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Definition

A setis an unordered collection of elements.→ No duplications.
Examples and notations:

{a, b, c}
{x | x is an even integer} → {0, 2, 4, 6, · · · }
φ: empty set
N = {0, 1, 2, . . .}: natural numbers (nonnegative integers)
Z = {. . . ,−2,−1, 0, 1, 2, . . .}: integers
R: real numbers
E: even numbers
O: odd numbers
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Definition (2)

Cardinalityof a set:|S| → number of distinct elements

Set Equality: S = T → x ∈ S iff x ∈ T

Subset: A setS is a subset ofT, S ⊆ T, if every element ofS is
an element ofT

Proper subset: a subset ofT is a subset other than the empty set∅
or T itself (Use of word proper, proper subsequence or proper
substring)

Strict Subset: S is a strict subset,S ⊂ T, if not equal toT
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∪, ∩, →, S

Union: S ∪ T → the set of elements that are either inS or in T.
S ∪ T = {s | s ∈ S or s ∈ T}
{a, b, c} ∪ {c, d, e} = {a, b, c, d, e}
|S ∪ T| ≤ |S|+ |T|

Intersection: S ∩ T
S ∩ T = {s | s ∈ S ands ∈ T}
{a, b, c} ∩ {c, d, e} = {c}

Difference: S − T → set of all elements inS not in T
S − T = {s | s ∈ S but not inT} = S ∩ T
{1, 2, 3} − {1, 4, 5} = {2, 3}

Complement:
Need universal setU
S = {s | s ∈ U but not inS}
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×, 2S

Cartesian Product
S × T = {(s, t) | s ∈ S, t ∈ T}
In a graphG = (V,E), the edge setE is the subset of Cartesian
product of vertex setV. E ⊆ V × V.

Power Set
2S set of all subsets ofS
Note: notation|2S| = 2|S|, meaning 2S is a good representation
for power set.
S = {a, b, c}, then
2S = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
Indicator Vector: Use a zero/one vector
to represent the elements in power set.

a b c
∅ 0 0 0
{a} 1 0 0
{b} 0 1 0

{a, b, c} 1 1 1
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Ordered Pair

(x, y): ordered pair of elementsx andy; (x, y) 6= (y, x).

(x1, · · · , xn): orderedn-tuple→ boldfacedx.

A1 × A2 × · · · × An = {(x1, · · · , xn) | x1 ∈ A1, · · · , xn ∈ An}.

A × A × · · · × A = An.

A1 = A.
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Definition

f is a set of ordered pairs s.t. if(x, y) ∈ f and(x, z) ∈ f , then
y = z, andf (x) = y.

Dom(f ): Domain off , {x : f (x) is defined}.

f (x) is undefined ifx 6∈ Dom(f ).

Ran(f ): Range off , {f (x) : x ∈ Dom(f )}.

f is a function fromA to B: Dom(f ) ⊆ A andRan(f ) ⊆ B.

f : A → B: f is a function fromA to B with Dom(f ) = A.
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Mapping

Injective: if x, y ∈ Dom(f ), x 6= y, thenf (x) 6= f (y).

Inversef−1: the unique functiong s.t. Dom(g) = Ran(f ), and
g(f (x)) = x.

Surjective: if Ran(f ) = B.

Bijective: both injective and surjective.
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Operation

1 f |X: Restriction off to X.
DomainX ∩ Dom(f ). Write f (X) for Ran(f |X).

2 f−1(Y) = {x : f (x) ∈ Y}: inverse image ofY underf .
3 f ⊆ g: g extendsf , f = g|Dom(f ).

Dom(f ) ⊆ Dom(g) and∀x ∈ Dom(f ), f (x) = g(x).
4 f ◦ g: composition off andg. Domain

{x : x ∈ Dom(g) andg(x) ∈ Dom(f )}, valuef (g(x)).
5 f∅: function defined nowhere.Dom(f∅) = Ran(f∅) = ∅.

f∅ = g|∅ for any functiong.
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≃: similar-or-equal-to

Supposeα(x) andβ(x) are expressions involvingx = (x1, · · · , xn),
thenα(x) ≃ β(x) means∀x, α(x) andβ(x) are either bother defined,
or both undefined, and if defined they are equal.

f (x) ≃ g(x) meansf = g.

f (x) ≃ y meansf (x) is defined andf (x) = y.
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Partial and Total Function

n-ary function: f (x), f (x1, · · · , xn), f : Nn → N.

