
UNTYPED LAMBDA CALCULUS (II)
1

RECALL: CALL-BY-VALUE O.S.

 Basic rule

 Search rules:

e1  e1’

e1 e2  e1’ e2

e2  e2’

v e2  v e2’

2

(\x.e) v  e [v/x]

Quiz: Write the rules for Right-to-Left call-by-value O.S.?

CALL-BY-VALUE EVALUATION EXAMPLE

(\x. x x) (\y. y)

 x x [\y. y / x]

= (\y. y) (\y. y)

 y [\y. y / y]

= \y. y

3

Note y is free in the body of \y.y, i.e., y!

ANOTHER EXAMPLE

(\x. x x) (\x. x x)

 x x [\x. x x/x]

= (\x. x x) (\x. x x)

 In other words, it is simple to write non-

terminating computations in the lambda calculus

 what else can we do?

4

WE CAN DO EVERYTHING

 The lambda calculus can be used as an “assembly
language”

 We can show how to compile useful, high-level
operations and language features into the lambda
calculus

 Result = adding high-level operations is convenient for
programmers, but not a computational necessity
 Concrete syntax vs. abstract syntax

 “Syntactic sugar”

 Result = lambda calculus makes your compiler
intermediate language simpler

5

BOOLEANS

 we can encode booleans

 we will represent “true” and “false” as functions
named “tru” and “fls”

 how do we define these functions?

 think about how “true” and “false” can be used

 they can be used by a testing function:

 “test b then else” returns “then” if b is true and returns
“else” if b is false

 i.e., test tru then else * then; test fls then else * else

 the only thing the implementation of test is going to be
able to do with b is to apply it

 the functions “tru” and “fls” must distinguish themselves
when they are applied

6

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else

 E.g. (underlined are redexes):

test tru a b

= (\x.\then.\else. x then else) tru a b

(\then.\else. tru then else) a b

(\else. tru a else) b

 tru a b

= (\t.\f. t) a b

 (\f. a) b

 a 7Quiz: Step-by-step, evaluate

test fls a b?

Remember

applications are

left associative:

(((test tru) a) b)

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

and = \b.\c. b c fls

and tru tru

* tru tru fls

* tru

(* stands for multi-step evaluation)

8

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

and = \b.\c. b c fls

and fls tru

* fls tru fls

* fls

What will be the definition of “or” and “not”?

9

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

or = \b.\c. b tru c

or fls tru

* fls tru tru

* tru

or fls fls

* fls tru fls

* fls
10

PAIRS

pair = \f.\s.\b. b f s (*pair is a constructor: pair x y*)

fst = \p. p tru

snd = \p. p fls

fst (pair v w)

= fst ((\f.\s.\b. b f s) v w)

 fst ((\s.\b. b v s) w)

 fst (\b. b v w)

= (\p. p tru) (\b. b v w)

(\b. b v w) tru

 tru v w /* tru = \t.\f. t */

* v 11

AND WE CAN GO ON...

 numbers

 arithmetic expressions (+, -, *,...)

 lists, trees and datatypes

 exceptions, loops, ...

 ...

 the general trick:

 values will be functions – construct these functions so
that they return the appropriate information when
called by an operation （applied by another function)

12

QUIZ:

Suppose the numbers can be encoded in lambda

calculus as:

0= \f. \x. x

1 = \f. \x. f x

2 = \f. \x. f (f x)

…

Define succ in lambda calculus such that

succ 0 * 1

succ 1 * 2

…

SIMPLY-TYPED LAMBDA

CALCULUS

14

SIMPLY TYPED LAMBDA-CALCULUS

 Goal: construct a similar system of language that

combines the pure lambda-calculus with the basic

types such as bool and num.

 A new type:  (arrow type)

 Set of simple types over the type bool is

t ::= bool

| t1  t2

 Note: type constructor  is right associative:

 t1  t2  t3 == t1  (t2  t3)

15

SYNTAX (I)

e ::= expressions:

x (variable)

| true (true value)

| false (false value)

| if e1 then e2 else e3 (conditional)

| \x : t . e (abstraction)

| e1 e2 (application)

v ::= values:

true (true value)

| false (false value)

| \x : t . e (abstraction value) 16

SYNTAX (II)

t ::= types:

bool (base boolean type)

| t1  t2 (type of functions)

Γ ::= contexts:

. (empty context)

| Γ, x: t (variable binding)

17

TYPING RULES

 The type system of a language consists of a set of

inductive definitions with judgment form:

Γ ⊢ e: t

 “If the current typing context is Γ, then expression e

has type t.”

