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Recursive Function

Three Basic Functions:
@ Thezero function 0.
@ Thesuccessor function x + 1.
@ Foreacn > 1 and 1< i < n, theprojection function U!" given
by Ul (X1, ..., X)) = X.
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Recursive Function

Three Basic Functions:
@ Thezero function 0.
@ Thesuccessor function x + 1.
@ Foreacn > 1 and 1< i < n, theprojection function U!" given
by Ul (X1, ..., X)) = X.

Three Operations:
@ Substitution: h(x) =~ f(g1(x), ..., gk(X)).
h(x,0) ~ f(x),
h(x,y + 1) = g(x,y, h(x,y)).
Bounded:uz<y(f (X, 2)
Unboundedyuy(f (x,y)

@ Recursion: {

~0),

@ Minimalisation: { —0).
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Primitive Recursive Function

The classZ % of primitive recursive functionss the smallest class of
partial functions that contains the basic functiéns + 1, U and is
closed under the operations safbstitutionandrecursion
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Primitive Recursive Function

The classZ % of primitive recursive functionss the smallest class of
partial functions that contains the basic functiéns + 1, U and is
closed under the operations safbstitutionandrecursion

Note: % includes the operations bbunded minimalisatigrsince
it can be rephrased as the combinations of substitution endsion.

pz<y(f(x,2) = 0) ~ > ([ sa(f(x,u))

vy u<v
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Partial Recursive Functions (G6del-Kleene, 1936)

The classZ of partial recursive functionis the smallest class of
partial functions that contains the basic functiéns + 1, U and is
closed under the operations safbstitution recursionand
minimalisation
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Partial Recursive Functions (G6del-Kleene, 1936)

The classZ of partial recursive functionis the smallest class of
partial functions that contains the basic functiéns + 1, U and is
closed under the operations safbstitution recursionand
minimalisation

Notice that there is no totality restriction placed on the akthe
u-operator.
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Partial Recursive Functions (G6del-Kleene, 1936)

Godel and Kleene originally defined the ség of ;.-recursive
functions

In the definition of theu-recursive functions, the-operator is
allowed to applyonly if it produces a total function.

In fact %, is the set of all the total functions i#.
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Partial Recursive Functions are Computable Functions

Theorem. Z = €.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 8/59



Recursive Functions Primitive Recursive Function

Partial Recursive Function

Partial Recursive Functions are Computable Functions

Theorem. Z = €.

Proof. We have proved tha? C ¥". We have to show the reverse
inclusion.
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Partial Recursive Functions are Computable Functions

Suppose thdt(x) is a URM-computable function, computed by a
programP =14,...,ls.

ri, the content oR; aftert steps ofP(x),
if P(x) has not stopped aftér1 steps

cx.t) = ri, the final content oR; if P(x) stops
in less thart steps
k, kisthe number of the next instruction after
jx,t) = t steps ofP(x) have been performed
0, if P(x) has stopped aftdrsteps or fewer
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Partial Recursive Functions are Computable Functions

Suppose thdt(x) is a URM-computable function, computed by a
programP =14,...,ls.

ri, the content oR; aftert steps ofP(x),
if P(x) has not stopped aftér1 steps
ri, the final content oR; if P(x) stops
in less thart steps

k, kisthe number of the next instruction after
jx,t) = t steps ofP(x) have been performed
0, if P(x) has stopped aftdrsteps or fewer

Fact. Bothc(x, t) andj(x,t) are primitive recursive.
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Partial Recursive Functions are Computable Functions

If f(x) is defined, ther?(x) converges after exactly steps, where

to = ut(j(x,t) = 0), andf (x) = c(x, to).
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Partial Recursive Functions are Computable Functions

If f(x) is defined, ther?(x) converges after exactly steps, where

to = ut(j(x,t) = 0), andf (x) = c(x, to).