Partial function: Dom(f ) is not necessarily the wholeNn. (In our
class function means partial function)

Total function: Dom(f ) = N
n.

Zero function: 0 from N toN.

Symbol function: m from N to N.
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Relation

If A is a set, a propertyM(x1, · · · , xn) that holds for somen-tuple
from An and does not hold for all othern-tuples fromAn is called an
n-ary relation or predicate onA.

Propertyx < y. 2 < 5, 6 < 4.

f from N
n toN gives rise to predicateM(x, y) by:

M(x1, · · · , xn, y) iff f (x1, · · · , xn) ≃ y.
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Equivalence Relation

A binary relationR on A is calledequivalence relationif

reflexivity ∀x in A R(x, x)
symmetry R(x, y) ⇒ R(y, x)
transitivity R(x, y),R(y, z) ⇒ R(x, z)







equivalence

A binary relationR on A is called apartial orderif

irreflexivity not R(x, x)
transitivity R(x, y),R(y, z) ⇒ R(x, z)

}

partial order

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 19/47



Set
Function

Relations and Predicates
Proof

Basic Concepts
Logical Notation

Example

reflexive symmetric transitive
<
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reflexive symmetric transitive
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reflexive symmetric transitive
< No No Yes
≤ Yes No Yes

Parent of No No No
= Yes Yes Yes
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Hand Writing

Small letters forelementsandfunctions.
a, b, c for elements,
f , g for functions,
i, j, k for integer indices,
x, y, z for variables,

Capital letters forsets. A, B, S. A = {a1, · · · , an}
Bold small letters forvectors. x, y. v = {v1, · · · , vm}
Bold capital letters forcollections. A, B. S = {S1, · · · , Sn}
Blackboard bold capitals fordomains(standard symbols).N, R.

German script forcollection of functions. C , S , T .

Greek letters forparametersor coefficients. α, β, γ.

Double strike handwriting for bold letters.

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 22/47



Set
Function

Relations and Predicates
Proof

Definition
Categories
Peano Axioms

Outline

1 Set
Basic Concepts
Set Operations

2 Function
Basic Concepts
Functions of Natural Numbers

3 Relations and Predicates
Basic Concepts
Logical Notation

4 Proof
Definition
Categories
Peano Axioms

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 23/47



Set
Function

Relations and Predicates
Proof

Definition
Categories
Peano Axioms

What is proof?

A proof of a statement is essentially a convincing argument that the
statement is true. A typical step in a proof is to derive statements from

assumptions or hypotheses.

statements that have already been derived.

other generally accepted facts, using general principles of logical
reasoning.

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 24/47



Set
Function

Relations and Predicates
Proof

Definition
Categories
Peano Axioms

Outline

1 Set
Basic Concepts
Set Operations

2 Function
Basic Concepts
Functions of Natural Numbers

3 Relations and Predicates
Basic Concepts
Logical Notation

4 Proof
Definition
Categories
Peano Axioms

CSC363-Computability Theory@SJTU Xiaofeng Gao Slide02-Prologue 25/47



Set
Function

Relations and Predicates
Proof

Definition
Categories
Peano Axioms

Types of Proof

Proof by Construction
Proof by Contrapositive

Proof by Contradiction
Proof by Counterexample

Proof by Cases
Proof by Mathematical Induction

The Principle of Mathematical Induction
Minimal Counterexample Principle
The Strong Principle of Mathematical Induction
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Proof by Construction (∀x, P(x) holds)

Example: For any integersa andb, if a andb are odd, thenab is odd.
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Proof by Construction (∀x, P(x) holds)

Example: For any integersa andb, if a andb are odd, thenab is odd.

Proof: Sincea andb are odd, there exist integersx andy such that
a = 2x + 1, b = 2y + 1.
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Proof by Construction (∀x, P(x) holds)

Example: For any integersa andb, if a andb are odd, thenab is odd.

Proof: Sincea andb are odd, there exist integersx andy such that
a = 2x + 1, b = 2y + 1. We wish to show that there is an integerz so
thatab = 2z + 1. Let us therefore considerab.
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Proof by Construction (∀x, P(x) holds)

Example: For any integersa andb, if a andb are odd, thenab is odd.

Proof: Sincea andb are odd, there exist integersx andy such that
a = 2x + 1, b = 2y + 1. We wish to show that there is an integerz so
thatab = 2z + 1. Let us therefore considerab.

ab = (2x + 1)(2y + 1)

= 4xy + 2x + 2y + 1

= 2(2xy + x + y) + 1
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Proof by Construction (∀x, P(x) holds)

Example: For any integersa andb, if a andb are odd, thenab is odd.

