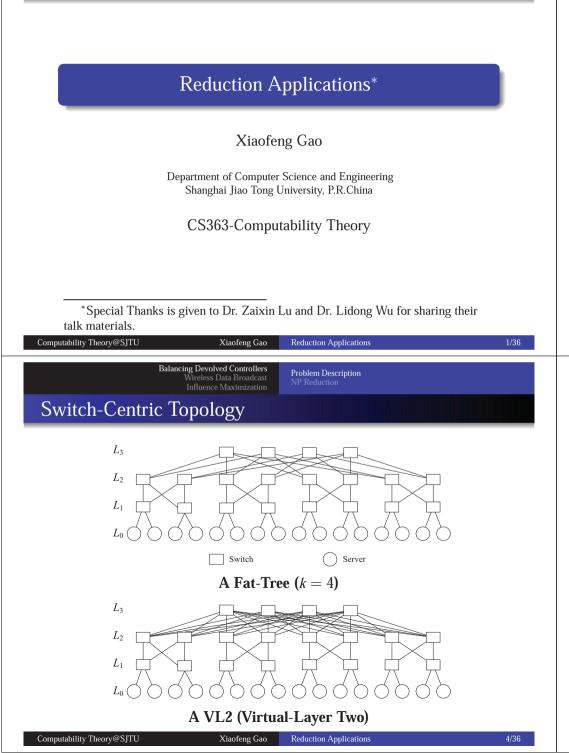
ncing Devolved Controllers Wireless Data Broadcast Influence Maximization



Balancing Devolved Controllers Wireless Data Broadcast

Problem Description NP Reduction

Data Centers

Data Center: a facility used to house computer systems and associated components.

From http://img.clubic.com/05468563-photo-google-datacenter.jpg



Problem Description

A Controller

Controller: monitor, manage network resources, update routing information, and prepare Virtual Machine migrations.

Problem Description

Balancing Devolved Controllers

Wireless Data Broadcast

Influence Maximizatio

Traffic Load Monitoring: monitor the traffic of switches in a data center.

Workload: the workload of a controller is the sum of traffic loads from its monitored switches.

Balancing Devolved Controllers (BDC) Problem

Given *n* switches $S = \{s_1, \dots, s_n\}$, each has traffic load w_i , and *m* controllers $C = \{c_1, \cdots, c_m\}$.

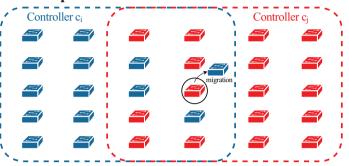
Due to physical limitations, each s_i can only be monitored by its potential controller set $PC(s_i)$. Every c_i can only control switches in its potential switch set $PS(c_i)$. After the partition, the real controller and switch subset is denoted by $rc(s_i)$ and $RS(c_i)$ respectively.

The weight of a controller $w(c_i) = \sum_{s_i \in RS(c_i)} w(s_i)$.

Objective: get an *m*-partition for switches such that each controller will has similar amount of workload, say, to minimize the *Standard* Deviation $\sigma = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (w(c_i) - \overline{w(c)})^2}$, where $\overline{w(c)}$ is the average weight of controllers.

If a data center has *m* controllers to monitor *n* switches, then we hope that the workload of each controller is almost the same.

An Example:



Controller c_i dominates 17 switches and Controller c_i dominates 13 switches. The traffic between c_i and c_i is unbalanced, and c_i is migrating one of its switch to c_i .

Computability Theory@SJTU	Xiaofeng Gao	Reduction Applications	7/36

Wireless Data Broadcast

Problem Description VP Reduction

Non-Linear Programming

min

s.t.