Elsef (x) is undefined= P(x) T = j(x,t) # 0 andut(j(x,t) = 0) is
undefined.
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Partial Recursive Functions are Computable Functions

If f(x) is defined, ther?(x) converges after exactly steps, where
to = ut(j(x,t) = 0), andf(x) = c(x, to).
Elsef (x) is undefined= P(x) 1 = j(x,t) # 0 andut(j(x,t) = 0) is
undefined.
Thus functionf (x) defined byP(x):
f(x) =~ c(x, pt(j(x,t) = 0)).

is partial recursive.
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Corollary

Corollary. Every total function inZ belongs to%.
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Partial Recursive Function

Corollary

Corollary. Every total function inZ belongs to%.

Proof: Supposd (x) is total in%, thenf is URM-computable by a
programP.

Let c andj be the same definitions, which can be obtained without any
use of minimalisation, so they are .

Further, sincé is total, P(x) converges for every, so the function
ut(j(x,t) = 0) is total and belongs t&?.

Now f (x) = c(x, ut(j(x,t) = 0)), sof is also inZ.
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Predicate

A predicateM (x) whose characteristic functiany, is recursive is
called arecursive predicate.

A recursive predicate is the same as decidable predicate.
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Alan Turing (23 Jun. 1912 - 7 Jun. 1954)

Turing Machine

@ An English student of Church

@ Introduced a machine model for effective calculation in “On
Computable Numbers, with an Application to the
Entscheidungsproblem”, Proc. of the London Mathematical
Society, 42:230-265, 1936.

@ Turing Machine, Halting Problem, Turing Test
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Turing Machine

Motivation

What are necessary for a machine to calculate a function?
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Turing Machine

Motivation

What are necessary for a machine to calculate a function?

@ The machine should be able to interpret numbers

@ The machine must be able to operate and manipulate numbers
according to a set of predefined instructions
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Turing Machine

Motivation

What are necessary for a machine to calculate a function?

@ The machine should be able to interpret numbers

@ The machine must be able to operate and manipulate numbers
according to a set of predefined instructions

and
@ The input number has to be stored in an accessible place
@ The output number has to be put in an accessible place

@ There should be an accessible place for the machine to store
intermediate results
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Turing Machine

One-Tape Turing Machine

A Turing machinehas five components:

1. Afinite set{s;, ..., s} U {>,,<} U{O} of symbols

2. Atapeconsists of an infinite number of cells, each cell may store a
symbol.

3. Areading headhat scans and writes on the cells.
4. A finite set{gs, t1, . . . , Om, gn } Of states

5. Afinite set ofinstructions(specification).
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Turing Machine

One-Tape Turing Machine

Current state
: /display window
M 91 |q1
Reading head
Tape - § §3 52 8 54

\ Square being scanned
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Turing Machine

Turing Machines, Turing 1936

The input data
bsh...sbO...O&. . . <D
The reading head may write a symbol, move left, move right.

An instruction is of the following three forms:

dissa
aisLa
aisRa

Notice that there are no instructions of the fogsscq;.
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.

gs>Rou
010Ra
01100
020R0
021Rqy
Ou<lgz
Op<las
030Las
0sllas
0z>Ran
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.
[ ]1[1[0[1]4]

gs>Ray Us
010Ra
01100
020R0
021Rqy
Ou<lgz
Op<las
030Las
0sllas
0z>Ran
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0,1} U {>, O, «}.
(> [1]1]0]1]4]

gs>Ray Ys

qORgy (> [1]1]0]1]q]

01100 O

020Rq2

021Rqy

0i<Los

Op<las

030L03

0sllas

0z>Ran
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Suppose a Turing machimé makes use of the alphabet
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01100 !
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.
[ ]1[1[0[1]4]

gs>Ray Ys

qORgy (> [1]1]0]1]q]
01100 !

®@O0Rg, [>|O0]1]0]1]«]
021Rqy 03}
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02<Lgs I
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.
[ ]1[1[0[1]4]

gs>Ray Ys

qORgy (> [1]1]0]1]q]
01100 !

