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Basic Functions
Three Basic Functions

The Basic Functions

Lemma. The following basic functions are computable.
© Thezero function 0.
@ Thesuccessor function x + 1.
© Foreacln > 1 and 1< i < n, theprojection function U given
by UM(X1, ..., Xn) = X.
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Basic Functions

Three Basic Functions

These functions correspond to the arithmetic instructfon&/RM.
@ 0O: programZ(1);
Q x+ 1: programS(1);
© UM programT (i, 1).
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Substitution Definition
Variable Sequences

Substitution Theorem

Suppose that(ys, . .., Yk) andgi(x), ..., gk(x) are computable
functions, wherex = xg, . .., X,. Then the functiorn(x) given by

h(x) ~ f(gu(x),...,0(X))

is a computable function.
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Substitution Definition
Variable Sequences

Substitution Theorem

Suppose that(ys, . .., Yk) andgi(x), ..., gk(x) are computable
functions, wherex = xg, . .., X,. Then the functiorn(x) given by

h(x) ~ f(gu(x),...,0(X))

is a computable function.

Question: what is the domain of definition lofx)?
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Substitution Definition
Variable Sequences

Substitution Theorem

Suppose that(ys, . .., Yk) andgi(x), ..., gk(x) are computable
functions, wherex = xg, . .., X,. Then the functiorn(x) given by

h(x) ~ f(gu(x),...,0(X))

is a computable function.
Question: what is the domain of definition lofx)?

Note: h(x) is defined iffgi(x), - - - , gk(x) are all defined and
(01(x), - -+ ,9k(x)) € Dom(f). Thus, iff andgy, - - - , g« are all total
functions, therhis total.
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Substitution Definition
Variable Sequences

Proof (Construction)

LetF,Gq,..., Gk be programs in standard form that compute
foo1,. .., 0k
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Substitution Definition
Variable Sequences

Proof (Construction)

LetF,Gq,..., Gk be programs in standard form that compute
foo1,. .., 0k

Letmbe ma){na K, p(F), p(G1)7 s 7p(Gk)}
Registers:

[ T g COTRER TS - - - [T
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Substitution Definition
Variable Sequences

URM Program for Substitution

START

l; © T(Lm+1)

Store xin Rys1, ™", Rimsn

In : T(n,m+n)

Itk @ Gm—+1,....m+n — m+n+Kk
lniktr @ Fm+n+1....m+n+k — 1]

8k(X)= Rinsnak

f(ga(x),"=,8(x)) 2R,

STOP
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Substitution Definition
Variable Sequences

Computable Function with Variable Sequences

Theorem. Suppose thdt(yi, . .., Yk) is a computable function and
thatx,, ..., x, is a sequence d&f of the variables, . . ., x, (possibly
with repetitions). Then the functiodmgiven by

h(X]_,...,Xn) ~ f(xila"'7xik)

is computable.
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Substitution Definition
Variable Sequences

Computable Function with Variable Sequences

Theorem. Suppose thdt(yi, . .., Yk) is a computable function and
thatx,, ..., x, is a sequence d&f of the variables, . . ., x, (possibly
with repetitions). Then the functiodmgiven by

h(X]_,...,Xn) ~ f(xila"'7xik)

is computable.

Proof. h(x) >~ f(U](x),...,Uf (X)).
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Substitution Definition
Variable Sequences

Form New Functions

o Rearrangementy (X1, X2) =~ (X2, X1);
o Identification hy(x) ~ f(x, X);
@ Adding Dummy Variableshg(x1, X2, X3) ~ f (X2, X3).

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive Function 11/54



Substitution Definition
Variable Sequences

An Example

The functionf (X1, X2, X3) = X1 + X2 + X3 iS computable.
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Substitution Definition
Variable Sequences

An Example

The functionf (X1, X2, X3) = X1 + X2 + X3 iS computable.

Proof. Sincex + yis computable, by substituting + x, for X, andxs
for yin x4+ y we can claim that is computable.
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Substitution Definition
Variable Sequences

An Example

The functionf (X1, X2, X3) = X1 + X2 + X3 iS computable.