Define
$$x_{ij} = \begin{cases} 1 & \text{If } c_i \text{ monitors } s_j \\ 0 & \text{otherwise} \end{cases}$$
, Formulat BDC as:

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m} \left(\sum_{j=1}^{n} w(s_i) \cdot x_{ij} - \overline{w(c)}\right)^2}$$
(1)

$$\overline{w(c)} = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} w(s_j) \cdot x_{ij}$$
(2)

$$\sum_{i=1}^{m} x_{ij} = 1, \quad \forall 1 \le j \le n \tag{3}$$

$$x_{ij} = 0, \quad \text{if } s_j \notin PS(c_i) \text{ or } c_i \notin PC(s_j), \forall i, j$$

$$x_{ij} \in \{0, 1\} \quad \forall i, j$$
(4)
(5)

1

Balancing Devolved Controllers Wireless Data Broadcast Influence Maximization

Problem Descr NP Reduction

Hardness Discussion

Decision Version of BDC: Given *n* switches $S = \{s_1, \dots, s_n\}$, each has traffic load w_i , *m* controllers $C = \{c_1, \dots, c_m\}$, a threshold *w*, does there exist an *m*-partition for switches such that the *Standard Deviation* σ among controllers $\leq w$.

Theorem: $BDC \in \mathbb{NP}$.

Proof: A certificate of BDC is an *m*-partition with $rc(s_i)$ and $RS(c_i)$ sets. The certifier is to check whether the standard deviation $\sigma \leq w$.

Computability Theory@SJTU Xiaofeng G	Reduction Applications 11/36
Balancing Devolved Controlle Wireless Data Broadc Influence Maximizati	t NP Reduction
NP Reduction (2)	

Proof: PARTITION \leq_p BDC.

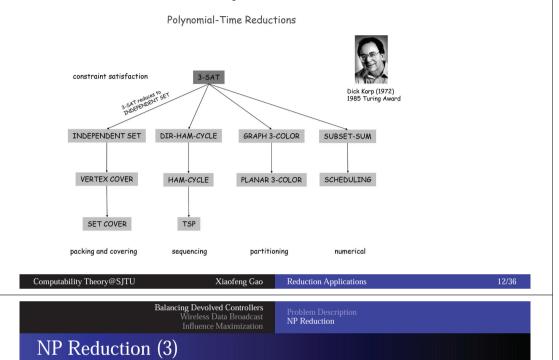
An instance of PARTITION is: given a finite set *A* and a *size*(*a*) $\in \mathbb{Z}^+$ for each $a \in A$, is there a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} size(a) = \sum_{a \in A \setminus A'} size(a)$$

Now we construct an instance of LBDC. In this instance there are 2 controllers c_1 , c_2 and |A| switches. Each switch s_a represents an element $a \in A$, with weight $w(s_a) = size(a)$.

Balancing Devolved Controllers Wireless Data Broadcast Influence Maximization Problem Description NP Reduction NP Reduction (1) Problem Description