®@O0Rg, [>|O0]1]0]1]«]
021Rqy 03}

didkgs [> ][0 1]0]1]«]
02<Lgs I

@0l [ ]0[1[0]1]]
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.

gs>Rou
010Ra
01100
020R0
021Rqy
Ou<lgz
Op<las
030Las
0sllas
0z>Ran

(> [1[2]o]1][<f[>]O]L1][O]O[]

Qs 07)

[>[1]1]0]1]4]
1

[>[0]1]0f1[<]
07)

[>[0]1]0f1][d]

(7]
[>[0[1]O0[1[d]
O1
[>]0]1]0]1[d]
a1
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.
[>]1]1[of1]<][>]Of2][0]O 4]

Ry 9 G
goRgy  [>[1[1]0]1]<f [>[O0[1][0[O] <]
01100 it a2
®@ORg [>]O0]1][0[1]4q]
021Rqy 03}
didkgs [> ][0 1]0]1]«]
O2<L0s3 I
%00 [FT0]1[0]1]<]
0sllas o
%PROw [BTO[1]0] 1]<]
qu
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.
[>]1]1[of1]<][>]Of2][0]O 4]

gRy s @
goRgy  [>[1[1]0]1]<f [>[O0[1][0[O] <]
01100 it oA
®@ORg, (> ] O0]1]0[1]«] [p]O]2]0]O0«]
021R0x 07} 0%
didkgs [> ][0 1]0]1]«]
O2<L0s3 I
%0Lds [ ]0[1]0[1]4]
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%>Ro [pT0T1]0[1[<]

ai
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Turing Machine

An Example

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.
[>]1]1[of1]<][>]Of2][0]O 4]

gRy s @
goRgy  [>[1[1]0]1]<f [>[O0[1][0[O] <]
01100 it oA
®@ORg, (> ] O0]1]0[1]«] [p]O]2]0]O0«]
021R0x 07} 0%
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h
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Turing Machine

Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.

gs>Rou
010Ra
01100
020R0
021Rqy
Ou<lgz
Op<las
030Las
0sllas
0z>Ran

(> [1[2]o]1][<f[>]O]L1][O]O[]

Us 07)
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(o7} 03
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Suppose a Turing machimé makes use of the alphabet
{0, 1} U {r,0O,«}.

gs>Rou
010Ra
01100
020R0
021Rqy
Ou<lgz
Op<las
030Las
0sllas
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Turing Machine

Turing-Computable Function

Thepartial recursive functiofi(x) computed byM is

m, mis the number of 6 between> and«,
f(n) = if M stops when the input numberris
1, otherwise

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 20/59



Introduction

One-Tape Turing Machine
Multi-Tape Turing Machine
Discussion

Turing Machine

A Turing-Computable Function

The functionx 4 y is Turing-Computable by:
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Turing Machine

A Turing-Computable Function

The functionx 4 y is Turing-Computable by:

gs>Ray
011Baa
01BRa
21Bas
2BRa
031Rgs
03BRgs
Os<Lan
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Multi-Tape Turing Machine

A multi-tape TM is described by a tuplé’, Q, §) containing
o Afinite setI" calledalphabetof symbols. It contains a blank
symbolO, a start symbot>, and the digits 0 and 1.
o A finite setQ of states It contains a start statg,« and a halting
stategpalt -
@ A transition functiony : Q x I — Q x T*1 x L, § R,
describing the rules of each computation step.
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Turing Machine

Multi-Tape Turing Machine

A multi-tape TM is described by a tuplé’, Q, §) containing
o Afinite setI" calledalphabetof symbols. It contains a blank
symbolO, a start symbot>, and the digits 0 and 1.
o A finite setQ of states It contains a start statg,« and a halting
stategpalt -
@ A transition functiony : Q x I — Q x T*1 x L, § R,
describing the rules of each computation step.

Example: A 2-Tape TM will have transition function (also named as
specificatioi) like follows:

<q17 [>7 R7 R>

<q57 >, [>>
0 (%,0,S L)

%
<qlv s 1> —
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Turing Machine

Computation and Configuration

Read only head

I“1”“t||0||||||||||'| |'0| [ []C
tape

Read/wme head

I

|
22'15’2"|||I0|.||'1||I|||:||||||L

Read/wrlte head| i
Qe [ T I T L ITIITTTIC

tape i I : :

L I

i 1
Register I_ﬂ7_ 1

Computation, configuration, initial/final configuration
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Turing Machine

A 3-Tape TM for the Palindrome Problem

A palindromeis a word that reads the same both forwards and
backwards. For instance:

ada anna madam andnitalarbralatin
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Turing Machine

A 3-Tape TM for the Palindrome Problem

A palindromeis a word that reads the same both forwards and
backwards. For instance:

ada anna madam andnitalarbralatin

Requirement: Give the specification dil with k = 3 to recognize
palindromes on symbol s¢0,1,>, <, O}.
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Turing Machine

Preparation

To recognize palindrome we need to check the input stringpubdd if
the string is a palindrome, and O otherwise.
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Turing Machine

Preparation

To recognize palindrome we need to check the input stringpubdd if
the string is a palindrome, and O otherwise.