Proof. Sincex + yis computable, by substituting + x, for X, andxs
for yin x4+ y we can claim that is computable.

Note: When the functiongg, - - - , gk substituted intd, it is not

necessarily involving all of the variables, - - - , X, to guarantee the
computability of the new function.
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Examples
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Outline
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Definition
Examples

Recursion Corollary

Recursion Equations

Suppose that(x) andg(x, y, z) are functions. The function obtained
from f(x) andg(x,y, z) by recursion is defined as follows:

{ h(x, 0) ~ f(x),
h(x,y + 1) = g(x,y, h(x,y)).
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Definition
Examples

Recursion Corollary

Domain ofh

h may not be total unless bofrandg are total.

The domain oh satisfies:
(x,0) € Dom(h) iff x € Dom(f);
(x,y+1) € Dom(h) iff (x,y) € Dom(h)
and(x,y,h(x,y)) € Dom(g).
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Definition
Examples

Recursion Corollary

Uniqueness

Theorem. Letx = {xq,--- , X },and suppose th&{x) andg(x, y, 2)
are functions; then there is a unique functigm, y) satisfying the
recursion equations

{Nxm f(X),
h(x,y + 1) = g(x,y, h(x,y)).

Note: Whem = 0 (x do not appear), the recursion equations take the

form
{ h(0) = a,
h(y + 1) =~ g(y, h(y)).
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Definition
Examples

Recursion Corollary

Computability Theorem

Theorem. h(x,y) is computable if (x) andg(x,y, z) are computable.
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Definition
Examples
Corollary

Recursion

Registers:

[Py T R T2 h(x, )|,
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Definition
Examples
Corollary

Recursion

Registers:
X Y K I KT S:
Program:
T(L,m+1)

T(n+1m+n+1)

F[1,2,....n - m+n+ 3

lg : J(n+m+2,n+m+1,p)
Gm+1,....m+nm+n+2m+n+3 — m+n+3
Sn+m+2)
J(1,10

lp : T(n+m+3,1)
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Flow Diagram

Definition
Examples

Recursion Corollary

START

Store X, y in Ri4q,., Rzt

ki=k+1

f(x)(=h(x,0)) = Re.z

No

g(x, k, h(x, k)= Ry

CSC363-Computability Theory@SJTU

(=h(x, k+1))

(k=0 initially)

h(x, k)=R,

(res=Rq)

STOP

Xiaofeng Gac  Recursive Function
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Definition
Examples

Recursion Corollary

Addition

Letadd: N® — N, add(x,y) = X +V.
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Definition
Examples

Recursion Corollary

Addition

Letadd: N® — N, add(x,y) = X +V.

add(x,0) = x+0=x
add(x,y+1) = x+(y+1)=x+y +1
= add(x,y) +1
Therefore,
add(x,0) = f(x)

add(x,y+1) = g(xy,add(x,y))

where
f:N—=N, f(x):=x
g:N° =N, gxyz=z+1
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Definition
Examples

Recursion Corollary

Multiplication

Let mult: N2 — N, mult(x,y) == X - .
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Definition
Examples

Recursion Corollary

Multiplication

Let mult: N2 — N, mult(x,y) == X - .

mult(x,0) = x-0=0
mult(x,y + 1) X-(y+1) =x-y+x
= mult(x,y) + x

Therefore,
mult(x,0) = f(x)
mult(x,y+1) = g(x,y, mult(x,y))
where
f:N—>N, f(x)=0,
g: N> =N, gxy,2=z+x
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Definition
Examples

Recursion Corollary

Power Function

Let power: N? — N, power (X,y) = X/
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Definition
Examples

Recursion Corollary

Power Function

Let power: N? — N, power (X,y) = X/

power(x,0) = x0~1
power (x,y +1) = x0FY ~x .x

Therefore,
power(x,0) = f(x)
power (X,y +1) = g(X,Y, power(X))
where
f:N—>N  f(x) =1,
g: N2 N, gxy,2 =2z x
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Definition
Examples

Recursion Corollary

Predecessor

x—1 ifx>0,
0 otherwise.
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Definition
Examples