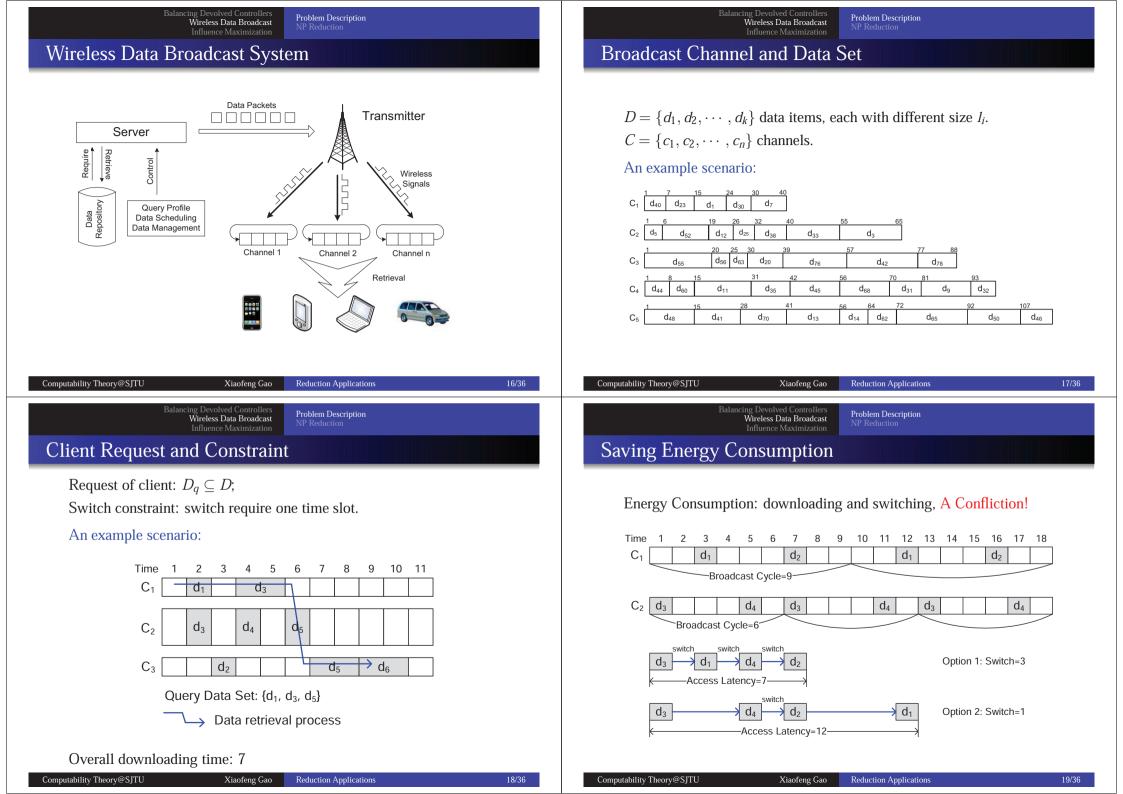
Theorem: BDC is NP-Complete.



" \Rightarrow " Then, given a YES solution *A*' for PARTITION, we have a solution that c_1 controls $\{s_a \mid a \in A'\}$, c_2 controls $\{s_a \mid a \in A \setminus A'\}$, and $\sigma = 0$.

" \Leftarrow " given a solution for BDC with $\sigma = 0$, we can partite *A* into $A_1 = RS(c_1)$, $A_2 = RS(c_2)$, then it is a YES solution for PARTITION problem.

The reductions can be done within polynomial time, which completes the proof. $\hfill \Box$



Objective: A Constraint Minimization Problem

Definition: Minimum Constraint Data Retrieval Problem (V1)

Given $D = \{d_1, \dots, d_k\}$ located on *n* channels $C = \{c_1, \dots, c_n\}$. Each d_i has length l_i , and located at some position on channel c_j . If we fix a switch parameter *h*, then the *Minimum Constraint Data Retrieval Problem* (MCDR) is to find a minimum access latency data retrieval schedule to download $D_q \subseteq D$, with at most *h* switches.

Problem Description

Definition: Minimum Constraint Data Retrieval Problem (V2)

If we fix a latency parameter *t*, then the MCDR is to find a minimum switch-number data retrieval schedule to download $D_q \subseteq D$, with at most *t* access latency.

Definition: Minimum Cost Data Retrieval Problem (V3)

Xiaofeng Gao

Reduction Applications

Computability Theory@SJTU

If we set parameters α and β , then the MCDR is to find a minimum cost ($\alpha \cdot hop + \beta \cdot time$) data retrieval schedule to download $D_q \subseteq D$.

Computability Theory@SJTU Xiaofeng Gao Reduction Applications Computability Theory@SJTU Xiaofeng Gao Reduction Applications Wireless Data Broadcast Wireless Data Broadcast NP Reduction NP Reduction **NP-Completeness Conversion Steps** • For each vertex $v_i \in V$, define a channel v_i . Define another k channels b_1, \dots, b_k . Then the channel set is Theorem: MCDR is NP-Complete. $C = \{v_1, \cdots, v_{|V|}, b_1, \cdots, b_k\}$. Totally |V| + k channels. Let δ be the maximum vertex degree in G, then each channel has a broadcast cycle length of $\delta + 3$. **Proof:** We prove by VERTEX-COVER \leq_p MCDR. • For each edge $(v_i, v_i) \in E$, define a unit length data item e_{ii} in **Decision Vector Cover:** Given a graph G = (V, E) and an integer k, data set D_e , and append it on channel c_i and c_i (the order can be does it have a vertex cover VC with size k. arbitrary, and starting from the third time unit). Then we will construct an instance of MCDR from *G* and *k*. • For each channel b_i , define a unit length data item d_i in data set D_d , and allocate it on the first time unit of channel b_i . • The data set $D_a = D_e \cup D_b$.