Proof: Sincea andb are odd, there exist integersx andy such that
a = 2x + 1, b = 2y + 1. We wish to show that there is an integerz so
thatab = 2z + 1. Let us therefore considerab.

ab = (2x + 1)(2y + 1)

= 4xy + 2x + 2y + 1

= 2(2xy + x + y) + 1

Thus if we letz = 2xy + x + y, thenab = 2z + 1, which implies that
ab is odd. 2
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Proof by Contrapositive (p → q ⇔ ¬q → ¬p)

Example: ∀i, j, n ∈ N, if i × j = n, then eitheri ≤ √
n or j ≤ √

n.
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Proof by Contrapositive (p → q ⇔ ¬q → ¬p)

Example: ∀i, j, n ∈ N, if i × j = n, then eitheri ≤ √
n or j ≤ √

n.

Proof: We change this statement by its logically equivalence:
∀i, j, n ∈ N, if it is not the case thati ≤ √

n or j ≤ √
n, theni × j 6= n.
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Example: ∀i, j, n ∈ N, if i × j = n, then eitheri ≤ √
n or j ≤ √

n.

Proof: We change this statement by its logically equivalence:
∀i, j, n ∈ N, if it is not the case thati ≤ √

n or j ≤ √
n, theni × j 6= n.

If it is not true thati ≤ √
n or j ≤ √

n, theni >
√

n andj >
√

n.
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Proof by Contrapositive (p → q ⇔ ¬q → ¬p)

Example: ∀i, j, n ∈ N, if i × j = n, then eitheri ≤ √
n or j ≤ √

n.

Proof: We change this statement by its logically equivalence:
∀i, j, n ∈ N, if it is not the case thati ≤ √

n or j ≤ √
n, theni × j 6= n.

If it is not true thati ≤ √
n or j ≤ √

n, theni >
√

n andj >
√

n.

Sincej > 0,
√

n ≥ 0, we have

i >
√

n ⇒ i × j >
√

n × j ≥ √
n ×√

n = n.

It follows that i × j 6= n. The original statement is true. 2
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Proof by Contradiction (p is true⇔¬p → false is true)

Example: For any setsA, B, andC, if A ∩ B = ∅ andC ⊆ B, then
A ∩ C = ∅.
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Proof by Contradiction (p is true⇔¬p → false is true)

Example: For any setsA, B, andC, if A ∩ B = ∅ andC ⊆ B, then
A ∩ C = ∅.

Proof: AssumeA ∩ B = ∅, C ⊆ B, andA ∩ C 6= ∅.
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Proof by Contradiction (p is true⇔¬p → false is true)

Example: For any setsA, B, andC, if A ∩ B = ∅ andC ⊆ B, then
A ∩ C = ∅.

Proof: AssumeA ∩ B = ∅, C ⊆ B, andA ∩ C 6= ∅.

Then there existsx with x ∈ A ∩ C, so thatx ∈ A andx ∈ C.
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Example: For any setsA, B, andC, if A ∩ B = ∅ andC ⊆ B, then
A ∩ C = ∅.

Proof: AssumeA ∩ B = ∅, C ⊆ B, andA ∩ C 6= ∅.

Then there existsx with x ∈ A ∩ C, so thatx ∈ A andx ∈ C.

SinceC ⊆ B andx ∈ C, it follows thatx ∈ B.
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Proof by Contradiction (p is true⇔¬p → false is true)

Example: For any setsA, B, andC, if A ∩ B = ∅ andC ⊆ B, then
A ∩ C = ∅.

Proof: AssumeA ∩ B = ∅, C ⊆ B, andA ∩ C 6= ∅.

Then there existsx with x ∈ A ∩ C, so thatx ∈ A andx ∈ C.

SinceC ⊆ B andx ∈ C, it follows thatx ∈ B.

Thereforex ∈ A ∩ B, which contradicts the assumption that
A ∩ B = ∅. 2
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Proof by Contradiction (2)

Example:
√

2 is irrational. (A real numberx is rational if there are
two integersm andn so thatx = m/n.)
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Proof by Contradiction (2)

Example:
√

2 is irrational. (A real numberx is rational if there are
two integersm andn so thatx = m/n.)

Proof: Suppose on the contrary
√

2 is rational.
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Proof by Contradiction (2)

Example:
√

2 is irrational. (A real numberx is rational if there are
two integersm andn so thatx = m/n.)

