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Balancing Devolved Controllers Problem Description

NP Reduction

Data Centers

Data Center. a facility used to house computer systems and
associated components.
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Balancing Devolved Controllers Problem Description

NP Reduction

Switch-Centric Topology

I:l Switch Q Server

A VL2 (Virtual-Layer Two)
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Balancing Devolved Controllers Problem Description

NP Reduction

Switch-Centric Topology (2)
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An Aspen TreeC = (3,1,1)
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Balancing Devolved Controllers Problem Description

NP Reduction

A Controller

Controller : monitor, manage network resources, update routing
information, and prepare Virtual Machine migrations.
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Balancing Devolved Controllers Problem Description

NP Reduction

Our Objective

If a data center has controllers to moniton switches, then we hope
that the workload of each controlleragmost the same
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Balancing Devolved Controllers Problem Description

NP Reduction

Our Objective

If a data center has controllers to moniton switches, then we hope
that the workload of each controlleragmost the same

An Example:
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Controllerc; dominates 17 switches and Controliedominates 13
switches. The traffic betweeam andg; is unbalanced, and is

migrating one of its switch tg;.
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Balancing Devolved Controllers Problem Description

NP Reduction

Balancing Devolved Controllers (BDC) Problem

Givenn switchesS= {s, - -- , s}, each has traffic load;, andm
controllersC = {cy, - - ,Cm}-
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Balancing Devolved Controllers (BDC) Problem

Givenn switchesS= {s, - -- , s}, each has traffic load;, andm
controllersC = {cy, - - ,Cm}-

Due to physical limitations, eact can only be monitored by its
potential controller sePC(s ). Everyc; can only control switches in
its potential switch sePS(c;). After the partition, the real controller
and switch subset is denoted ks ) andRS(c;) respectively.
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Balancing Devolved Controllers Problem Description

NP Reduction

Balancing Devolved Controllers (BDC) Problem

Givenn switchesS= {s, - -- , s}, each has traffic load;, andm
controllersC = {cy, - - ,Cm}-

Due to physical limitations, eact can only be monitored by its
potential controller sePC(s ). Everyc; can only control switches in
its potential switch sePS(c;). After the partition, the real controller
and switch subset is denoted ks ) andRS(c;) respectively.

The weight of a controllew(ci)) = > w(s).
sERS(c)

Objective: get anm-partition for switches such that each controller
will has similar amount of workload, say, to minimize tBandard

Deviation o = \/n% S (w(c) — w(c))?2, wherew(c) is the average
weight of controllers.
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Balancing Devolved Controllers Problem Description

NP Reduction

Non-Linear Programming

.| 1 If g monitorss )
Definex;j = { 0 otherwise , Formulat BDC as:
1 m n 2
mi J 25 (Sww) -0 ®
1= =
[ 1 m n
st w(e) = =3 S w() X )
i=1j=1
Sx =1 Vi<j<n 3)
i=1
xj =0, ifg¢PSc)orc ¢ PC(s),vi,] (4)
xj € {0,1}  Vi,] ()
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Balancing Devolved Controllers .
Problem Description
NP Reduction

Hardness Discussion

Decision Version of BDC Givenn switchesS= {s;,--- , &}, each
has traffic loadw, m controllersC = {cy, - - - , cm}, @ thresholdw,
does there exist am-partition for switches such that th&andard

Deviation o among controllers< w.
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NP Reduction

Hardness Discussion

Decision Version of BDC Givenn switchesS= {s;,--- , &}, each
has traffic loadw, m controllersC = {cy, - - - , cm}, @ thresholdw,
does there exist am-partition for switches such that th&andard
Deviation o among controllers< w.

Theorem: BDC € NP.

Proof: A certificate of BDC is am-partition withrc(s) andRS(c;)
sets. The certifier is to check whether the standard dewiatig w.
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Balancing Devolved Controllers .
Problem Description

NP Reduction

NP Reduction (1)

Theorem: BDC is NP-Complete.
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Balancing Devolved Controllers

Problem Descr
NP Reduction

NP Reduction (1)

Theorem: BDC is NP-Complete.