Computability Theory@SJTU

A Decision Version

Decision MCDR

Given a data set *D*, a channel set *C*, a time threshold *t*, a switching threshold *h*, find a valid data retrieval schedule to download all the data in D_q from *C* before time *t* with at most *h* switchings. (the cost is at most $\alpha h + \beta t$)

NP Reduction

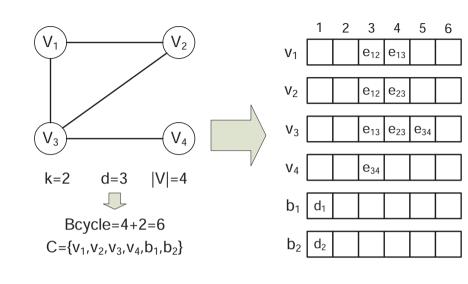
Theorem: $MCDR \in \mathbb{NP}$

Proof: A certificate of MCDR is a downloading schedule as a sequence of (c_i, d_j) pairs. The certifier is to check whether this schedule can be achieved within *t* time and *h* switches.

Xiaofeng Gao

Reduction Applications

An Example



Computability Theory@SJTU	Xiaofeng Gao	Reduction Applications	25/36
Balancing Devolved Controllers Wireless Data Broadcast Influence Maximization		Problem Description NP Reduction	
Reduction Proof	(2)		

 \Leftarrow : Assume MCDR has a valid schedule *S* with $t = k(\delta + 3)$ and h = 2k - 1.

Consider D_b first. There are $k \ b_i$'s located at the same position on k different channels \Rightarrow have to switch k - 1 hops. Then we only have k hops for $D_e \Rightarrow$ can visit at most k channels in $\{v_i\}$.

At the beginning of each iteration, we stay at some b_i to download d_i , then switch to some v_i . At the end of this cycle, we have to switch to channel b_{i+1} for d_{i+1} . This means we cannot switch to two vertex channels within one broadcast cycle, otherwise we cannot download $D = D_e \cup D_b$ in k iterations.

Since *S* is valid, we visit *k* vertex channels and download all D_e data items, it means these *k* vertices form a vertex cover with size *k*.

Balancing Devolved Controllers		
Wireless Data Broadcast		
Influence Maximization		

t NP Reduction

Reduction Proof

Equivalence Relation: *G* has a vertex cover with size *k* iff there is a valid data retrieval schedule with $t = k(\delta + 3)$ and h = 2k - 1.

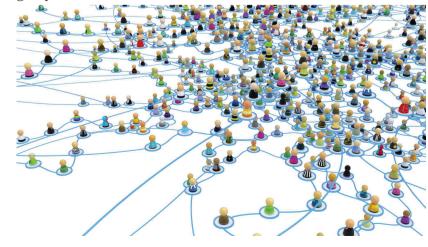
 \implies : If *G* has a vertex cover *VC* with size *k*, then we can select these *k* channels in $\{v_i \mid v_i \in VC\}$ to receive all the data in *k* cycles.

At *i*th iteration, download b_i at t = 1, and hop to some $v_i \in VC$ channel, download needed data items, and then hop to b_{i+1} .

There are $k b_i$'s, so in each iteration client will download one of them. *VC* is a vertex cover, so we can download every e_{ij} .

The length of each broadcast cycle is δ + 3, totally $k(\delta$ + 3). In each iteration the client will switch twice (except the last cycle), so h = 2k - 1.

Social Network: a graph of relationships and interactions within a group of individuals.