Recursion Caralliny

Predecessor

Letpred: N — N, pred(x) .= x—1= { x—1 ifx>0,

0 otherwise.
pred(0) =
pred(x+1) =
Therefore,
pred(0) = f(x) =
pred(x +1) = g(x, pred(x))
where

f:N—N, f(x) :=0,
g:NZ — N, gx,y) == x
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Definition
Examples

Recursion Corollary

Conditional Subtraction

e oy def [ X—Y, if x>y,
Letsub: N° — N, sub(x,y) := x—y = { 0, otherwise
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Definition
Examples

Recursion Corollary

Conditional Subtraction

e oy def [ X—Y, if x>y,
Letsub: N° — N, sub(x,y) := x—y = { 0, otherwise

sub(x,0) = x—0=~x
sub(x,y+1) = x—(y+1)~ (x—y)—1
Therefore,
sub(x,0) = f(x)
sub(x,y+1) = g(X,Y,sub(x))
where

f:N—>N, f(x)=x
g: N2> N, gxy,2z=z-1
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Definition
Examples
Corollary

Recursion

Letsg: N — N,

S(X)d_ef 0, ifx=0,
9 =11 ifx=o
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Definition
Examples
Corollary

Recursion

Letsg: N — N,
s (X)d_ef 0, ifx=0,
9 =11 ifx=o0
sg(0) =~ O,
sg(x+1) ~ 1
S (X)d_ef 1, ifx=0,
9 =1 0, ifx+£0

Sg(X) ~ 1-sg(X).
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Definition
Examples

Recursion Corollary

Other Examples

Absolute Function (ABS)|x — y| ~ (x—y) + (y—X).

Factorial x

o ~ 1,
(x+1)! ~ x(x+1).

Minimum: — min(X,y) ~ X—(x—Y).

Maximunt  max(x,y) ~ X+ (y—X).
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Definition
Examples

Recursion Corollary

Remainder

def

m(x,y) = the remainder whenis devided byx:

m(x,y + 1) def {rm(x,y)+1, if rm(x,y) +1# X,
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Definition
Examples

Recursion Corollary

Remainder

rm(X, y) ® the remainder whenis devided byx:

def rm(x,y) + 1, if rm(x,y) +1# X,
mxy+1) = {O, if rm(x,y) +1=x

The recursive definition is given by

m(x,0) = O,
mxy+1) = (rmxy)+1sglx — (rm(xy) + 1)]).
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Definition
Examples

Recursion Corollary

Quotient

qt(x,y) % the guotient whery is devided byx:

def { at(x,y) +1, if rm(x,y) +1=x,

at(x,y +1) atexy),  ifrmexy) +1#x
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Definition
Examples

Recursion Corollary

Quotient

qt(x y) ® the guotient whery is devided byx:

def [ gt(x,y) +1, ifrm(xy) +1=x,
aey+1 = { qt(x,y), if rm(x,y) + 1 # x.

The recursive definition is given by

qt(x,0) = 0,
qix,y+1) = qt(xy) +sy(x - (rm(x,y) + 1))).
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Definition
Examples

Recursion Corollary

Conditional Division

. def [ 1, if xly,
divix.y) = { 0, if x‘)();/.
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Definition
Examples

Recursion Corollary

Conditional Division

div(x,y) d:ef{ (1): :]]: i%} : o div(x,y) =sg(rm(x,y)).
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Definition
Examples

Recursion Corollary

Definition by Cases

Suppose thah (x), . .., fc(x) are computable functions, and
Mi(x), ..., Mg(x) are decidable predicates, such that for every
exactly one oM;(x), ..., Mk(x) holds. Then the functiog(x) given
by

f1(x), if M1(x) holds
fa(x), if M2(x) holds

fi(x), if My(x) holds

is computable.

Proof. g(x) =~ cm, (X)f1(X) + ... + cm (X)fk(X).
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Definition
Examples

Recursion Corollary

Algebra of decidability

Suppose thatl(x) andQ(x) are decidable predicates; then the
following are also decidable.

@ not M(x)
Q@ M(x) and Q(x)
© M(x) or Q(x)
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Definition
Examples

Recursion Corollary

Algebra of decidability

Suppose thatl(x) andQ(x) are decidable predicates; then the
following are also decidable.