 This judgment is known as hypothetical judgment (Γ is

the hypothesis).

 Γ (sometimes written as “G”) is a typing context (type

map) which is mapping between x and t of the form x: t

 x is the variable name appearing in e

 t is a type that’s bound to x
18

EVALUATION (O.S.)

[e  e’]

19

App1)-(E
'

'

2121

11

eeee

ee




App2)-(E

'

'

2121

22

evev

ee





AppAbs)-(E
]/[).:(xvevetx 

if0)-(E
 else then ' if else then if

'

321321

11

eeeeee

ee





if1)-(E
 else then if 232 eeetrue 

if2)-(E
 else then if 332 eeefalse 

TYPING

1221

11212111

2121

221

321

321

:|

:| :|

: .:|

:|:,

 : else then if |

 : | : | : |

:|

:|

:|

:

tee

tette

ttetx

tetx

teee

teteboole

boolfalse

booltrue

tx

tx























20

(T-Var)

(T-Abs)

(T-App)

(T-True)

(T-If)

(T-False)

[Γ⊢ e : t]

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Lemma 1 (Uniqueness of Typing). For every typing context Γ and

expression e, there exists at most one t such that Γ |-- e : t.

(note: we don’t consider sub-typing here)

Proof:

By induction on the derivation of Γ |- e : t.

Case t-var: since there’s at most one binding for x in Γ, x has either no

type or one type t. Case proved

Case t-true and t-false: obviously true.

Case t-if:

(1) t is unique (By I.H.)

Case proved.

21

teee

teteboole

 : else then if |

 : | : | : |

321

321





PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Case t-abs:

(1) t2 is unique (By I.H.)

(2) Γ contains just one (x, t) pair so t1 is unique (By (1) and

assumption of t-abs)

(3) t1  t2 is unique (By (2) and t-abs)

Case t-app:

(1) e1 and e2 satisfies Lemma 1 (By I.H.)

(2) There’s at most one instance of t11 (By (1))

(3) t12 is unique, too (By (2) & I.H.)

22

2121

221

:.:|

:|:,

ttetx

tetx







1221

11212111

:|

:| :|

tee

tette





Quiz: Why does Γ contain just one instance of (x, t), for any x?

In other words, each variable appears only once in Γ.

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Lemma 2 (Inversion for Typing).

 If Γ⊢ x : t then x : t ∈Γ

 If Γ⊢ (λx : t1.e) : t then there is a t2 such that

t = t1 t2 and Γ, x : t1 ⊢ e : t2

 If Γ⊢ e1 e2 : t then there is a t’ such that

Γ ⊢ e1 : t’  t and Γ ⊢ e2 : t′

Proof:

From the definition of the typing rules, there is only one rule for

each type of expression, hence the result.

 Well-typedness: An expression e in the language L is said to

be well-typed, if there exists some type t, such that e : t.
23

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Canonical Forms Lemma

(Idea: Given a type, want to know something about the shape of the

value)

If . |- v: t then

If t = bool then v = true or v = false;

If t = t1  t2 then v = \x: t1. e

Proof:

By inspection of the typing rules.

24

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Exchange Lemma

If G, x:t1, y:t2, G' |- e:t,

then G, y:t2, x:t1, G' |- e:t.

Proof by induction on derivation of

G, y:t, x:t, G' |- e:t

(Homework!)

Weakening Lemma

If G |- e:t then G, x:t' |- e:t (provided x not in
Dom(G))

(Homework!)
25

TYPE SAFETY OF A LANGUAGE

 Safety of a language = Progress + Preservation

 Progress: A well-type term is not stuck (either it
is a value or it can take a step according to the
evaluation rules)

 Preservation: If a well-typed term (with type t)
takes a step of evaluation, then the resulting
term is also well typed with type t.

