
¢ if T(a) = int, T(b) = int à bool then T is unrelated to S 

(neither more nor less general)
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PRESERVATION OF TYPING UNDER TYPE
SUBSTITUTION

¢ Theorem: If S is any type substitution and 
G |- e : s, then S(G) |- S(e) : S(s)

Proof: straightforward induction on the typing 
derivations.
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SOLVING A CONSTRAINT (FIRST ATTEMPT)

¢ Judgment format: S |= q 
(S is a solution to the constraints q)

S(s1) = S(s2)          S |= q
-----------------------------------
S |= {s1 = s2} U q

----------
S |= { }

any substitution is
a solution for the empty
set of constraints

a solution to an equation
is a substitution that makes
left and right sides equal
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However this will not help you
Solve q to obtain S!



MOST GENERAL SOLUTIONS

¢ S is the principal (most general) solution of a set of 
constraints q if
� S |= q                           (S is a solution)
� if T |= q then T <= S   (S is the most general one)

¢ Lemma:  If q has a solution, then it has a most general 
one

¢ We care about principal solutions since they will give 
us the most general types for terms (polymorphism!)
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EXAMPLES

¢ Example 1
� q = {a=int, b=a}
� principal solution S:

¢ S(a) = S(b) = int
¢ S(c) = c    (for all c other than a,b)
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EXAMPLES

¢ Example 2
� q = {a=int, b=a, b=bool}
� principal solution S:

¢ does not exist (there is no solution to q)

11



PRINCIPAL SOLUTIONS

¢ principal solutions give rise to most general 
reconstruction of typing information for a term:
� fun f(x:a):a = x

¢ is a most general reconstruction

� fun f(x:int):int = x
¢ is not
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UNIFICATION

¢ Unification:  An algorithm that provides the 
principal solution to a set of constraints (if one 
exists)
� If one exists, it will be principal
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UNIFICATION

¢ Unification:  Unification systematically simplifies 
a set of constraints, yielding a substitution

¢ During simplification, we maintain (S, q)
� S is the solution so far
� q are the constraints left to simplify
� Starting state of unification process: (I, q)
� Final state of unification process: (S, { })
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identity
substitution
is most
general



UNIFICATION MACHINE

¢ We can specify unification as a transition system:
� (S, q) -> (S’, q’)

¢ Base types & simple variables:

-------------------------------- (u-int)
(S,{int=int} U q) -> (S, q)

------------------------------------ (u-bool)
(S,{bool=bool} U q) -> (S, q)

----------------------------- (u-eq)
(S,{a=a} U q) -> (S, q)
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UNIFICATION MACHINE

¢ Functions:

¢ Variable definitions

---------------------------------------------- (u-fun)
(S, {s11 -> s12= s21 -> s22} U q) -> 
(S, {s11 = s21, s12 = s22} U q)

--------------------------------------------- (a not in FV(s)) (u-var1)
(S,{a=s} U q) -> ([a=s] o S, q[s/a]) 

-------------------------------------------- (a not in FV(s)) (u-var2)
(S,{s=a} U q) -> ([a=s] o S, q[s/a])
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OCCURS CHECK

¢ What is the solution to {a = a à a}?
� There is none! 
� The occurs check detects this situation

-------------------------------------------- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

occurs check
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IRREDUCIBLE STATES

¢ Recall: final states have the form (S, { })
¢ Stuck states (S,q) are such that every equation in 

q has the form:
� int = bool
� s1 à s2 = s   (s not function type)
� a = s              (s contains a)
� or is symmetric to one of the above

¢ Stuck states arise when constraints are 
unsolvable
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TERMINATION

¢ We want unification to terminate (to give us a type 
reconstruction algorithm)

¢ In other words, we want to show that there is no 
infinite sequence of states
� (S1,q1) à (S2,q2) à ...

¢ Theorem: unification algorithm always terminates.
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TERMINATION

¢ We associate an ordering with constraints
� q < q’ if and only if 

¢ q contains fewer variables than q’
¢ q contains the same number of variables as q’ but fewer type 

constructors (ie: fewer occurrences of int, bool, or “à”)
¢ in other words, q is simpler than q’

� This is a lexicographic ordering on (nv, nc)
¢ nv: Number of variables
¢ nc: Number of constructors
¢ There is no infinite decreasing sequence of constraints

� To prove termination, we must demonstrate that every 
step of the algorithm reduces the size of q according to 
this ordering
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TERMINATION

¢ Lemma: Every step reduces the size of q
� Proof:  By observation on the definition of the reduction 

relation.

--------------------------------
(S,{int=int} U q) -> (S, q)

------------------------------------
(S,{bool=bool} U q) -> (S, q)

-----------------------------
(S,{a=a} U q) -> (S, q)

----------------------------------------------
(S,{s11 -> s12= s21 -> s22} U q) -> 
(S, {s11 = s21, s12 = s22} U q)

------------------------ (a not in FV(s))
(S,{a=s} U q) -> 
([a=s] o S, q[s/a])
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------------------------ (a not in FV(s))
(S,{s=a} U q) -> 
([a=s] o S, q[s/a])



CORRECTNESS

¢ we know the algorithm terminates
¢ we want to prove that a series of steps:

(I, q1) -> (S2, q2) -> (S3, q3) -> ... -> (S, {})
solves the initial constraints q1

¢ We’ll do that by induction on the length of the 
sequence, but we’ll need to define the invariants
that are preserved from step to step



COMPLETE SOLUTIONS

¢ A complete solution for (S, q) is a substitution T 
such that

1. T <= S
2. T |= q
� intuition: T  extends S and solves q

¢ A principal solution T for (S, q) is complete for 
(S, q) and

3. for all T’ such that 1. and 2. hold, T’ <= T
� intuition: T is the most general solution (it’s the 

least restrictive)
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PROPERTIES OF SOLUTIONS

¢ Lemma 1: Every final state (S, { }) has a complete and principal 
solution, which is S.