Polynomial-Time Reductions

constraint satisfaction

o0 < Dick Karp (1972)
< e ‘o 1985 Turing Award
oK v@sﬁ

ot
P

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
packing and covering sequencing partitioning numerical
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Problem Description

NP Reduction

NP Reduction (2)

Proof: PARTITION <, BDC.

Computability Theory@SJTU Xiaofeng Gao'  Reduction Applications 13/36



Balancing Devolved Controllers .
Problem Description

NP Reduction

NP Reduction (2)

Proof: PARTITION <, BDC.

An instance of PARTITION is: given a finite sétand asize(a) € Z*
for eacha € A, is there a subs&t’ C A such that

D sizea) = ) size(a)

acA acA\A/
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Balancing Devolved Controllers .
Problem Description

NP Reduction

NP Reduction (2)

Proof: PARTITION <, BDC.

An instance of PARTITION is: given a finite sétand asize(a) € Z*
for eacha € A, is there a subs&t’ C A such that

D sizea) = ) size(a)

acA acA\A/

Now we construct an instance of LBDC. In this instance theee?2a
controllerscy, c; and|A| switches. Each switck, represents an
elementa € A, with weightw(s,;) = size(a).
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Balancing Devolved Controllers .
Problem Description

NP Reduction

NP Reduction (3)

“="Then, given a YES solutioA’ for PARTITION, we have a
solution thatc; controls{s, | a € A'}, c; controls{s, | a € A\A'},
ando = 0.
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“«<" given a solution for BDC withr = 0, we can partité into
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Balancing Devolved Controllers .
Problem Description

NP Reduction

NP Reduction (3)

“="Then, given a YES solutioA’ for PARTITION, we have a
solution thatc; controls{s, | a € A'}, c; controls{s, | a € A\A'},
ando = 0.

“«<" given a solution for BDC withr = 0, we can partité into
A1 = RS(c1), A2 = RS(c,), then itis a YES solution for PARTITION
problem.

The reductions can be done within polynomial time, which ptates
the proof. O
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Problem Description

Wireless Data Broadcast NP Reduction

Outline

© Wireless Data Broadcast
@ Problem Description
@ NP Reduction

Computability Theory@SJTU Xiaofeng Gao'  Reduction Applications 15/36



Problem Description
NP Reduction

Wireless Data Broadcast System

Wireless Data Broadcast

Data Packets

Oo0g0don Transmitter

‘ Server

Wireless
Signals

Require
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ansL)eY
Control
Y@% |

Query Profile
Data Scheduling

Data Management q [ D q D

Channel 1 Channel 2 Channel n

vmneval

g 7/
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Problem Description

Wireless Data Broadcast NP Reduction

Broadcast Channel and Data Set

D = {d;,dy, - - - ,dk} data items, each with different sike
C = {c1,C2, -+ ,Cn} channels.
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Problem Description

Wireless Data Broadcast NP Reduction

Broadcast Channel and Data Set

D = {d;,dy, - - - ,dk} data items, each with different sike
C = {c1,C2, -+ ,Cn} channels.
An example scenario:

1 7 15 24 30 40
C1|d40| d2s | dq |d30| ds |

1 6 19 26 32 40 55 65
Colos] dp ||| dp | d | s |
1 20 25 30 39 57 77 88
Cs | dss | dss | d63| d2o | dzs | daz | drg —l
1 8 15 31 42 56 70 81 93
Cy | dag | deo | diq | das | dss |_ des | da | do | ds2 |
1 15 28 41 64 72 92 107
Cs| ds | du [ dw | dis r-cdm [ do | dos [ d [ dis |
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Problem Description

Wireless Data Broadcast NP Reduction

Client Request and Constraint

Request of clientDq C D;
Switch constraint: switch require one time slot.
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Problem Description

Wireless Data Broadcast NP Reduction

Client Request and Constraint

Request of clientDq C D;
Switch constraint: switch require one time slot.

