
CS383 PROGRAMMING LANGUAGES

Kenny Q. Zhu

Dept. of Computer Science

Shanghai Jiao Tong University

KENNY Q. ZHU

Degrees: National University of Singapore (NUS)

Postdoc: Princeton University

Experiences: Microsoft Redmond, USA

Microsoft Research Asia

Faculty at SJTU since 2009

Director of ADAPT Lab

Research Interests:

Artificial Intelligence
Knowledge representation/discovery

Natural language understanding

Natural language generation

Programming Languages
Domain specific languages

Data Processing

Concurrency

Recent Publications:
AAAI, IJCAI, ACL, EMNLP,…

2

ADMINISTRATIVE INFO (I)

 All-English Course: everything in English!

 Lecturer:

 Kenny Zhu, SEIEE #03-407, kzhu@cs.sjtu.edu.cn

 Office hours: by appointment or after class

 Teaching Assistant:

 Bran Li, SEIEE #03-329, likaijian@sjtu.edu.cn

 Yvonne Huang, SEIEE #03-341,
Yvonne_huang@sjtu.edu.cn

 Office hours: Thursday 16:00 - 17:00

 Course Web Page (definitive source!):
http://www.cs.sjtu.edu.cn/~kzhu/cs383/

3

mailto:kzhu@cs.sjtu.edu.cn
mailto:likaijian@sjtu.edu.cn
mailto:Yvonne_huang@sjtu.edu.cn
http://www.cs.sjtu.edu.cn/~kzhu/cs490/

ADMINISTRATIVE INFO (II)

 Format:

 Two lecture classes on Monday

 Followed by a tutorial on Monday – Led by TA;
Your participation is REQUIRED!

 Reference Texts:

 Types and Programming Languages by
Benjamin C. Pierce, The MIT Press.

 Programming Languages – Principles and
Paradigms, 2nd Edition, by Tucker & Noonan,
McGraw Hill / Tsinghua University Press

 Practical Foundations for Programming
Languages by Robert Harper, Cambridge
University Press

 Lecture materials on course web page 4

ADMINISTRATIVE INFO (III)

 3-credit course (16 weeks)

 Modes of Assessment:
 In-class quizzes: 10%

 Tutorial participation: 5%

 Assignments: 30%

 Programming Project: 25%

 Final Exam: 30%

 Quizzes
 Given out at random times

 Usually on-screen multiple choice questions

 Bring piece of paper and a pen every time!

 Submit answer after class (immediately) to TA

 Tutorials
 Typically after every two lectures

 Discuss assignment questions, issues in project, other Q&A

 You will be asked to present your answers

 Volunteer to win extra scores! 5

ADMINISTRATIVE INFO (IV)

 Assignments

 Released (usually) every week (two lectures)

 Due date printed on assignment sheet

 Submit solutions including code and data on Canvas

 Late submission: -30% of full score for each additional day

 Assignment solutions to be discussed at the tutorial
following the submission (led by TA)

 Programming Project

 Individual project

 Implement an interpreter for a simple language called
simPL

 Be able to run test programs and produce correct
evaluation results

 Produce a report + code + results: due end of semester
6

WECHAT GROUP

7

INTRODUCTION
8

WHY DO WE LEARN

PROGRAMMING LANGUAGES?

9

TWO MISCONCEPTIONS ABOUT THIS COURSE

“This course about programming.”

“This is another compiler course.”

10

WHAT THIS COURSE IS ABOUT

 Theoretical aspects of the design and

implementation of all programming languages.

 The commonalities and differences between

various paradigms and languages.

 So you can:

 Pick the right language for a project;

 Design your own language (features);

 Do programming language research.

11

OUTLINE OF TODAY’S LECTURE

 Principles

 Paradigms

 Special Topics

 A Brief History

 On Language Design

 Compilers and Virtual Machines

 Roadmap of This Course

12

THE FACTORIAL PROGRAM

 n! = 1 * 2 * … * n

 Or

13

n!= i
i=1

n

Õ
Two different
mathematical
languages

In computing, there are many more ways to do this …

THE FACTORIAL PROGRAM

14

C:

int factorial(int n) {

int x = 1;

while (n>1) {

x = x * n;

n = n -1;

}

return x;

}

Java:

class Factorial

{

public static int fact(int n) {

int c, fact = 1;

if (n < 0)

System.out.println(“Wrong Input!");

else {

for (c = 1 ; c <= n ; c++)

fact = fact*c;

return fact;

}

}

}

THE FACTORIAL PROGRAM

15

Scheme:

(define (factorial n)

(if (< n 1) 1

(* n (factorial (- n 1)))

))

Prolog:

factorial(0, 1).

factorial(N, Result) :-

N > 0, M is N - 1,

factorial(M, SubRes),

Result is N * SubRes.

