TYPE INFERENCE (I)




RESPONSE TO CRITICISMS OF TYPED
LANGUAGES

Types overly constrain functions & data

makes typed constructs useful in more
contexts
o universal polymorphism => code reuse
\x.x:‘a2‘a (* ’a 1s any type *)
reverse : ‘a list 2 ‘alist (¥ ’a 1s any type *)
o existential polymorphism => modules & abstract data types
T=3X{a:X; f:X — bool}
intT = {a: int; f: int 2 bool}
boolT = {a: bool; f: bool = bool}

Types clutter programs and slow down
programmer productivity

o uninformative annotations may be omitted



TYPE SCHEMES

A contains type variables that may
be filled in during type inference

s =‘a | int | bool | s1 =2 s2

‘a 1s a type variable

A 1s a term (a.k.a. expression) that
contains type schemes rather than proper types
e=..| funf(x:isl):s2=e

Note the above named function notation



UNTYPED LANGUAGE

e..—
X
| c (consts: 0, 1, ..., true, false)
| e; bop e, (binary operations)
| funf (x) =e (named function, can be recursive)

| e e (applications)



EXAMPLE

fun map (f, 1) =
if null (1) then
nil

else

cons (f (hd 1), map (£, tl1 1)))



EXAMPLE

library functions

fun map]ﬂ)}/ argument type is ‘a list
if null (I) then

nil

else
cons (f (hd 1), map (£, tl1 1))

library function result type is ‘a

result type is ‘a list

argument type is (‘a *
‘a list)
result type is ‘a list




STEP 1: ADD TYPE SCHEMES

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f (hd 1), map (£, tl1 1))



STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else
cons (f (hd 1), map (£, tl1 1))

« walk over the program & keep track of the type equations t1 =
t2 that must hold in order to type check the expressions
according to the normal typing rules

 introduce new type variables for unknown types whenever
necessary




STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f (hd 1), map (£, tl1 1))



STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f (hd 1), map (£, tl1 1))



STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f (hd 1), map (£, tl1 1))



STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f (hd 1), map (f, t11 )



STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
1f null (1) then
nil

else

cons (f(hd1:b"), map (f, tl1 )



STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f(hd1:b"):a’, map (f tll) : )



STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f(hdl): a’, map (f, tl 1) : ©))



STEP 2: GENERATE CONSTRAINTS

constraints
b =Db’list
. . o b =Db"list
funmap (f:a,l1:b):c= b = b” list
if null (1) then co e
. . b=Db" list
nil :dlist a=Db"->a
olse c = C list
a =c

cons (f (hd 1), map (£, t1 1)) : ¢ list

\

d list = ¢’ list




STEP 2: GENERATE CONSTRAINTS constraints

b = Db’ list
. . R b =Db"list
funmap (f:a,l1:b):c= b= b lict
if null (1) then a=a
. b=Db" list
nil a=b’"->a
else c = C list
a =c
cons (f (hd 1), map (f, tl 1))) d list = ¢’ list
: dit
d list = ¢




STEP 2: GENERATE CONSTRAINTS

funmap (f:a,l1:b):c=
if null (1) then
nil

else

cons (f (hd 1), map (£, tl1 1))



STEP 3: SOLVE CONSTRAINTS

Constraint solution provides all possible
solutions to type scheme annotations on terms

map (f: b’ > C
X : b’ list)
: C list



STEP 4: GENERATE TYPES

Generate types from type schemes

Option 1: pick of the most general type
when we have completed type inference on the entire
program

map : ((int 2 int) * int list) 2 int list

Option 2: generate polymorphic types for program
parts and continue (polymorphic) type inference
map : V(a,b) ((a 2 b) * a list) 2 b list



QUIZ: GENERATING TYPES

Generate the polymorphic types for the following
function:

fun fold (f, a, 1) =
case |l of
nil => a

| h::t =>fold (f, f (h, a), t)