@ not M(x)

@ M(x) and Q(x)
@ M(x) or Q(x)
Proof:

Q 1-cu(x)

Q cu(X) - co(x

© max(cu (x), co(x))
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Bounded Minimalisation
Unbounded Minimalisation

S A Famous Example
Minimalisation amous F

Outline

O Minimalisation
@ Bounded Minimalisation
@ Unbounded Minimalisation
@ A Famous Example
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Bounded Minimalisation
Unbounded Minimalisation

- S A Famous Example
Minimalisation © xamy

Bounded Sum and Bounded Product

Bounded sum

> fx2 ~ 0

z<0
d o2 = > (%2 +f(xy)
z<y+1 <y

Bounded product

[[fx2 ~ 1,

z<0
I1fx2 =~ ([tx2)-fxy
z<y+1 zy

They are computable ff(x, z) is total and computable.
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Bounded Minimalisation
Unbounded Minimalisation

S A Famous Example
Minimalisation us Examy

Bounded Sum and Bounded Product

By substitution the following functions are also compugabl

and

H f(x,2)

z<k(x,w)

if k(x,w) is total and computable.
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Bounded Minimalisation
Unbounded Minimalisation

- S A Famous Example
Minimalisation © xamy

Bounded Minimization Operator, gr-Operator

uz < y(---): the least less thary such that - -

the leasz <y, such thaf(x,z) =0,

g
pz<y(f(x,2) =0) = { y if there is no suclz.
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Bounded Minimalisation
Unbounded Minimalisation

- S A Famous Example
Minimalisation © xamy

u-Operator

Theorem.

If f(x,z) is total and computable, then souig<y (f(x,z) = 0).
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Bounded Minimalisation
Unbounded Minimalisation
A Famous Example

Minimalisation

Consideh(x,v) = [] sg(f(x,u)) (Computable).

u<v
Givenx, y, supposey = uz < y(f((x),y) = 0). Easy to see,
if v < 2, thenh((x),v) = 1;
if zp < v <y, thenh((x),v) =0;

Thuszy = > h((x), V).
vy

Souz<y(f(x,z) = 0) ~ > (] sg(f(x,u))) is computable.

v<y u<v
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Bounded Minimalisation
Unbounded Minimalisation

- S A Famous Example
Minimalisation © xamy

Bounded Minimization Operator, gr-Operator

Corollary: If f(x,z) andk(x,w) are total and computable functions,
then so is the function

uz<k(x,w) (f(x,z) =0).
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Bounded Minimalisation
Unbounded Minimalisation

- S A Famous Example
Minimalisation © xamy

Bounded Minimization Operator, gr-Operator

Corollary: If f(x,z) andk(x,w) are total and computable functions,
then so is the function

uz<k(x,w) (f(x,z) =0).

Proof. By substitution ok(x, w) for y in the computable function
uz<y (f(x,z) = 0).
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Bounded Minimalisation
Unbound nimalisation

A Famous Example

Minimalisation

Suppose thaR(x, y) is a decidable predicates. Then the following
statements are valid:
@ the functionf (X,y) ~ pz<y R(X,y) is computable;
@ the following predicates are decidable:
a) M1(x,y) =Vz < yR(x,2);
b) Ma(x,y) = 3z < YR(X, 2).
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Bounded Minimalisation
Unbounded Minimalisation

A Famous Example

Minimalisation

Suppose thaR(x, y) is a decidable predicates. Then the following
statements are valid:
@ the functionf (X,y) ~ pz<y R(X,y) is computable;
@ the following predicates are decidable:
a) M1(x,y) =Vz < yR(x,2);
b) Ma(x,y) = 3z < YR(X, 2).

Proof.

QO f(x,y) = pz <y(Sg(Cr(x,2)) = 0).
Q a) cw(x,y) = I er(X,2).

b) My(x,y) = rz1f)¥[ (Vz < y(notR(x, 2)))
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Bounded Minimalisation
Unbounded Minimalisation

A Famous Example

Minimalisation

Theorem. The following functions are computable.