Proof: Suppose on the contrary
√

2 is rational.

Then there are integersm′ andn′ with
√

2 = m′

n′ .

By dividing bothm′ andn′ by all the factors that are common to both,
we obtain

√
2 = m

n , for some integersm andn having no common
factors.

Sincem
n =

√
2, we can havem2 = 2n2, thereforem2 is even, andm is

also even.
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Proof by Contradiction (Cont.)

Let m = 2k. Therefore,(2k)2 = 2n2.

Simplifying this we obtain 2k2 = n2, which meansn is also a even
number.

We have shown thatm andn are both even numbers and divisible by
2. This contradicts the previous statementm andn have no common
factors. Therefore,

√
2 is irrational. 2
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Proof by Cases (Divide domain into distinct subsets)

Example: Prove that ifn ∈ N, then 3n2 + n + 14 is even.
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Proof by Cases (Divide domain into distinct subsets)

Example: Prove that ifn ∈ N, then 3n2 + n + 14 is even.

Proof: Let n ∈ N. We can consider two cases:n is even andn is odd.
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Proof by Cases (Divide domain into distinct subsets)

Example: Prove that ifn ∈ N, then 3n2 + n + 14 is even.

Proof: Let n ∈ N. We can consider two cases:n is even andn is odd.

Case 1. n is even. Letn = 2k, wherek ∈ N. Then

3n2 + n + 14 = 3(2k)2 + 2k + 14

= 12k2 + 2k + 14

= 2(6k2 + k + 7)

Since 6k2 + k + 7 is an integer, 3n2 + n + 14 is even ifn is even.
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Proof by Cases (Cont.)

Case 2. n is odd. Letn = 2k + 1, wherek ∈ N. Then

3n2 + n + 14 = 3(2k + 1)2 + (2k + 1) + 14

= 3(4k2 + 4k + 1) + (2k + 1) + 14

= 12k2 + 12k + 3+ 2k + 1+ 14

= 12k2 + 14k + 18= 2(6k2 + 7k + 9)

Since 6k2 + 7k + 9 is an integer, 3n2 + n + 14 is even ifn is odd.
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Proof by Cases (Cont.)

Case 2. n is odd. Letn = 2k + 1, wherek ∈ N. Then

3n2 + n + 14 = 3(2k + 1)2 + (2k + 1) + 14

= 3(4k2 + 4k + 1) + (2k + 1) + 14

= 12k2 + 12k + 3+ 2k + 1+ 14

= 12k2 + 14k + 18= 2(6k2 + 7k + 9)

Since 6k2 + 7k + 9 is an integer, 3n2 + n + 14 is even ifn is odd.

Since in both cases 3n2 + n + 14 is even, it follows that ifn ∈ N, then
3n2 + n + 14 is even.
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The Principle of Mathematical Induction

SupposeP(n) is a statement involving an integern. Then to prove that
P(n) is true for everyn ≥ n0, it is sufficient to show these two things:

P(n0) is true.

For anyk ≥ n0, if P(k) is true, thenP(k + 1) is true.
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An Example for Mathematical Induction

Example: Let P(n) be the statement
∑n

i=0 i = n(n + 1)/2. Prove that
P(n) is true for everyn ≥ 0.
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An Example for Mathematical Induction

Example: Let P(n) be the statement
∑n

i=0 i = n(n + 1)/2. Prove that
P(n) is true for everyn ≥ 0.

Proof: We proveP(n) is true forn ≥ 0 by induction.
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An Example for Mathematical Induction

Example: Let P(n) be the statement
∑n

i=0 i = n(n + 1)/2. Prove that
P(n) is true for everyn ≥ 0.

Proof: We proveP(n) is true forn ≥ 0 by induction.

Basis step. P(0) is 0= 0(0+ 1)/2, and it is obviously true.
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An Example for Mathematical Induction

Example: Let P(n) be the statement
∑n

i=0 i = n(n + 1)/2. Prove that
P(n) is true for everyn ≥ 0.

Proof: We proveP(n) is true forn ≥ 0 by induction.

Basis step. P(0) is 0= 0(0+ 1)/2, and it is obviously true.

Induction Hypothesis. AssumeP(k) is true for somek ≥ 0. Then
0+ 1+ 2+ · · ·+ k = k(k + 1)/2.
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An Example for Mathematical Induction

Example: Let P(n) be the statement
∑n

i=0 i = n(n + 1)/2. Prove that
P(n) is true for everyn ≥ 0.

