
UNTYPED LAMBDA CALCULUS (II)
1

RECALL: CALL-BY-VALUE O.S.

 Basic rule

 Search rules:

e1 e1’

e1 e2 e1’ e2

e2 e2’

v e2 v e2’

2

(\x.e) v e [v/x]

Quiz: Write the rules for Right-to-Left call-by-value O.S.?

CALL-BY-VALUE EVALUATION EXAMPLE

(\x. x x) (\y. y)

 x x [\y. y / x]

= (\y. y) (\y. y)

 y [\y. y / y]

= \y. y

3

Note y is free in the body of \y.y, i.e., y!

ANOTHER EXAMPLE

(\x. x x) (\x. x x)

 x x [\x. x x/x]

= (\x. x x) (\x. x x)

 In other words, it is simple to write non-

terminating computations in the lambda calculus

 what else can we do?

4

WE CAN DO EVERYTHING

 The lambda calculus can be used as an “assembly
language”

 We can show how to compile useful, high-level
operations and language features into the lambda
calculus

 Result = adding high-level operations is convenient for
programmers, but not a computational necessity
 Concrete syntax vs. abstract syntax

 “Syntactic sugar”

 Result = lambda calculus makes your compiler
intermediate language simpler

5

BOOLEANS

 we can encode booleans

 we will represent “true” and “false” as functions
named “tru” and “fls”

 how do we define these functions?

 think about how “true” and “false” can be used

 they can be used by a testing function:

 “test b then else” returns “then” if b is true and returns
“else” if b is false

 i.e., test tru then else * then; test fls then else * else

 the only thing the implementation of test is going to be
able to do with b is to apply it

 the functions “tru” and “fls” must distinguish themselves
when they are applied

6

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

test = \x.\then.\else. x then else

 E.g. (underlined are redexes):

test tru a b

= (\x.\then.\else. x then else) tru a b

(\then.\else. tru then else) a b

(\else. tru a else) b

 tru a b

= (\t.\f. t) a b

 (\f. a) b

 a 7Quiz: Step-by-step, evaluate

test fls a b?

Remember

applications are

left associative:

(((test tru) a) b)

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

and = \b.\c. b c fls

and tru tru

* tru tru fls

* tru

(* stands for multi-step evaluation)

8

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

and = \b.\c. b c fls

and fls tru

* fls tru fls

* fls

What will be the definition of “or” and “not”?

9

BOOLEANS

tru = \t.\f. t fls = \t.\f. f

or = \b.\c. b tru c

or fls tru

* fls tru tru

* tru

or fls fls

* fls tru fls

* fls
10

PAIRS

pair = \f.\s.\b. b f s (*pair is a constructor: pair x y*)

fst = \p. p tru

snd = \p. p fls

fst (pair v w)

= fst ((\f.\s.\b. b f s) v w)

 fst ((\s.\b. b v s) w)

 fst (\b. b v w)

= (\p. p tru) (\b. b v w)

(\b. b v w) tru

 tru v w /* tru = \t.\f. t */

* v 11

AND WE CAN GO ON...

 numbers

 arithmetic expressions (+, -, *,...)

 lists, trees and datatypes

 exceptions, loops, ...

 ...

 the general trick:

 values will be functions – construct these functions so
that they return the appropriate information when
called by an operation （applied by another function)

12

QUIZ:

Suppose the numbers can be encoded in lambda

calculus as:

0= \f. \x. x

1 = \f. \x. f x

2 = \f. \x. f (f x)

…

Define succ in lambda calculus such that

succ 0 * 1

succ 1 * 2

…

SIMPLY-TYPED LAMBDA

CALCULUS

14

SIMPLY TYPED LAMBDA-CALCULUS

 Goal: construct a similar system of language that

combines the pure lambda-calculus with the basic

types such as bool and num.