Initially the input string is located on the first tape like
“>0110001« 000d- - - ", strings on all other tapes aret00 - - - ",
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Turing Machine

Preparation

To recognize palindrome we need to check the input stringpubdd if
the string is a palindrome, and O otherwise.

Initially the input string is located on the first tape like
“>0110001« 000d- - - ", strings on all other tapes aret00 - - - ",

The head on each tape points the first symbblds the starting state,
with state marlgs.
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Turing Machine

Preparation

To recognize palindrome we need to check the input stringpubdd if
the string is a palindrome, and O otherwise.

Initially the input string is located on the first tape like
“>0110001« 000d- - - ", strings on all other tapes aret00 - - - ",

The head on each tape points the first symbblds the starting state,
with state marlgs.

In the final statagye, the output of th&!" tape should ber* 1 < 0" if
the input is a palindrome, and 0 < O" otherwise.
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Turing Machine

A 3-Tape TM for the Palindrome Problem

Q = {q37 Qh,QC,Qth,qr}; I'= {D’ >, <],O, 1}1 two work tapes.
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Turing Machine

A 3-Tape TM for the Palindrome Problem

Q = {q37 Qh,QC,Qth,qr}; I'= {D’ >, <],O, 1}1 two work tapes.

Start State:
<qS7 [>7 I>7 [>> — (qC7 [>7 I>7 R7 R7 R>
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Turing Machine

A 3-Tape TM for the Palindrome Problem

Q = {q37 Qh,QC,Qth,qr}; I'= {D’ >, <],O, 1}1 two work tapes.

Start State:

(Os, >, >, 0>) = (G, >, >, RRR)
Begin to copy:

<qC7 0’ D? D> _> <qC7 07 D? R? R? S>
(0, 1,0,0) = (0, 1,0,R RS
<q07 <, 4, D> — <q|7 0, d, L’ S) S>

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 26/59



Introduction

One-Tape Turing Machine
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Turing Machine

A 3-Tape TM for the Palindrome Problem

Q = {q37 Qh,QC,Qth,qr}; I'= {D’ >, <],O, 1}1 two work tapes.

Start State:
<qS7 [>7 I>7 [>> — (qC7 [>7 I>7 R7 R7 R>

Begin to copy:

(0c,0,0,0) — (0, 0,0,R R, S)
(0c,1,0,0) = (0, 1,0,R R S
<qC7 <]) D’ D> — <q|7 Da Da L)S)S>

Return back to the leftmost:

<Q|,O7D7D> - (th,D,L,S,S)
<q|717D7D> % <q|7D7D7L7S78>
<q|>‘>7 0, D> — <qta O, D,R,L,S>
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One-Tape Turing Machine
Multi-Tape Turing Machine
Discussion

Turing Machine

A 3-Tape TM for the Palindrome Problem

Q = {q37 Qh,QC,Qth,qr}; I'= {D’ >, <],O, 1}1 two work tapes.

Start State: Begin to compare:
(Gs, >, >, ) = (Ge, >, >, RR R (4 <,>,0) = (¢, >, 1, SSR)
| (t,0,1,0) - (¢, 1,0,SSR)
Begin to copy: (q,1,0,0) — (¢,0,0,S SR
(0c,0,0,0) = (A, 0,0,R R S) (%,0,0,0) — (q,0,0,R L, S
(e, 1,0,0) = (0, LO,RR S (q,1,1,0) - (q, 1L, 0,R L, S

<q07 <, 4, D> - <q|7 o, O, L’S)S>

Return back to the leftmost:

<C]|,O,|:|7D> — <Q|,D,D,L,S,S>
<q|717D7D> — <q|7D7D7L7S78>
(a,>,0,0) = (¢, 0,0,RL, S
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One-Tape Turing Machine
Multi-Tape Turing Machine
Discussion

Turing Machine

A 3-Tape TM for the Palindrome Problem

Q = {q37 Qh,QC,Qth,qr}; I'= {D’ >, <],O, 1}1 two work tapes.