TYPE INFERENCE DETAILS

are sets of equations between
type schemes

q:=1{sll=s12, ..., snl =sn2}

eg:{b=>b’ list,a=b > ¢}



CONSTRAINT GENERATION

constraint generation

our algorithm crawls over abstract syntax of untyped
expressions and generates

a term scheme

a set of constraints

Algorithm defined as set of inference rules (as
always).
Judgement form:

Gl--u==>e:t,q

u is untyped expression

e :tis aterm scheme

g is a set of constraints



CONSTRAINT GENERATION

Simple rules:
Gl--x=>x:5s, {} @GK)=s)

o If G(x) 1s not defined then x is free variable

G |--3=>3:1nt, {} (same for other ints)
G | -- true ==> true : bool, {}

G | -- false ==> false : bool, {}



OPERATORS

G|-ul==>el:tl, ql G|-u2==>e2:12, 92

Gl|-ul+u2==>el+e2:int,glUg2U{tl =int, t2 = int}

G|-ul==>el:tl, ql G|-u2==>e2:1t2, Qg2

G|-ul<u2==>el<e2:bool,glUg2U{tl =int, t2 = int}



IF STATEMENTS

G |-- if ul then u2 else u3 ==> if el then e2 else e€3: g,
qluUg2Uqg3U{tl =bool,a =12, a=1t3}



FUNCTION APPLICATION

--ul ==>el:tl, ql
--u2==>e2:1t2, g2

G|-ulu2==>ele2:a,qlUqg2U{tl =t2-> a}



FUNCTION DECLARATION

G|-funf(x)=u ==>funf(x:a):b=e

:a->b,qU{t=>b}

(a, b are fresh type variables; not in G)



SOLVING CONSTRAINTS

A to a system of type constraints is a

a function from type variables to type schemes

substitutions are defined on all type variables (a total
function), but only some of the variables are actually
changed:

S(a) =a (for almost all variables a)

S(a) =s  (for some a and some type scheme s)

dom(S) = set of variables s.t. S(a) # a



SUBSTITUTIONS

Given a substitution S, we can define a function S*
from type schemes (as opposed to type variables) to
type schemes:

S*(int) = int

S*(s1 2 s2) = S*(s1) 2 S*(s2)

S*(a) = S(a)

For simplicity, next I will write S(s) instead of S*(s)

s denotes type schemes, whereas a, b, ¢ denote type
variables

This function replaces all type variables in a type scheme.



COMPOSITION OF SUBSTITUTIONS

(U o S) applies the substitution S
and then applies the substitution U:

(U o S)(a) = U(S(a))
We will need to compare substitutions
T <= S if T is “more specific’ than S
T <=Sif T is “less general” than S
Formally: T<=S ifand only if T = U o S for some U



COMPOSITION OF SUBSTITUTIONS

Examples:

example 1: any substitution is less general than the
1dentity substitution I:
oS <=1because S=Sol

example 2:
oS(a) =1int, S(b) =c 2> ¢
o T(a) =1int, T(b) =c 2 ¢, T(c) = int
o we conclude: T <= S

o 1f T(a) = int, T(b) = int > bool then T 1s unrelated to S
(neither more nor less general)



SOLVING A CONSTRAINT

Judgment format: S |=q
(S 1s a solution to the constraints q)

S(s1) = S(s2) S|=q

S|={} S|={s1=s2}Uq



MOST GENERAL SOLUTIONS

S 1s the (most general) solution of a set of
constraints q if

S |=q (S 1s a solution)
if T [=qthen T<=S (S 1isthe most general one)

. If q has a solution, then it has a most general one

We care about principal solutions since they will give us the
most general types for terms (polymorphism!)

Exercise:

Prove: If q has a solution, then it has a most general one.



EXAMPLES

Example 1
q = {a=int, b=a}
principal solution S:
o S(a) = S(b) = int
o S(c) =c (for all c other than a,b)



EXAMPLES

Example 2
q = {a=1nt, b=a, b=Dbool}
principal solution S:
o does not exist (there is no solution to q)