 Type-checking: the process of verifying well-
typedness of a program (or a term). 26

PROGRESS THEOREM

 Suppose e is a closed and well-typed term (that is e : t for some t). Then
either e is a value or else there is some e’ for which e  e’.

Proof: By induction on the derivation of typing: [Γ⊢ e : t]

Case T-Var: doesn’t occur because e is closed.

Case T-True, T-False, T-Abs: immediate since these are values.

Case T-App:

(1) e1 is a value or can take one step evaluation. Likewise for e2.
(By I.H.)

(2) If e1 can take a step, then E-App1 can apply to (e1 e2). (By (1))

(3) If e2 can take a step, then E-App2 can apply to (e1 e2) (By (1))

(4) If both e1 and e2 are values, then e1 must be

an abstraction, therefore E-AppAbs can apply to (e1 e2)

(By (1) and canonical forms v)

(5) Hence (e1 e2) can always take a step forward. (By (2,3,4))

27

PROGRESS THEOREM (CONT’D)

Case T-if:

1. e1 can either take a step or is a value (By I.H.)

2. Subcase 1: e1 can take a step (By I.H.)

1. if e1 then e2 else e3 can take a step (By E-if0)

3. Subcase 2: e1 is a value (By I.H.)

1. If e1 = true, if e1 then e2 else e3  e2 (By E-if1)

2. If e1 = false, if e1 then e2 else e3  e3 (By E-if2)

4. In both subcases, e can take a step. Case proved.

28

PRESERVATION THEOREM

 If G |- e : t and e  e’, then G |- e’ : t.

Proof: By induction on the derivation of G|- e : t.

Case T-Var, T-Abs, T-True, T-False:

Case doesn’t apply because variable or values can’t take one step evaluation.

Case T-If: e = if e1 then e2 else e3.

If e  e’ there are two subcases cases:

Subcase 1: e1 is not a value.

(1) e1 : bool (By assumption and invesion of T-if)

(2) e1  e1’ and e1’ : bool (By IH)

(3) G |- e’ : t (By T-If and (2))

Subcase 2: e1 is a value, i.e. either true or false.

(4) e  e2 or e  e3 and e’ : t (e’=e2 or e3) (By E-If1, E-If2 and IH)

Case proved. 29

PRESERVATION THEOREM (CONT’D)

Case T-App: e = e1 e2. Need to prove, G|- e’ : t12

If e1 is not a value then:

(5) e1  e1’, and e1’ : t11t12. (By IH)

(6) e1’ e2 : t12 (By T-App)

If e1 is a value then:

(7) e1 is an abstraction. (By assumption and T-Abs)

There are two subcases for e2.

Subcase 1: e2 is a value. Let’s call it v.

(8) e = \x . e” v, and

G |- \x.e” : t11 t12, (By assumption of T-App)

G, x: t11|- e” : t12,

G |- v : t11 (By (7) and inversion of T-Abs)

(9) \x. e” v  e” [v / x] (By E-AppAbs)

(10) G |- e”[v / x] : t12. (By (8), (9) and substitution lemma)

(11) G|- e’ : t12 (By (10) & assumption)

30

Subcase 2: e2 is not a value.

(12) Suppose e2  e2’. Then e  e1 e2’, i.e., e’ = e1 e2’. (By E-App2)

(13) G |- e2’ : t11 (By I.H., T-App)

(14) G |- e1 e2’ : t12. (By (13))

(15) G |- e’ : t12. (By (12) & (14))

Case proved.

QED.

31

SUBSTITUTION LEMMA

If G, x : t’ |- e : t, and G |- v : t’, then G|- e [v / x] : t.

Proof left as an exercise.

32

CURRY-HOWARD CORRESPONDENCE

 A.k.a Curry-Howard Isomorphism

 Connection between type theory and logic

33

Logic Programming Languages

Propositions Types

Proposition 𝑃 ⊃ 𝑄 Type P Q

Proposition 𝑃 ∧ 𝑄 Type P ×Q (product/pair type)

Proof of proposition P Expression e of type P

Proposition P is provable Type P is inhabited (by some

expression)