Start State: Begin to compare:
(Gs, >, >, ) — (0, >, >, R R R) (0, <,>,0) = (&, >,1,SSR)
i <qt 01 D> <qr71)ovs787R>
Begin to copy: (%, 1,0,0) — (4,0,0,SSR)
<q070’|:|>|:|> — <q070>D>R> R>S> <Qt,o 0 D> <Qt,0,|:|,R,L,S>
(%, 1,0,0) — (A, 1,0,R RS (q,1,1,0) - (q, 1L, 0,R L, S

<q07 <, 4, D> - <q|7 0,0,L, S) S>
Ready to terminate:

Return back to the leftmost:
(O, <,>,0) = (Ch, >, <1, S S S
<q|>07D7D> — <Q|,D,D,L,S,S> <q:70’ 17 D> RN <qh,1,<],S,S,S>

0,0 0,0
eLrTo eSS @100 2 @.098sS
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Language System

LetX = {&a,...,ak} be the set of symbols, calledphabet
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Language System

LetX = {&a,...,ak} be the set of symbols, calledphabet

A string (word)from X is a sequence;,, - - - , &, of symbols fromX.
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Language System

LetX = {&a,...,ak} be the set of symbols, calledphabet
A string (word)from X is a sequence;,, - - - , &, of symbols fromX.

>* is the set of all words/strings from. (Kleene Stay
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Multi-Tape Turing Machine
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Turing Machine

Language System

LetX = {&a,...,ak} be the set of symbols, calledphabet
A string (word)from X is a sequence;,, - - - , &, of symbols fromX.
>* is the set of all words/strings from. (Kleene Stay

For example, i2 = {a, b}, we have

¥ ={ab}* = {A,a b,aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . . }.
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Turing Machine

Language System

LetX = {&a,...,ak} be the set of symbols, calledphabet
A string (word)from X is a sequence;,, - - - , &, of symbols fromX.
>* is the set of all words/strings from. (Kleene Stay

For example, i2 = {a, b}, we have
¥ ={ab}* = {A,a b,aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . . }.

A is theempty string that has no symbolsz)
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Introduction

One-Tape Turing Machine
Multi-Tape Turing Machine
Discussion

Turing Machine

{0,1,0, >} vs. Larger Alphabets

Fact: If f : {0,1}* — {0,1}* is computable in tim& (n) by a TMM
using the alphabet sé&t then itis computable in time 41dg|T(n) by
a TM M using the alphabeft0, 1, O, > }.
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Turing Machine

{0,1,0, >} vs. Larger Alphabets

SupposeM hask tapes with the alphabét

A symbol ofM is encoded iM by a strings € {0, 1}* of length
log |T'|.

A stateqin M is turned into a number of stateshh
) q,
e (q,01,...,0%) wherelo}| = ... = |0k = 1,
@ .-,

1 k ; 1 k ;
e (q, Tiog|T)> " - 7U|og|F|>’ the size oblogm, ~+ 3 Olog | 1S log|T|.
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Turing Machine

{0,1,0, >} vs. Larger Alphabets

To simulate one step ofl, the machineév will

O use logT'| steps to read from each tape the [Dgbits encoding
a symbol ofl",

@ use its state register to store the symbols read,

© useM'’s transition function to compute the symbadlswrites and
M'’s new state given this information,

© store this information in its state register, and

© use logT'| steps to write the encodings of these symbols on its
tapes.
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Turing Machine

{0,1,0, >} vs. Larger Alphabets

Example: {0,1,0, >} vs. English Alphabets

wewps: e[l TTTTTTTTTIC

wstape: [>[o[1[t]o[1[ofo[ofo]1]o]ofo]i 1] | [C
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Turing Machine

Single-Tape vs. Multi-Tape

Define a single-tape TM to be a TM that has one read-write tape.
Fact: If f : {0,1}* — {0,1}* is computable in timd (n) by a TMM

usingk tapes, then it is computable in tim&T5n)? by a single-tape
™ M.
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Turing Machine

Single-Tape vs. Multi-Tape

@ The basic idea is to interleakgtapes into one tape.
@ The firstn + 1 cells are reserved for the input.