 A new type: (arrow type)

 Set of simple types over the type bool is

t ::= bool

| t1 t2

 Note: type constructor is right associative:

 t1 t2 t3 == t1 (t2 t3)

15

SYNTAX (I)

e ::= expressions:

x (variable)

| true (true value)

| false (false value)

| if e1 then e2 else e3 (conditional)

| \x : t . e (abstraction)

| e1 e2 (application)

v ::= values:

true (true value)

| false (false value)

| \x : t . e (abstraction value) 16

SYNTAX (II)

t ::= types:

bool (base boolean type)

| t1 t2 (type of functions)

Γ ::= contexts:

. (empty context)

| Γ, x: t (variable binding)

17

TYPING RULES

 The type system of a language consists of a set of

inductive definitions with judgment form:

Γ ⊢ e: t

 “If the current typing context is Γ, then expression e

has type t.”

 This judgment is known as hypothetical judgment (Γ is

the hypothesis).

 Γ (sometimes written as “G”) is a typing context (type

map) which is mapping between x and t of the form x: t

 x is the variable name appearing in e

 t is a type that’s bound to x
18

EVALUATION (O.S.)

[e e’]

19

App1)-(E
'

'

2121

11

eeee

ee

App2)-(E

'

'

2121

22

evev

ee

AppAbs)-(E
]/[).:(xvevetx

if0)-(E
 else then ' if else then if

'

321321

11

eeeeee

ee

if1)-(E
 else then if 232 eeetrue

if2)-(E
 else then if 332 eeefalse

TYPING

1221

11212111

2121

221

321

321

:|

:| :|

: .:|

:|:,

 : else then if |

 : | : | : |

:|

:|

:|

:

tee

tette

ttetx

tetx

teee

teteboole

boolfalse

booltrue

tx

tx

20

(T-Var)

(T-Abs)

(T-App)

(T-True)

(T-If)

(T-False)

[Γ⊢ e : t]

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Lemma 1 (Uniqueness of Typing). For every typing context Γ and

expression e, there exists at most one t such that Γ |-- e : t.

(note: we don’t consider sub-typing here)

Proof:

By induction on the derivation of Γ |- e : t.

Case t-var: since there’s at most one binding for x in Γ, x has either no

type or one type t. Case proved

Case t-true and t-false: obviously true.

Case t-if:

(1) t is unique (By I.H.)

Case proved.

21

teee

teteboole

 : else then if |

 : | : | : |

321

321

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Case t-abs:

(1) t2 is unique (By I.H.)

(2) Γ contains just one (x, t) pair so t1 is unique (By (1) and

assumption of t-abs)

(3) t1 t2 is unique (By (2) and t-abs)

Case t-app:

(1) e1 and e2 satisfies Lemma 1 (By I.H.)

(2) There’s at most one instance of t11 (By (1))

(3) t12 is unique, too (By (2) & I.H.)

22

2121

221

:.:|

:|:,

ttetx

tetx

1221

11212111

:|

:| :|

tee

tette

Quiz: Why does Γ contain just one instance of (x, t), for any x?

In other words, each variable appears only once in Γ.

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Lemma 2 (Inversion for Typing).

 If Γ⊢ x : t then x : t ∈Γ

 If Γ⊢ (λx : t1.e) : t then there is a t2 such that

t = t1 t2 and Γ, x : t1 ⊢ e : t2

 If Γ⊢ e1 e2 : t then there is a t’ such that

Γ ⊢ e1 : t’ t and Γ ⊢ e2 : t′

Proof:

From the definition of the typing rules, there is only one rule for

each type of expression, hence the result.

 Well-typedness: An expression e in the language L is said to

be well-typed, if there exists some type t, such that e : t.
23

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Canonical Forms Lemma

(Idea: Given a type, want to know something about the shape of the

value)

If . |- v: t then

If t = bool then v = true or v = false;

If t = t1 t2 then v = \x: t1. e

Proof:

By inspection of the typing rules.

24

PROPERTIES OF SIMPLY-TYPED LAMBDA

CALCULUS

Exchange Lemma

If G, x:t1, y:t2, G' |- e:t,

then G, y:t2, x:t1, G' |- e:t.

Proof by induction on derivation of

G, y:t, x:t, G' |- e:t

(Homework!)

Weakening Lemma

If G |- e:t then G, x:t' |- e:t (provided x not in
Dom(G))

(Homework!)
25

TYPE SAFETY OF A LANGUAGE

 Safety of a language = Progress + Preservation

 Progress: A well-type term is not stuck (either it
is a value or it can take a step according to the
evaluation rules)

 Preservation: If a well-typed term (with type t)
takes a step of evaluation, then the resulting
term is also well typed with type t.