An example scenario:

Time 1 2 3 4 7 8 9 10 11

C| o

5 6

n

{

C2 d3 d4 *
I

Cl [ [ [ [ TH1d | |

Query Data Set: {d;, ds, ds}
"~ Data retrieval process

Overall downloading time: 7
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Problem Description

Wireless Data Broadcast NP Reduction

Saving Energy Consumption

Energy Consumption: downloading and switching,
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Problem Description

Wireless Data Broadcast NP Reduction

Saving Energy Consumption

Energy Consumption: downloading and switchiagConfliction!

Tme 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Col_| ] [ [ [ef | [ [ Jaf [ | [edof | |
Broadcast Cycle=9

Colds| [ | [daf [dsf [ | [def [ds| [ | [da] |
Broadcast Cycle=6

switch switch switch
ds Option 1: Switch=3

Access Latency=7

switch

ds Option 2: Switch=1

Access Latency=12
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Problem Description

Wireless Data Broadcast NP Reduction

Objective: A Constraint Minimization Problem

Definition: Minimum Constraint Data Retrieval Problem (V1)

GivenD = {dy, - -- ,dk} located om channel<C = {c;,--- ,Cn}.
Eachd; has lengtH;, and located at some position on changelf we
fix a switch parameten, then theMinimum Constraint Data Retrieval
Problem (MCDR) is to find a minimum access latency data retrieval
schedule to downloabg C D, with at mosth switches.
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GivenD = {dy, - -- ,dk} located om channel<C = {c;,--- ,Cn}.
Eachd; has lengtH;, and located at some position on changelf we
fix a switch parameten, then theMinimum Constraint Data Retrieval
Problem (MCDR) is to find a minimum access latency data retrieval
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Definition: Minimum Constraint Data Retrieval Problem (V2)

If we fix a latency parametdy then the MCDR is to find a minimum
switch-number data retrieval schedule to downlBjdc D, with at
mostt access latency.
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Problem Description

Wireless Data Broadcast NP Reduction

Objective: A Constraint Minimization Problem

Definition: Minimum Constraint Data Retrieval Problem (V1)

GivenD = {dy, - -- ,dk} located om channel<C = {c;,--- ,Cn}.
Eachd; has lengtH;, and located at some position on changelf we
fix a switch parameten, then theMinimum Constraint Data Retrieval
Problem (MCDR) is to find a minimum access latency data retrieval
schedule to downloabg C D, with at mosth switches.

Definition: Minimum Constraint Data Retrieval Problem (V2)

If we fix a latency parametdy then the MCDR is to find a minimum
switch-number data retrieval schedule to downlBjdc D, with at
mostt access latency.

Definition: Minimum Cost Data Retrieval Problem (V3)

If we set parameters andg3, then the MCDR is to find a minimum
cost(a - hop + 3 - time) data retrieval schedule to downloBg C D.
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Problem Description

Wireless Data Broadcast NP Reduction

Outline

© Wireless Data Broadcast
@ Problem Description
@ NP Reduction
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= Problem Description
Wireless Data Broadcast NP Reduction

A Decision Version

Decision MCDR

Given a data sdD, a channel set, a time threshold, a switching
thresholdh, find a valid data retrieval schedule to download all the
data inDq from C before timet with at mosth switchings.(the cost is
at mostoh + 5t)
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Wireless Data Broadcast NP Reduction

A Decision Version

Decision MCDR

Given a data sdD, a channel set, a time threshold, a switching
thresholdh, find a valid data retrieval schedule to download all the
data inDq from C before timet with at mosth switchings.(the cost is

at mostoh + 5t)

Theorem: MCDR € NP
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Problem Description

Wireless Data Broadcast NP Reduction

A Decision Version

Decision MCDR

Given a data sdD, a channel set, a time threshold, a switching
thresholdh, find a valid data retrieval schedule to download all the
data inDq from C before timet with at mosth switchings.(the cost is
at mostoh + 5t)

Theorem: MCDR € NP

Proof: A certificate of MCDR is a downloading schedule as a
sequence ofc;, d;) pairs. The certifier is to check whether this
schedule can be achieved wittiitime andh switches.
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Problem

Wireless Data Broadcast NP Reduction

NP-Completeness

Theorem: MCDR is NP-Complete.
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Problem Description

Wireless Data Broadcast NP Reduction

NP-Completeness

Theorem: MCDR is NP-Complete.