M’s 3 work lapes

Tavellllmulvlllllllll||||||L
TaveZI'II'pIIIIIIIIIIIII|||£

Taveilmlalc!l_hl!ilnlelsl HNENERENELS

Encoding this in one tape of M:
123123123123123123
[e[r [m[o[&a[mlp]c [B[1[R[1 [a[i]e[c[n[C
o Every symbola of M is turned into two symbola, & in M, with
a used to indicate head position.
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Turing Machine

Single-Tape vs. Multi-Tape

The outline of the algorithm:

The machiné places> after the input string and then starts copying
the input bits to the imaginary input tape. During this psxe
whenever an input symbol is copied it is overwrittentby

M marks then + 2-cell, . . ., then + k-cell to indicate the initial head
positions.

M SweepT(n) cells from the(n + 1)-th cell to right, recording in
the register th& symbols marked with the hat

M Sweep«kT (n) cells from right to left to update using the transitions
of M. Whenever it comes across a symbol with hat, it moves Kght
cells, and then moves left to update.
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Turing Machine

Unidirectional Tape vs. Bidirectional Tape

Define a bidirectional Turing Machine to be a TM whose tapes ar
infinite in both directions.

Fact: If f : {0,1}* — {0,1}* is computable in timd (n) by a

bidirectional TMM, then it is computable in time&n) by a TMM
with one-directional tape.
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Turing Machine

Unidirectional Tape vs. Bidirectional Tape

@ The idea is thaM makes use of the alphabietx T".

M’s tape is infinite in both directions:

DL efefafe[t el [T T TTIC

e[ D[ T []]C

C

afmJole [T [T ]C
t:

M uses a larger alphabet to represent it on a standard tape:

> Vo|ylc

e/l |de|e/m

o Every stateg of M is turned intog andg.
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Turing Machine

Unidirectional Tape vs. Bidirectional Tape

LetH range over {, S R} and let —H be defined by

R if H=L,
“H={ S if H=5S
L, if H=R

M contains the following transitions:

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 37/59



Introduction

One-Tape Turing Machine
Multi-Tape Turing Machine
Discussion
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Turing-Computability

Let .7 % be the set of Turing computable functions.

Theorem. Z = € = €.
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Turing Machine

Turing-Computability

Let 7% be the set of Turing computable functions.
Theorem. # = 96 = €.

Proof. The proof of the inclusior ¢ C Z is similar to the proof of
& C Z. There could be many ways to show tHatC .7 %.
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Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Outline

© Church's Thesis
@ Computability on Domains other than
@ Characterization and Effectiveness of Computation Models
@ Description
@ Proof by Church’s Thesis
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Computability on Domains other thah
Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Computability on Domains other thah

URM that handle integers. We need a subtraction instruction
(1). Each register contains an integer;

(2). There is an additional instructi®r (n) for eachn =1,2,3,- - -
that has the effect adubtracting 1 from the contents of regist&,.
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Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Alphabet Domain

LetY = {a,...,a} be the set of symbols, calledphabet
>* is the set of words/strings.
A is the empty string.

o7 is the concatenation of andr.
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Church's Thesis Proof by Church’s Thesis

Computability on Alphabet Domain

Suppose: = {a, b}. The set%*> of partial recursive functions on*
is the smallest set that satisfies the following properties:

@ It contains the following basic functions:

flo) = A,
f(o) = oa,
f(oc) = ob,
U'(o1,...,0n) = oj.

e %% is closed under substitution.
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Church’s Thesis Proof by Church’s Thesis

Computability on Alphabet Domain

e %% is closed under recursion:

h(o,A) =~
h(o, T@)

—

(o),
1(0‘, T, h( ))7
h(o,7b) =~ g(0o, 7, h(o,

|
Q

e %% is closed under minimalisation:

h(o) ~ ur(f(o,7) = A).