(@) D(x) = the number of divisors aof;

_ [ 1, if xis prime
(b) Pr(x) = { 0, if xis not prime

(c) p, = thex-th prime number;

k, kis the exponent ofy in the prime
(d) (x)y = factorisation ofx, for x,y > 0,
0, fx=0o0ry=0.
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Bounded Minimalisation
Unbounde malisation

A Famous Example

Minimalisation

Proof.

(8)D(X) = 3, div(y, X).

(b) Pr(x) ~ 5G(ID(x) - 2)).

(c) p, can be recursively defined as follows:

pO = 07
Pur1 =~ pzZ< (py!+1)(z> pyandzis prime).

(d) (X)y = pz<x(p§ /).
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Bounded Minimalisation
Unbounded Minimalisation

S A Famous Example
Minimalisation amous F

Prime Coding

Supposes = (a3, ay, . - ., &) is a finite sequence of numbers. It can be
coded by the number

a+1

— a+1 an+1
b=p;" Py’ .

.-+ Mn

Then the length of can be recovered from
pz<b((0)z41 = 0),
and thei-th component can be recovered from

(b)i—1.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive Function 42/54



Bounded Minimalisation
Unbounded Minimalisation

S A Famous Example
Minimalisation amous F

Unbounded Minimization

u-function:

the leasty such that

i) f(x,y)is defined foralz <y, and
py(f(x,y) =0) =~ E”)) f((xy)i) -0 Y

undefined if otherwise
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Bounded Minimalisation
Unbounded Minimalisation

- S A Famous Example
Minimalisation © xamy

Theorem

If f(X,y) is computable, so igy(f(x,y) = 0).
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Bounded Minimalisation
Unbounded Minimalisation
A Famous Example

Minimalisation

Let F be a program in standard form that computesy). Letmbe
max{n+ 1, p(F)}.

Registers:.. |7 I D HOM TS
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Bounded Minimalisation
Unbounded Minimalisation
A Famous Example

Minimalisation

Let F be a program in standard form that computesy). Letmbe
max{n+ 1, p(F)}.

Registers... x| KR R4 0
Program:

T(1,m+1)

T(n,m—+n)
lp : FIMm+1m+2,... . m+n+1 — 1]
JI,m+n+20Q)
Sm+n+1)
J(1,1,p)
lg : T(m+n+11)
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Bounded Minimalisation
Unbounded Minimalisation

- S A Famous Example
Minimalisation © xamy

Flow Diagram

START

(k=0 initially) Store X in Ryy1,--,Rmen

f(x, k)= R,

No f(x, k)=0?

ki=k+1 ! :

| ket Je
Yes

k=R,

STOP
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Bounded Minimalisation
Unbounded Minimalisation

S A Famous Example
Minimalisation amous F

Corollary

Suppose thaR(x, y) is a decidable predicate; then the function

9(x) = wyR(Xy)
B the leasty such thaR(x,y) holds if there is such g,
- undefined otherwise

is computable.
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Bounded Minimalisation
Unbounded Minimalisation

S A Famous Example
Minimalisation amous F

Corollary

Suppose thaR(x, y) is a decidable predicate; then the function
9(x) = wyR(Xy)

the leasty such thaR(x,y) holds if there is such g,
undefined otherwise

is computable.

Proof. g(x) = uy(5G(ca(x.Y)) = O).
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Discussion

The u-operator allows one to define partial functions.
E.g., giverf (x,y) = [x — y?|, g(x) =~ uy(f (x.y) = 0),

we haveg is the non-total function

(x) = VX, if X is a perfect square
9 = undefined otherwise
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Remark

Using theu-operator, one may define total functions that are not
primitive recursive.

Remark: The set of primitive recursive functions are thasindble
from the basic functions using substitution and recursion.
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Ackermann Function

The Ackermann functions defined as follows:

P(0,y) ~ y+1,
Y(x+1,0) Y(x 1),
Y(x+1Ly+1) P(X,P(x+1,y)).

1

1
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Ackermann Function

Fact. The Ackermann function is computable.
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Minimalisation A FETeUS [EENTe

Ackermann Function

Fact. The Ackermann function is computable.