From http://thenextweb.com/wp-content/blogs.dir/1/files/2013/11/social-network-links.jpg

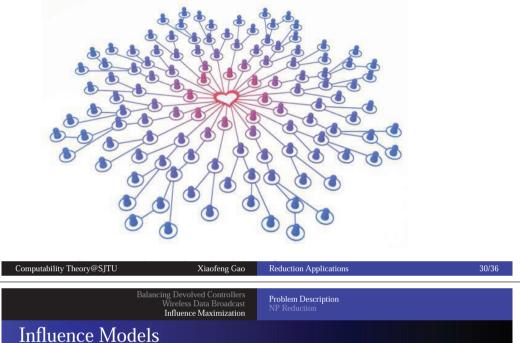
27/3

Wireless Data Broadcas Influence Maximization

Problem Description

Social Influence

Social Influence: ideas, information, opinions spread among the members in a social network.



Linear Threshold model: A node *i* has a weight *b_{ii}* to influence node *j* and $\sum_{i \in N_i} b_{ij} \leq 1$ (if $(j, i) \notin E, b_{ij} = 0$). Node *j* is preassigned a threshold $\vec{\theta}_{i}$. At any single step, node *j* is successfully activated if the sum of weights from its active neighbors exceeds θ_i .

Independent Cascade model: If node *i* becomes active at step *t*, it has a probability p_{ii} to successfully activate each inactive neighbor *i* in step t + 1. Furthermore, whether or not *i* succeeds, it does not have any chances to activate *j* again.

Influence Maximization Problem

Influence Maximization Problem: Given a social network G = (V, E) and k nodes are allowed to be activated initially, how do we select them in order to gain the maximum influence?

Problem Description

Decision Version: Given a social network G = (V, E), a parameter k, and a threshold *m*, there exists a selection of *k* activated seeds to influence *m* members.

NP Reduction Influence Maximization Influence Maximization under Linear Threshold Model

Reduction Applications

Xiaofeng Gao

Theorem: The Influence Maximization problem is NP-hard under Linear Threshold model.

Proof: VERTEX-COVER \leq_p INFLUENCE-MAX

Given an instance of Vertex Cover with G and k, construct G' by directing all edges of *G* in both directions. For each node $v_i \in V$, $\theta_i = 1$. For each edge $(v_i, v_i) \in E$, $b_{ii} = 1/Indegree(v_i)$.

Equivalence Relation: *G* has a vertex cover with size *k* iff *k* seeds in G' influenced |V| members.

 \Rightarrow If there is a vertex cover S of size *k* in *G*, then we can activate all nodes in *G* by selecting the nodes in *S*;

 \leftarrow Conversely, this is the only way to activate all nodes in *G*.

Computability Theory@SJTU

ancing Devolved Controllers Wireless Data Broadcast Influence Maximization

Influence Maximization under Independent Cascade Model

NP Reduction

Theorem: The Influence Maximization problem is NP-hard under the Independent Cascade model.

Proof: SET-COVER \leq_p INFLUENCE-MAX

Given an instance of Set Cover with $U = \{u_1, \dots, u_m\}$, $\mathbf{S} = \{S_1, \dots, S_n\}$, and k, define a directed bipartite graph with n + mnodes: a node i for each set S_i , a node j for each element u_j , and a directed edge (i, j) with activation probability $p_{ij} = 1$, whenever $u_j \in S_i$.

Equivalence Relation: U has a set cover with size k iff there is a set A of k nodes which can active n elements.

Xiaofeng Gao Reduction Applications

35/36

ncing Devolved Controllers Wireless Data Broadcast Influence Maximization

Proof

 \Rightarrow : Note that for the instance we have defined, activation is a deterministic process, as all probabilities are 0 or 1. Initially activating the *k* nodes corresponding to sets in a Set Cover solution results in activating all *n* elements corresponding to the ground set *U*.

NP Reduction

 \Leftarrow : If any set *A* of *k* nodes can active *n* elements, then the Set Cover problem must be solvable.

Xiaofeng Gao Reduction Applications