Here 7 means the first in the natural ordering, a, b, aa, ab, ba,
bb, aaa, aab, aba, - - -
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Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Two Questions

1. How do different models of computation compare to eackr@th

2. How do these models characterize the informal notionfetfe
computability?
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Church's Thesis Proof by Church’s Thesis

Other Approaches to Computability

1
2
3
4
5
6

. Godel-Kleene (1936): Partial recursive functions.

. Turing (1936): Turing machines.

. Church (1936)A-terms.

. Post (1943): Post systems.

. Markov (1951): Variants of the Post systems.

. Shepherdson-Sturgis (1963): URM-computable functions
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Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Other Approaches to Computability

1. Godel-Kleene (1936): Partial recursive functions.

2. Turing (1936): Turing machines.

3. Church (1936)A-terms.

4. Post (1943): Post systems.

5. Markov (1951): Variants of the Post systems.

6. Shepherdson-Sturgis (1963): URM-computable functions

Fundamental Result: Each of the above proposals for a

characterization of the notion of effective computabiliiyes rise to
thesameclass of functions.
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Description

Church's Thesis Proof by Church’s Thesis

Church-Turing Thesis

Question: How well is the informal intuitive idea of effectively
computable function captured by the various formal
characterizations?
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Church's Thesis Proof by Church’s Thesis

Church-Turing Thesis

Question: How well is the informal intuitive idea of effectively
computable function captured by the various formal
characterizations?

Church-Turing Thesis.

The intuitively and informally defined class of effectivedgmputable
partial functions coincides exactly with the clagof
URM-computable functions.
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Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Church-Turing Thesis

Question: How well is the informal intuitive idea of effectively
computable function captured by the various formal
characterizations?

Church-Turing Thesis.

The intuitively and informally defined class of effectivedgmputable
partial functions coincides exactly with the clagof
URM-computable functions.

The functions definable in all computation models are theesarhey
are precisely theomputable functions

It was calledChurch Thesidy Kleene. Gddel accepted it only after
he saw Turing’s equivalence proof.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 46/59



Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Church-Turing Thesis

Church-Turing thesis is nottheorem, but it has the status ofcaim
or belief which must be substantiated by evidence.
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Description

Church's Thesis Proof by Church’s Thesis

Church-Turing Thesis

Church-Turing thesis is nottheorem, but it has the status ofcaim
or belief which must be substantiated by evidence.

Evidence:

> The Fundamental result: many independent proposals for a
precise formulation of the intuitive idea have led to the sam
class of functions’.

> A vast collection of effectively computable functions hash
shown explicitly to belong t&.

> The implementation of a programon the URM to compute a
function is an example of an algorithm. Thus all function&in
are computable in the informal sense.

> No one has ever found a function that would be accepted as
computable in the informal sense, that does not beloi.to
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Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Church-Turing Thesis

No one has come up with an intuitively computable functiceat ik
not recursive.

When you are convincing people of the computability of your
functions, you are constructing an interpretation fromryoodel to a

well-known model.

Church-Turing Thesis is universally accepted. It allowsaugive an
informal argument for the computability of a function.

We can make use of a computable function without explicidfirdng
it.
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Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

How to prove the computability of a functidr?

There are two methods open to us:

@ Write a program that URM-computéor prove by indirect
means that such a program exists.

@ Give an informal (though rigorous) proof that given infoima
algorithm is indeed an algorithm that serves to comjputkeen
appeal Church’s thesis and conclude thiet URM-computable.
(proof by church’s thes)s
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Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Example 1

Let P be a URM program; define a functidrby

1 if P(x) | y aftert or fewer steps
f(xy,t) = of the computatiorP(x);
0 otherwise

Prove the computability df.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 50/59



Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church’s Thesis Proof by Church’s Thesis

Informal Algorithm

Given(x,y,t), simulate the computatioR(x): carrying outt steps of
P(X) unless this computation stops after fewer thateps.

If P(x) stops aftet or fewer steps, witly finally in Ry, then
f(x,y,t) = 1.