Proof: We prove by VERTEX-COVER<, MCDR.

Computability Theory@SJTU Xiaofeng Gao'  Reduction Applications 23/36



Problem Description

Wireless Data Broadcast NP Reduction

NP-Completeness

Theorem: MCDR is NP-Complete.
Proof: We prove by VERTEX-COVER<, MCDR.

Decision Vector CoverGiven a graplc = (V, E) and an integek,
does it have a vertex cov®iC with sizek.
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Problem Description

Wireless Data Broadcast NP Reduction

NP-Completeness

Theorem: MCDR is NP-Complete.

Proof: We prove by VERTEX-COVER<, MCDR.

Decision Vector CoverGiven a graplc = (V, E) and an integek,
does it have a vertex cov®iC with sizek.

Then we will construct an instance of MCDR fraBandk.
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Problem Description

Wireless Data Broadcast NP Reduction

Conversion Steps

@ For each vertex; ¢ V, define a channel. Define anothek
channeldy, - - - , bx. Then the channel set is
C={v1, -+ ,Vy, b1, -~ ,b}. Totally V| + k channels. Let
be the maximum vertex degree®) then each channel has a
broadcast cycle length of+ 3.
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Problem Description

Wireless Data Broadcast NP Reduction

Conversion Steps

@ For each vertex; ¢ V, define a channel. Define anothek
channeldy, - - - , bx. Then the channel set is
C={v1, -+ ,Vy, b1, -~ ,b}. Totally V| + k channels. Let
be the maximum vertex degree®) then each channel has a
broadcast cycle length of+ 3.

o For each edgevi,Vvj) € E, define a unit length data ites) in
data seDe, and append it on channglandg; (the order can be
arbitrary, and starting from the third time unit).

@ For each channdd;, define a unit length data iteth in data set
Dy, and allocate it on the first time unit of chantgl

@ The data seDq = De U Dy,
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Problem Description

Wireless Data Broadcast NP Reduction

An Example

1 2 3 4 5 6
@ @ Vi €12| €13

Vo €12|€2s

@ @ V3 €13|€23| €34

V.
k=2 d=3 |V|=4 4 €34
@ bl dl
Bcycle=4+2=6
C:{V11V2av3av4,b1,b2} b2 d2
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Problem Description

Wireless Data Broadcast NP Reduction

Reduction Proof

Equivalence Relation: G has a vertex cover with sideiff there is a
valid data retrieval schedule with= k(6 + 3) andh = 2k — 1.
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channels inlv; | vi € VC} to receive all the data ik cycles.
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Problem Description

Wireless Data Broadcast NP Reduction

Reduction Proof

Equivalence Relation: G has a vertex cover with sideiff there is a
valid data retrieval schedule with= k(6 + 3) andh = 2k — 1.

= If G has a vertex coveYC with sizek, then we can select theke
channels inlv; | vi € VC} to receive all the data ik cycles.

At i iteration, downloady; att = 1, and hop to somg € VC
channel, download needed data items, and then hbp 1o

There arek bj’s, so in each iteration client will download one of them.
VC is a vertex cover, so we can download eveyy

The length of each broadcast cycléis- 3, totally k(d + 3). In each
iteration the client will switch twice (except the last ogklso
h=2k— 1.
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Problem Description

Wireless Data Broadcast NP Reduction

Reduction Proof (2)

<=: Assume MCDR has a valid sched8avith t = k(§ + 3) and
h=2k-1.
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Problem Description

Wireless Data Broadcast NP Reduction

Reduction Proof (2)

<=: Assume MCDR has a valid sched8avith t = k(§ + 3) and
h=2k-1.