Programming languages have four properties:

 Syntax

 Names

 Types

 Semantics

For any language:

 Its designers must define these properties

 Its programmers must master these properties

PRINCIPLES

16

SYNTAX

The syntax of a programming language is a precise

description of all its grammatically correct programs.

When studying syntax, we ask questions like:

 What is the basic vocabulary?

 What is the grammar for the language?

 How are syntax errors detected?

17

SYNTAX

class Factorial

{

public static int fact(int n) {

int c, fact = 1;

if (n < 0)

System.out.println(“Wrong Input!");

else {

for (c = 1 ; c <= n ; c++)

fact = fact*c;

return fact;

}

}

} 18

Vocabulary of

Tokens:

Literal (constant)

Identifier

Operator

Separator(punctuation)

Reserved keyword

NAMES

Various kinds of entities in a program have names:

variables, types, functions, parameters, classes,

objects, …

An entity is bound to a name (identifier) within the

context of:

 Scope (static/dynamic)

 Visibility (part of scope that is visible)

 Lifetime (dynamic and runtime)

 Type

19

class Factorial

{

public static int fact(int n) {

int c, fact = 1;

if (n < 0)

System.out.println(“Wrong Input!");

else {

for (c = 1 ; c <= n ; c++)

fact = fact*c;

return fact;

}

}

}

NAMES

20

TYPES

A type is a collection of values and a collection of legal
operations on those values.

 Simple types
 numbers, characters, booleans, …

 Structured types
 Strings, lists, trees, hash tables, …

 Function types
 Simple operations like +, -, *, /

 More complex/general function: int  int

 Generic types (polymorphism): 

 A language’s type system can help:
 Determine legal operations

 Detect type errors
21

TYPES

class Factorial

{

public static int fact(int n) {

int c, fact = 1;

if (n < 0)

System.out.println(“Wrong Input!");

else {

for (c = 1 ; c <= n ; c++)

fact = fact*c;

return fact;

}

}

} 22

intint

SEMANTICS

The meaning of a program is called its semantics.

In studying semantics, we ask questions like:

 When a program is running, what happens to the values

of the variables? (operational semantics)

 What does each expression/statement mean? (static

semantics)

 What underlying model governs run-time behavior, such

as function call? (dynamic semantics)

 How are objects allocated to memory at run-time?

23

SEMANTICS

class Factorial

{

public static int fact(int n) {

int c, fact = 1;

if (n < 0)

System.out.println(“Wrong Input!");

else {

for (c = 1 ; c <= n ; c++)

fact = fact*c;

return fact;

}

} 24

value

reference

Static Semantics

Operational Semantics

 A programming paradigm is a pattern of problem-

solving thought that underlies a particular genre

of programs and languages.

 There are four main programming paradigms:

 Imperative

 Object-oriented

 Functional

 Logic (declarative)

PARADIGMS

25

a category of artistic composition, as in

music or literature, characterized by

similarities in form, style, or subject matter.

IMPERATIVE PARADIGM

 Follows the classic von Neumann-Eckert model:

 Program and data are indistinguishable in memory

 Program = a sequence of commands

 State = values of all variables when program runs

 Large programs use procedural abstraction

 Example imperative languages:

 Cobol, Fortran, C, Ada, Perl, …

26

THE VON NEUMANN-ECKERT MODEL

27

OBJECT-ORIENTED (OO) PARADIGM

 An OO Program is a collection of objects that

interact by passing messages that transform the

state.

 When studying OO, we learn about:

 Sending Messages  objects are active

 Inheritance

 Polymorphism

 Example OO languages:

 Smalltalk, Java, C++, C#, and Python
28

FUNCTIONAL PARADIGM

 Functional programming models a computation as a
collection of mathematical functions.

 Set of all inputs = domain

 Set of all outputs = range

 Functional languages are characterized by:

 Functional composition

 Recursion

 No state changes: no variable assignments

 x := x + 1 (wrong!)

 Mathematically: output results instantly

 Example functional languages:

 Lisp, Scheme, ML, Haskell, … 29

LOGIC PARADIGM

 Logic programming declares what outcome the program
should accomplish, rather than how it should be
accomplished.

parent(X, Y) :- father(X, Y).

parent(X, Y) :- mother(X, Y).

grandparent(X, Y) :- parent(X, Z), parent(Z, Y).

?- grandparent(X, jim).

 Declarative!