 Type-checking: the process of verifying well-
typedness of a program (or a term). 26

PROGRESS THEOREM

 Suppose e is a closed and well-typed term (that is e : t for some t). Then
either e is a value or else there is some e’ for which e e’.

Proof: By induction on the derivation of typing: [Γ⊢ e : t]

Case T-Var: doesn’t occur because e is closed.

Case T-True, T-False, T-Abs: immediate since these are values.

Case T-App:

(1) e1 is a value or can take one step evaluation. Likewise for e2.
(By I.H.)

(2) If e1 can take a step, then E-App1 can apply to (e1 e2). (By (1))

(3) If e2 can take a step, then E-App2 can apply to (e1 e2) (By (1))

(4) If both e1 and e2 are values, then e1 must be

an abstraction, therefore E-AppAbs can apply to (e1 e2)

(By (1) and canonical forms v)

(5) Hence (e1 e2) can always take a step forward. (By (2,3,4))

27

PROGRESS THEOREM (CONT’D)

Case T-if:

1. e1 can either take a step or is a value (By I.H.)

2. Subcase 1: e1 can take a step (By I.H.)

1. if e1 then e2 else e3 can take a step (By E-if0)

3. Subcase 2: e1 is a value (By I.H.)

1. If e1 = true, if e1 then e2 else e3 e2 (By E-if1)

2. If e1 = false, if e1 then e2 else e3 e3 (By E-if2)

4. In both subcases, e can take a step. Case proved.

28

PRESERVATION THEOREM

 If G |- e : t and e e’, then G |- e’ : t.

Proof: By induction on the derivation of G|- e : t.

Case T-Var, T-Abs, T-True, T-False:

Case doesn’t apply because variable or values can’t take one step evaluation.

Case T-If: e = if e1 then e2 else e3.

If e e’ there are two subcases cases:

Subcase 1: e1 is not a value.

(1) e1 : bool (By assumption and invesion of T-if)

(2) e1 e1’ and e1’ : bool (By IH)

(3) G |- e’ : t (By T-If and (2))

Subcase 2: e1 is a value, i.e. either true or false.

(4) e e2 or e e3 and e’ : t (e’=e2 or e3) (By E-If1, E-If2 and IH)

Case proved. 29

PRESERVATION THEOREM (CONT’D)

Case T-App: e = e1 e2. Need to prove, G|- e’ : t12

If e1 is not a value then:

(5) e1 e1’, and e1’ : t11t12. (By IH)

(6) e1’ e2 : t12 (By T-App)

If e1 is a value then:

(7) e1 is an abstraction. (By assumption and T-Abs)

There are two subcases for e2.

Subcase 1: e2 is a value. Let’s call it v.

(8) e = \x . e” v, and

G |- \x.e” : t11 t12, (By assumption of T-App)

G, x: t11|- e” : t12,

G |- v : t11 (By (7) and inversion of T-Abs)

(9) \x. e” v e” [v / x] (By E-AppAbs)

(10) G |- e”[v / x] : t12. (By (8), (9) and substitution lemma)

(11) G|- e’ : t12 (By (10) & assumption)

30

Subcase 2: e2 is not a value.

(12) Suppose e2 e2’. Then e e1 e2’, i.e., e’ = e1 e2’. (By E-App2)

(13) G |- e2’ : t11 (By I.H., T-App)

(14) G |- e1 e2’ : t12. (By (13))

(15) G |- e’ : t12. (By (12) & (14))

Case proved.

QED.

31

SUBSTITUTION LEMMA

If G, x : t’ |- e : t, and G |- v : t’, then G|- e [v / x] : t.

Proof left as an exercise.

32

CURRY-HOWARD CORRESPONDENCE

 A.k.a Curry-Howard Isomorphism

 Connection between type theory and logic

33

Logic Programming Languages

Propositions Types

Proposition 𝑃 ⊃ 𝑄 Type P Q

Proposition 𝑃 ∧ 𝑄 Type P ×Q (product/pair type)

Proof of proposition P Expression e of type P

Proposition P is provable Type P is inhabited (by some

expression)