ConsideDy, first. There arék b;’s located at the same position &n
different channelss have to switctk — 1 hops. Then we only have
hops forDe = can visit at mosk channels infv; }.
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Problem Description

Wireless Data Broadcast NP Reduction

Reduction Proof (2)

<=: Assume MCDR has a valid sched8avith t = k(§ + 3) and
h=2k-1.

ConsideDy, first. There arék b;’s located at the same position &n
different channelss have to switctk — 1 hops. Then we only have
hops forDe = can visit at mosk channels infv; }.

At the beginning of each iteration, we stay at sdm& downloadd;,
then switch to somg. At the end of this cycle, we have to switch to
channelb; 4 for di+1. This means we cannot switch to two vertex
channels within one broadcast cycle, otherwise we cannehibad

D = De U Dy in k iterations.
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Problem Description

Wireless Data Broadcast NP Reduction

Reduction Proof (2)

<=: Assume MCDR has a valid sched8avith t = k(§ + 3) and
h=2k-1.

ConsideDy, first. There arék b;’s located at the same position &n
different channelss have to switctk — 1 hops. Then we only have
hops forDe = can visit at mosk channels infv; }.

At the beginning of each iteration, we stay at sdm& downloadd;,
then switch to somg. At the end of this cycle, we have to switch to
channelb; 4 for di+1. This means we cannot switch to two vertex
channels within one broadcast cycle, otherwise we cannehibad

D = De U Dy in k iterations.

SinceSis valid, we visitk vertex channels and download Bl} data
items, it means thedevertices form a vertex cover with sike O
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Problem Description

o NP Reduction
Influence Maximization

Social Network

Social Network: a graph of relationships and interactions within a
group of individuals.

£ e e S

From http://thenextweb.com/wp-content/blogs.dir/&4i1R013/11/social-network-links jpg
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Problem Description
NP Reduction

Influence Maximization

Social Influence

Social Influence:ideas, information, opinions spread among the
members in a social network.
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Problem Description

e NP Reduction
Influence Maximization

Influence Maximization Problem

Influence Maximization Problem: Given a social network
G = (V,E) andk nodes are allowed to be activated initially, how do
we select them in order to gain the maximum influence?
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Problem Description

e NP Reduction
Influence Maximization

Influence Maximization Problem

Influence Maximization Problem: Given a social network
G = (V,E) andk nodes are allowed to be activated initially, how do
we select them in order to gain the maximum influence?

Decision Version Given a social networls = (V, E), a parametek,
and a thresholdh, there exists a selection kfactivated seeds to
influencem members.

Computability Theory@SJTU Xiaofeng Gao'  Reduction Applications 31/36



Problem Description

e NP Reduction
Influence Maximization

Influence Models

Linear Threshold model: A nodei has a weighbj; to influence node
] andZieNj bij < 1(if (j,i) ¢ E, b = 0). Nodej is preassigned a
thresholds;. At any single step, nodes successfully activated if the
sum of weights from its active neighbors exceéds
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Problem Description

e NP Reduction
Influence Maximization

Influence Models

Linear Threshold model: A nodei has a weighbj; to influence node
] andZieNj bij < 1(if (j,i) ¢ E, b = 0). Nodej is preassigned a
thresholds;. At any single step, nodes successfully activated if the
sum of weights from its active neighbors exceéds

Independent Cascade modellf nodei becomes active at stépit
has a probability;; to successfully activate each inactive neighjoior
stept + 1. Furthermore, whether or nbsucceeds, it does not have
any chances to activajagain.
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Problem Description

Influence Maximization NP Reduction

Influence Maximization under Linear Threshold Model

Theorem: The Influence Maximization problem is NP-hard under
Linear Threshold model.
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Influence Maximization under Linear Threshold Model

Theorem: The Influence Maximization problem is NP-hard under
Linear Threshold model.