¢ To show that S is a complete solution: 
¢ S <= S
¢ S |= { }

¢ Proof: by induction on the length of the unification sequence.
� Case 0 steps: S |= {} is always true for any S, including I. S<= I 

for any S. 
� Hypothesis: for k steps from (S’, q), final state (S, {}) has a 

complete solution S, i.e. S<=S’, S|=q.
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every substitution is a solution
to the empty set of constraints



� Case k+1 steps: 
¢ There are 6 subcases, one for each unification rule.
¢ Cases int, bool, fun and equal are trivial since S’ remains the same 

after the first step, then remaining k steps is true due to 
hypothesis.

¢ Case (u-var1) and (u-var2): 
if ([a=s] o S, q[s/a])  has a final solution, i.e. S |= q[s/a] (by IH)
then [a=s] o S |=  {a=s} U q  (proved)
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--------------------------------
(S,{int=int} U q) -> (S, q)

------------------------------------
(S,{bool=bool} U q) -> (S, q)

-----------------------------
(S,{a=a} U q) -> (S, q)

----------------------------------------------
(S,{s11 -> s12= s21 -> s22} U q) -> 
(S, {s11 = s21, s12 = s22} U q)

------------------------------------------------- (a not in FV(s))
(S,{a=s} U q) -> ([a=s] o S, q[s/a])

------------------------------------------------ (a not in FV(s))
(S,{s=a} U q) -> ([a=s] o S, q[s/a])



PROPERTIES OF SOLUTIONS

¢ Lemma 2: No stuck state has a complete solution 
(or any solution at all)
� it is impossible for a substitution to make the 

necessary equations equal
¢ int ¹ bool
¢ int ¹ t1 -> t2
¢ ...
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PROPERTIES OF SOLUTIONS

¢ Lemma 3
� If (S, q) -> (S’, q’) then 

¢ T is complete for (S,q) iff T is complete for (S’,q’)
¢ T is principal for (S,q) iff T is principal for (S’,q’)

� Proof: by induction on the derivation of unification 
step -> 

� In the forward direction, this is the preservation 
theorem for the unification machine!
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SUMMARY: UNIFICATION

¢ By termination, (I, q) à* (S, q’) where (S, q’) is 
irreducible.  Moreover:
If q’ = { } then: 
� (S, q’) is final (by definition)
� S is a principal solution for q

¢ Consider any T such that T is a solution to q.
¢ Now notice, S is principal for (S, q’) (by lemma 1)
¢ S is principal for (I, q) (by lemma 3)
¢ Since S is principal for (I, q), we know T <= S and therefore 

S is a principal solution for q.
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SUMMARY:  UNIFICATION (CONT.)
¢ ... Moreover:

� If q’ is not { } (and (I, q) à* (S, q’) where (S, q’) is 
irreducible) then: 

� (S, q’) is stuck.  Consequently, (S,q’) has no complete 
solution.  By lemma 3, even (I, q) has no complete 
solution and therefore q has no solution at all.
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SUMMARY: TYPE INFERENCE

¢ Type inference algorithm.
� Given a context G, and untyped term u:

¢ Find e, t, q such that G |- u ==> e : t, q
¢ Find principal solution S of q via unification

¢ if no solution exists, there is no reconstruction
¢ Apply S to e, i.e., our solution is S(e) 

¢ S(e) contains schematic type variables a,b,c, etc. that 
may be instantiated with any type

¢ Since S is principal, S(e) characterizes all reconstructions.
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LET POLYMORPHISM

¢ Generalized from the type inference algorithm
¢ A.k.a ML-style or Hindley Milner-style 

polymorphism
¢ Basis of “generic libraries”:

� Trees, lists, arrays, hashtables, streams, …
¢ let id = \x. x in

(id 25, id true)
� id can’t be both int à int and bool à bool, due to:
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G⊢ e1 : t1    G, x:t1 ⊢ e2 : t2
[t-let]

G ⊢ let x=e1 in e2 : t2



LET POLYMORPHISM

¢ Instead:

¢ Or using the constraint generation rule:
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G ⊢ e2[e1/x] : t2 G ⊢ e1 : t1
[t-letPoly]

G ⊢ let x=e1 in e2 : t2

G |-- u2[u1/x] ==> e2[e1/x] : t2, q2
G |-- u1 ==> e1 : t1, q1
-----------------------------------------------------------------------
G |-- let x = u1 in u2 ==> let x = e1 in e2: t2, q1 U q2



CAVEAT WITH LET POLYMORPHISM

¢ If the body (e2) contains many let bindings
¢ Every occurrence of a let binding in e2 causes a 

type check of right-hand-side e1
¢ e1 itself can contain many let binding as well
¢ Time complexity exponential to the size of the 

expression!
¢ Practical implementation uses a smarter but 

equivalent algorithm: 
� Amortized linear time
� Worse-case still exponential
� see Pierce Ch. 22. 33