Proof: We proveP(n) is true forn ≥ 0 by induction.

Basis step. P(0) is 0= 0(0+ 1)/2, and it is obviously true.

Induction Hypothesis. AssumeP(k) is true for somek ≥ 0. Then
0+ 1+ 2+ · · ·+ k = k(k + 1)/2.

Proof of Induction Step. Now let us prove thatP(k + 1) is true.

0+ 1+ 2+ · · ·+ k + (k + 1) = k(k + 1)/2+ (k + 1)

= (k + 1)(k/2+ 1)

= (k + 1)(k + 2)/2 2
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An Example for Mathematical Induction (2)

Example: For anyx ∈ {0,1}∗, if x begins with 0 and ends with 1
(i.e.,x = 0y1 for some stringy), thenx must contain the substring 01.
(Note that∗ is theKleene star. {0,1}∗ means “every possible string
consisted of 0 and 1, including the empty string".)
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An Example for Mathematical Induction (2)

Example: For anyx ∈ {0,1}∗, if x begins with 0 and ends with 1
(i.e.,x = 0y1 for some stringy), thenx must contain the substring 01.
(Note that∗ is theKleene star. {0,1}∗ means “every possible string
consisted of 0 and 1, including the empty string".)

Proof: Consider the statementP(n): If |x| = n andx = 0y1 for some
stringy ∈ {0,1}∗, thenx contains the substring 01. If we can prove
thatP(n) is true for everyn ≥ 2, it will follow that the original
statement is true. We prove it by induction.
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An Example for Mathematical Induction (2)

Example: For anyx ∈ {0,1}∗, if x begins with 0 and ends with 1
(i.e.,x = 0y1 for some stringy), thenx must contain the substring 01.
(Note that∗ is theKleene star. {0,1}∗ means “every possible string
consisted of 0 and 1, including the empty string".)

Proof: Consider the statementP(n): If |x| = n andx = 0y1 for some
stringy ∈ {0,1}∗, thenx contains the substring 01. If we can prove
thatP(n) is true for everyn ≥ 2, it will follow that the original
statement is true. We prove it by induction.

Basis step. P(2) is true.

Induction hypothesis. P(k) for k ≥ 2.
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An Example for Mathematical Induction (2)

Proof of induction step. Let’s proveP(k + 1).

Since|x| = k + 1 andx = 0y1, |y1| = k.

If y begins with 1 thenx begins with the substring 01. Ify begins with
0, theny1 begins with 0 and ends with 1;

by the induction hypothesis,y contains the substring 01, thereforex
does else. 2
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The Minimal Counterexample Principle

Example: Prove∀n ∈ N, 5n − 2n is divisible by 3.
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The Minimal Counterexample Principle

Example: Prove∀n ∈ N, 5n − 2n is divisible by 3.

Proof: If P(n) = 5n − 2n is not true for everyn ≥ 0, then there are
values ofn for which P(n) is false, and there must be a smallest such
value, sayn = k.

SinceP(0) = 50 − 20 = 0, which is divisible by 3, we havek ≥ 1,
andk − 1 ≥ 0.

Sincek is the smallest value for whichP(k) false,P(k − 1) is true.
Thus 5k−1 − 2k−1 is a multiple of 3, say 3j.
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The Minimal Counterexample Principle (Cont.)

However, we have

5k − 2k = 5× 5k−1 − 2× 2k−1

= 5× (5k−1 − 2k−1) + 3× 2k−1

= 5× 3j + 3× 2k−1

This expression is divisible by 3. We have derived a contradiction,
which allows us to conclude that our original assumption is false.
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An Example for the Weakness of Mathematical Induction

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.
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An Example for the Weakness of Mathematical Induction

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Proof: DefineP(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove thatP(n) is true
for everyn ≥ 2.
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An Example for the Weakness of Mathematical Induction

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Proof: DefineP(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove thatP(n) is true
for everyn ≥ 2.

Basis step. P(2) is true, since 2 is a prime.X
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An Example for the Weakness of Mathematical Induction

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Proof: DefineP(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove thatP(n) is true
for everyn ≥ 2.

Basis step. P(2) is true, since 2 is a prime.X

Induction hypothesis. P(k) for k ≥ 2. (as usual process)
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An Example for the Weakness of Mathematical Induction

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Proof: DefineP(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove thatP(n) is true
for everyn ≥ 2.