Proof: VERTEX-COVER<, INFLUENCE-MAX
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Problem Description

Influence Maximization NP Reduction

Influence Maximization under Linear Threshold Model

Theorem: The Influence Maximization problem is NP-hard under
Linear Threshold model.

Proof: VERTEX-COVER<, INFLUENCE-MAX

Given an instance of Vertex Cover wi@andk, constructG’ by
directing all edges o in both directions. For each noggee V,
¢ = 1. For each edgév;,V)) € E, bj = 1/Indegree(v; ).
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Problem Description

Influence Maximization NP Reduction

Influence Maximization under Linear Threshold Model

Theorem: The Influence Maximization problem is NP-hard under
Linear Threshold model.
Proof: VERTEX-COVER<, INFLUENCE-MAX

Given an instance of Vertex Cover wi@andk, constructG’ by
directing all edges o in both directions. For each noggee V,
¢ = 1. For each edgév;,V)) € E, bj = 1/Indegree(v; ).

Equivalence Relation: G has a vertex cover with sideiff k seeds in
G’ influenced V| members.
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Problem Description

Influence Maximization NP Reduction

Influence Maximization under Linear Threshold Model

Theorem: The Influence Maximization problem is NP-hard under
Linear Threshold model.

Proof: VERTEX-COVER<, INFLUENCE-MAX

Given an instance of Vertex Cover wi@andk, constructG’ by
directing all edges o in both directions. For each noggee V,
¢ = 1. For each edgév;,V)) € E, bj = 1/Indegree(v; ).

Equivalence Relation: G has a vertex cover with sideiff k seeds in
G’ influenced V| members.

= If there is a vertex cover S of sizein G, then we can activate all
nodes inG by selecting the nodes B
< Conversely, this is the only way to activate all node&in
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Influence Maximization under Independent Cascade Mc

Theorem: The Influence Maximization problem is NP-hard under the
Independent Cascade model.
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Problem Description

Influence Maximization NP Reduction

Influence Maximization under Independent Cascade Mc

Theorem: The Influence Maximization problem is NP-hard under the
Independent Cascade model.

Proof: SET-COVER<, INFLUENCE-MAX
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Problem Description

Influence Maximization NP Reduction

Influence Maximization under Independent Cascade Mc

Theorem: The Influence Maximization problem is NP-hard under the
Independent Cascade model.

Proof: SET-COVER<, INFLUENCE-MAX

Given an instance of Set Cover with= {uz, - ,Un},

S={S, -, S}, andk, define a directed bipartite graph witht m
nodes: a nodefor each se§, a nodg for each element;, and a
directed edgéi, j) with activation probabilityp; = 1, whenever

U € S.
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Problem Description

Influence Maximization NP Reduction

Influence Maximization under Independent Cascade Mc

Theorem: The Influence Maximization problem is NP-hard under the
Independent Cascade model.

Proof: SET-COVER<, INFLUENCE-MAX

Given an instance of Set Cover with= {uz, - ,Un},

S={S, -, S}, andk, define a directed bipartite graph witht m
nodes: a nodefor each se§, a nodg for each element;, and a
directed edgéi, j) with activation probabilityp; = 1, whenever

U € S.

Equivalence Relation: U has a set cover with sieiff there is a set
A of k nodes which can activeelements.
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Problem Description
NP Reduction

Influence Maximization

=: Note that for the instance we have defined, activation is a
deterministic process, as all probabilities are 0 or 1idit

activating thek nodes corresponding to sets in a Set Cover solution
results in activating alh elements corresponding to the grounddet
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Problem Description
NP Reduction

Influence Maximization

=: Note that for the instance we have defined, activation is a
deterministic process, as all probabilities are 0 or 1idit

activating thek nodes corresponding to sets in a Set Cover solution
results in activating alh elements corresponding to the grounddet

<« If any setA of k nodes can active elements, then the Set Cover
problem must be solvable.
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