Definition. A finite setS of triples is said to beuitableif the
followings hold:

(i) if (0,y,z) € Sthenz=y+ 1;

(i) if (x+1,0,z) € Sthen(x,1,2) € §

(i) if (x+1,y+1,2) € Sthen3u.((X+ 1,y,u)eS) A ((X,u,2)€S).
Three conditions correspond to the three clauses in theitit@fiof .
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Ackermann Function

Fact. The Ackermann function is computable.

Definition. A finite setS of triples is said to beuitableif the
followings hold:

(i) if (0,y,z) € Sthenz=y+ 1;

(i) if (x+1,0,z) € Sthen(x,1,2) € §

(i) if (x+1,y+1,2) € Sthen3u.((X+ 1,y,u)eS) A ((X,u,2)€S).
Three conditions correspond to the three clauses in theitit@fiof .
The definition of a suitable s&ensures the following property:

If (x,y,2) € S, then
() z=y(xy);

(i) Scontains all the earlier tripléxs, y1, ¥ (X1,y1)) that are needed to
calculatey(x,y).

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive Function 51/54



Bounded Minimalisation
Unbounded Minimalisation

Minimalisation A FETeUS [EENTe

Computability Proof

Moreover, for any particular pair of numbens, n) there is a suitable
setSsuch thatm, n,«)(m,n)) € S. For instance, le be the set of
triples (x,y, 1(x,y)) that are used in the calculationspfm, n).
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Minimalisation A FETeUS [EENTe

Computability Proof

Moreover, for any particular pair of numbens, n) there is a suitable
setSsuch thatm, n,«)(m,n)) € S. For instance, le be the set of
triples (x,y, 1(x,y)) that are used in the calculationspfm, n).

Note a triple(x,y, z) can be coded up by single positive number
2X¥5%. Afinite set{uy, ..., u} can be coded up by, - - - py,-
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Computability Proof

Moreover, for any particular pair of numbens, n) there is a suitable
setSsuch thatm, n,«)(m,n)) € S. For instance, le be the set of
triples (x,y, 1(x,y)) that are used in the calculationspfm, n).

Note a triple(x,y, z) can be coded up by single positive number
2X¥5%. Afinite set{uy, ..., u} can be coded up by, - - - py,-

Hence a finite set of triples can be coded by a single numbeet S,
denote the set of triples coded by the numbehen

(X,¥,2) € S, & pxys dividesv.

So ‘(x,y,2) € S/ is a decidable predicate a&f y, z, andv; and if it
holds, therx, y, z<v.
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Computability Proof (Cont.)

LetR(x,y,V) be “vis a legal code andz < v((x,y,2)€S,)".
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Computability Proof (Cont.)

LetR(x,y,V) be “vis a legal code andz < v((x,y,2)€S,)".

R(x,y, V) is decidable using the techniques and functions of earlier
sections.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive Function 53/54



Bounded Minimalisation
Unbounded Minimalisation

Minimalisation A FETeUS [EENTe

Computability Proof (Cont.)

LetR(x,y,V) be “vis a legal code andz < v((x,y,2)€S,)".

R(x,y, V) is decidable using the techniques and functions of earlier
sections.

Thus the functiorf (x,y) = uvR(X, Y, V) is a computable function that
searches for the code of a suitable set contaifiknyg, z) for somez.
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Computability Proof (Cont.)

LetR(x,y,V) be “vis a legal code andz < v((x,y,2)€S,)".

R(x,y, V) is decidable using the techniques and functions of earlier
sections.

Thus the functiorf (x,y) = uvR(X, Y, V) is a computable function that
searches for the code of a suitable set contaifiknyg, z) for somez.

As a result, the Ackermann functian(x, y) = pz((X,Y, 2)€S(xy)) is
computable.
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Ackermann Function

The Ackermann function is not primitive recursive.
It grows faster than all the primitive recursive functions.

CSC363-Computability Theory@SJTU Xiaofeng Gac  Recursive Function 54/54



	Basic Functions
	Three Basic Functions

	Substitution
	Definition
	Variable Sequences

	Recursion
	Definition
	Examples
	Corollary

	Minimalisation
	Bounded Minimalisation
	Unbounded Minimalisation
	A Famous Example