 When studying logic programming we see:
 Programs as sets of constraints on a problem

 Programs that achieve all possible solutions

 Programs that are nondeterministic

 Example logic programming languages:
 Prolog, CLP

30

MODERN LANGUAGES ARE MULTI-PARADIGM

 Haskell (F + I)

 Scala (F + I + O)

 OCaml (F + I + O)

 F Sharp (F + I + O)

 Python (O + I + F)

 …

31

 Concurrency

 E.g., Client-server programs

 Event handling

 E.g., GUIs, home security systems

 Correctness

 How can we prove that a program does what it is

supposed to do under all circumstances?

 Why is this important???

SPECIAL TOPICS

32

How and when did programming languages evolve?

What communities have developed and used them?

 Artificial Intelligence – Prolog, CLP, (Python)

 Computer Science Education – Pascal, Logo

 Science and Engineering – Fortran, Ada, ML, Haskell

 Information Systems – Cobol, SQL

 Systems and Networks – C, C++, Perl, Python

 World Wide Web – HTML, Java, Javascript, PHP

A BRIEF HISTORY

33

34

Design Constraints

 Computer architecture

 Technical setting

 Standards

 Legacy systems

Design Outcomes and Goals

ON LANGUAGE DESIGN

35

Levels of abstraction in computing

WHAT MAKES A SUCCESSFUL LANGUAGE?

Key characteristics:

 Simplicity and readability

 Clarity about binding

 Reliability

 Support

 Abstraction

 Orthogonality

 Efficient implementation

36

SIMPLICITY AND READABILITY

 Small instruction set

 E.g., Java vs. Scheme

 Simple syntax

 E.g., C/C++/Java vs. Python

 Benefits:

 Ease of learning

 Ease of programming

37

 A language element is bound to a property at the

time that property is defined for it.

 So a binding is the association between an object

and a property of that object

 Examples:

 a variable and its type

 a variable and its value

 Early binding takes place at compile-time

 Late binding takes place at run time

CLARITY ABOUT BINDING

38

RELIABILITY

A language is reliable if:

 Program behaviour is the same on different platforms

 E.g., early versions of Fortran

 Type errors are detected

 E.g., C vs. Haskell

 Semantic errors are properly trapped

 E.g., C vs. C++

 Memory leaks are prevented

 E.g., C vs. Java

39

LANGUAGE SUPPORT

 Accessible (public domain) compilers/interpreters

 Java (open) vs. C# (closed)

 Good texts and tutorials

 Wide community of users

 Integrated with development environments (IDEs)

 Jupyter Notebook vs. vim

 Visual Studio vs. Emacs

40

ABSTRACTION IN PROGRAMMING

 Data

 Programmer-defined types/classes

 Class libraries

 Procedural

 Programmer-defined functions

 Standard function libraries

41

ORTHOGONALITY

 A language is orthogonal if its features are built

upon a small, mutually independent set of

primitive operations.

 while loop vs. for loop in C

 Fewer exceptional rules = conceptual simplicity

 E.g., our tutorials are “usually” on Monday except the

last week of each month or when the TA is busy with his

research on text generation...

 E.g., restricting types of arguments to a function

 Tradeoffs with efficiency

42

EFFICIENT IMPLEMENTATION

 Embedded systems

 Real-time responsiveness (e.g., navigation)

 Failures of early Ada implementations

 Web applications

 Responsiveness to users (e.g., Google search)

 Corporate database applications

 Efficient search and updating

 AI applications

 Modeling human behaviors

43

 Compiler – produces machine code

 Interpreter – executes instructions on a virtual

machine

 Example compiled languages:

 Fortran, Cobol, C, C++

 Example interpreted languages:

 Scheme, Haskell, Python, Perl

 Hybrid compilation/interpretation

 The Java Virtual Machine (JVM)

 .java  .class

 .class executes on JVM
44

COMPILERS AND INTERPRETERS

THE COMPILING PROCESS

45

THE INTERPRETING PROCESS

46

COURSE ROADMAP

 Mathematic foundation – inductive definition and inductive proofs

 Untyped Lambda Calculus

 Simply-typed Lambda Calculus

 Extensions to Simply-typed Lambda Calculus

 Going Imperative

 Memory Management

 Subtyping

 Type Inference

 Case Study: Logic Programming (Prolog)

 Case Study: Functional Programming (OCaml)

47

FINALLY, ENJOY THIS VIDEO!

“The most popular programming languages 1965-2021”

https://www.bilibili.com/video/BV16t4y1B7Ji/

48

https://www.bilibili.com/video/BV16t4y1B7Ji/