Basis step. P(2) is true, since 2 is a prime.X

Induction hypothesis. P(k) for k ≥ 2. (as usual process)

Proof of induction step. Let’s proveP(k + 1).

If P(k + 1) is prime,X
If P(k + 1) is not a prime, then we should prove thatk + 1 = r × s,
wherer ands are positive integers greater than 1 and less thank + 1.
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An Example for the Weakness of Mathematical Induction

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Proof: DefineP(n) be the statement that “n is either prime or the
product of two or more primes”. We will try to prove thatP(n) is true
for everyn ≥ 2.

Basis step. P(2) is true, since 2 is a prime.X

Induction hypothesis. P(k) for k ≥ 2. (as usual process)

Proof of induction step. Let’s proveP(k + 1).

If P(k + 1) is prime,X
If P(k + 1) is not a prime, then we should prove thatk + 1 = r × s,
wherer ands are positive integers greater than 1 and less thank + 1.

However, fromP(k) we know nothing aboutr ands −→ ???
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The Strong Principle of Mathematical Induction

SupposeP(n) is a statement involving an integern. Then to prove that
P(n) is true for everyn ≥ n0, it is sufficient to show these two things:

P(n0) is true.

For anyk ≥ n0, if P(n) is true for everyn satisfyingn0 ≤ n ≤ k,
thenP(k + 1) is true.

Also calledthe principle of complete induction, or course-of-values
induction.
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To Complete the Example

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.
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To Complete the Example

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Continue the Proof:
Induction hypothesis. Fork ≥ 2 and 2≤ n ≤ k, P(n) is true.(Strong
Principle)
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To Complete the Example

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Continue the Proof:
Induction hypothesis. Fork ≥ 2 and 2≤ n ≤ k, P(n) is true.(Strong
Principle)

Proof of induction step. Let’s proveP(k + 1).

If P(k + 1) is prime,X
If P(k + 1) is not a prime, by definition of a prime,k + 1 = r × s,
wherer ands are positive integers greater than 1 and less thank + 1.
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To Complete the Example

Example: Prove that∀n ∈ N with n ≥ 2, it has prime factorizations.

Continue the Proof:
Induction hypothesis. Fork ≥ 2 and 2≤ n ≤ k, P(n) is true.(Strong
Principle)

Proof of induction step. Let’s proveP(k + 1).

If P(k + 1) is prime,X
If P(k + 1) is not a prime, by definition of a prime,k + 1 = r × s,
wherer ands are positive integers greater than 1 and less thank + 1.

It follows that 2≤ r ≤ k and 2≤ s ≤ k. Thus by induction
hypothesis, bothr ands are either prime or the product of two or more
primes. Then their productk + 1 is the product of two or more
primes.P(k + 1) is true.
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Outline

1 Set
Basic Concepts
Set Operations

2 Function
Basic Concepts
Functions of Natural Numbers

3 Relations and Predicates
Basic Concepts
Logical Notation

4 Proof
Definition
Categories
Peano Axioms
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Giuseppe Peano (1858-1932)

In 1889, Peano published the first set of axioms.

Build a rigorous system of arithmetic, number theory, and
algebra.

A simple but solid foundation to construct the edifice of modern
mathematics.

The fifth axiom deserves special comment. It is the first formal
statement of what we now call the “induction axiom" or “ the
principle of mathematical induction".
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Peano Five Axioms

Axiom 1. 0 is a number.

Axiom 2. The successor of any number is a number.

Axiom 3. If a andb are numbers and if their successors are
equal, thena andb are equal.

Axiom 4. 0 is not the successor of any number.

Axiom 5. If S is a set of numbers containing 0 and if the
successor of any number inS is also inS, thenS contains all the
numbers.
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Peano Axioms vs Theorem of Mathematical Induction

Let S(n) be a statement aboutn ∈ N. Suppose

1 S(1) is true, and
2 S(t + 1) is true wheneverS(t) is true fort ≥ 1.

ThenS(n) is true for alln ∈ N.
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Proof

Let A = {n ∈ N | S(n) is false}. It suffices to show thatA = ∅.

If A 6= ∅, A would contain a smallest positive integer, sayn0 ∈ N,
s.t.n0 ≤ n, n ∈ A.

Thus, the statementS(n0) is false and because of hypothesis (1),
n0 > 1.

Sincen0 is the smallest element ofA, the statementS(n0 − 1) is true.
Thus, by hypothesis (2),S(n0 − 1) is true which implies thatS(n0) is
true, a contradiction which implies thatA = ∅. �
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