Otherwise P(x) stops int or fewer steps with some number other than
yin Ry, or if P(x) has not stopped aft¢isteps), we havé(x,y,t) = 0.
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Description

Church’s Thesis Proof by Church’s Thesis

EWAIS

Simulation ofP(x) for at mostt steps is clearly a mechanical
procedure, which can be completed in a finite amount of time.

Thus,f is effectively computable.

Hence, by Church’s Thesitjs URM-computable.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 52/59



Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church's Thesis Proof by Church’s Thesis

Example 2

Suppose thdt andg are unary effectively computable functions.

h(x) = 1 if x € Dom(f) or x € Dom(g);
undefined otherwise

Prove the computability df.
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Description

Church's Thesis Proof by Church’s Thesis

Informal Algorithm

Givenx, start the algorithms for computirfgx) andg(x)
simultaneously. If and when one of these computations teates,
then stop altogether, and $&k) = 1.

Otherwise, continue indefinitely.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Other Approaches to Computability 54/59



Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church’s Thesis Proof by Church’s Thesis

EWAIS

This algorithm give$(x) = 1 for anyx such that eithef(x) or g(x) is
defined; and it goes on for ever if neither is defined.

Thus, we have an algorithm for computihgand hence, by Church’s
Thesis,his URM-computable.
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Church's Thesis Proof by Church’s Thesis

Example 3

Letf(n) = thenth digit in the decimal expansion af
Prove the computability df.

(So we havd (0) = 3,f(1) = 1,f(2) = 4, etc.)
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Characterization and Effectiveness of Computation Models
Description

Proof by Church’s Thesis

Church’s Thesis

We can obtain an informal algorithm for computifign) as follows.
ConsiderHutton’s seriedor

_ o L2f 2/ 2401\
T T 3\10) "3.5\10
Laf 201y 241N
25 3\50 3-5\50
_ oy 2 12137 14010
- Z(n+ 1P 5 \10 25 \ 50

= ) hq(defined as)
n=0
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Characterization and Effectiveness of Computation Models
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\ N Descrif
Church's Thesis Proof by Church’s Thesis

Proof (Cont.)

k
Letsc = > hy, by theory of infinite seriesc < 7 < s+ ﬁ.
n=0
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Church's Thesis Proof by Church’s Thesis

Proof (Cont.)

k
Letsc = > hy, by theory of infinite seriesc < 7 < s+ ﬁ.
n=0

Sinces, is rational, the decimal expansion &fcan be effectively
calculated to any desired number of places using long divisi
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Computability on Domains other than
Characterization and Effectiveness of Computation Models
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k
Letsc = > hy, by theory of infinite seriesc < 7 < s+ ﬁ.
n=0

Sinces, is rational, the decimal expansion &fcan be effectively
calculated to any desired number of places using long divisi

Thus the effective method for calculatifgn) (given a numben) can
be described as:

Find the firstN > n + 1 such that the decimal expansion

SN = @p.8182 - - - 8ndns1- - - A - - - does not have all cdiy1 - - - an
equal to 9. Then put(n) = an.
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Church’s Thesis Ere‘(f(f{itl));g;'lurch's Thesis
Proof (Cont.)
k
Letsc = > hy, by theory of infinite seriesc < 7 < s+ ﬁ.
n=0

Sinces, is rational, the decimal expansion &fcan be effectively
calculated to any desired number of places using long divisi

Thus the effective method for calculatifgn) (given a numben) can
be described as:

Find the firstN > n + 1 such that the decimal expansion

SN = @p.8182 - - - 8ndns1- - - A - - - does not have all cdiy1 - - - an
equal to 9. Then put(n) = an.

Note: Such am exists, for otherwise the decimal expansionrof
would end in recurring 9, making rational.
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Computability on Domains other than
Characterization and Effectiveness of Computation Models
Description

Church’s Thesis Proof by Church’s Thesis

Proof (Cont.)

To see that this gives the required value, supposesthat 9 with
n < m< N. Then by the above

1

1
< .
SN<7T<S|\|-|-1O|\‘_SN—i-lO,n

Henceag.a;---a,---am- - <7T<aoa1an(am_|_]_) So
thenth decimal place ofr is indeeda,,.

Thus by Church’s Thesi$,is computable.
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