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Reduction and Degree Many-One Reduction

General Remark

Reduction and Degree Many-One Reduction

Many-One Reduction

A problem is a set of numbers.

A reduction is a way of defining a solution of a problem with the help
of the solutions of another problem.

There are several inequivalent ways of reducing a problem to another
problem.

The differences between different reductions consists in the manner
and extent to which information about B is allowed to settle questions
about 4.

The set 4 is many-one reducible (m-reducible) to the set B if there is a
total computable function f such that x € 4 iff f(x) € B for all x.

We shall write 4 <,, B or more explicitly f : 4 <,, B.

If f is injective, then we are talking about one-one reducibility.

y and Degree
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Reduction and Degree Many-One Reduction

Examples

Reduction and Degree Many-One Reduction

Elementary Properties

1. K is m-reducible to {x | ¢y = 0}, {x | ¢ € W, } and {x | ¢, is total}.

[0 ifxe W _Jy ifxe W
f()(xy> - { T if x € W, .fN(xvy) - { T if x ¢ W,
2. Rice Theorem is proved by showing that K <,, {x | ¢, € £}.
f(6y) = gly) ifxew, xeW,= gplx) =g A
RN itk g W x g W ) =fo ¢ P

3. {x | ¢y istotal} <, {x| ¢p =0}.
Gr(x) = 00 Py
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Let 4, B, C be sets.
1. <, isreflexive: 4 <, 4.

f A <, Ais the identity function.
2. <,,transitive: 4 <,, B,B <, C=4<,, C.
Letf:4<,B,g:B<,C,thengof:4<,C.
3. A<, BiffA <, B.

Ifg:4<,B,thenx € 4 f(x) € B;sox € 4 & g(x) €B.
Henceg:4 <,, B.
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Reduction and Degree Many-One Reduction

Elementary Properties (2)

4. If A is recursive and B <,, 4, then B is recursive.

g: B <, A;then cg(x) = c4(g(x)). So cp is computable.

5. If A is recursive and B # @, N, then 4 <,, B.

Letbh € B,c ¢ B, f(x) —{ [c) iii;j ; then 1" is

computable.
x€A<f(x) €B.

6. If Aisr.e. and B <,, 4, then Bisr.e.

Letg: B <,, A, A = Dom(h), (h € €)); then B = Dom(ho g)
(Bisre.)
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Elementary Properties (3)

7. (). A <y Niff4 = N; (ii). 4 <,, @ iff 4 = @.

(1).“«<=": By reflexivity, N <,, N.
(i).“=":Letf : 4 <,, N, thenx € 4 < f(x) € N. Thus 4 = N.
(i) A<, A<, NoA4=Ns4=0.

8. (I). N <, Aiff4 # @; (ii). @ <, Aiff 4 # N.

(). “=": Letf : N <,, 4, then 4 = Ran(f), so A # & (f is
total).

(i). “<=": If 4 # @, choose ¢ € 4. If g(x) = ¢, we have
g:N<, A

(). 2<, A N<L, A A+ 4=N.
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Corollary Corollary (2)

Fact. If 4 is r.e. and is not recursive, then 4 %,, A and 4 £,, A.
Corollary. Neither {x | ¢, is total} nor {x | ¢, is not total} is

m-reducible to K. Proof. “A %,, A": By contradiction, if 4 <,, 4, then 4 is r.e., then 4 is
recursive!

Proof. By contradiction, if {x | ¢, is total} <,, K, and K is r.e., then _ _ _

{x | ¢, is total} is r.e. (same as {x | ¢, is not total}). “4 £, A": By contradiction, if 4 <,, 4, then 4 <,, 4, then 4 is
recursive!

However, by Rice-Shapiro Theorem, Neither {x | ¢, is total} nor

{x | ¢x is not total} is r.e. Notation: It contradicts to our intuition that A and A are equally

difficult.
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Reduction and Degree Many-One Reduction Reduction and Degree
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Theorem Many-One Equivalence

Theorem. A isre. iff 4 <, K. ) )
Definition. Two sets 4, B are many-one equivalent, notation 4 =,, B

Proof. “<=". Since A <,, K, and K is r.c., then 4 is r.c. (abbreviated m-equivalent), if 4 <,, Band B <,, 4.
. 1, ifxed,
Suppose 4 is r.e. Let f(x,y) be f(x,») = { t, ifx ¢ A. Theorem. =,, is an equivalence relation.
By s-m-n Theorem 3s(x) : N — N such that f(x,y) = ¢y (»). Proof.
It is clear that x € 4 iff ¢, (s(x)) is defined iff s(x) € K. Hence (1). Reflexivity: 4 < 4 = 4 =p 4.
A<, K. (2). Symmetry: A =, B=B<,4, A <, B= B =, A.

(3). Transitivity: 4 =,, B, B=, C=A4<,C, C<, 4= 4=, C.
Notation. K is the most difficult partially decidable problem.
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Examples

. {x|ce W} =,K.

13 " 1fx € W
=) ={ TSN K< fxleem)

“=" {x|ceWltisre,so{x|ce W} <, K.
Thus {x | c € W} =, K.

2. If A is recursive, 4 # I, N, then 4 =, A.

A# I, N= A4+ o N
A is recursive, by previous theorem A <,, A. Similarly, 4 <,, 4.
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Reduction and Degree
Degrees

Example (2)

3. If 4 is r.e. but not recursive, then 4 #,, 4.

A is r.e. but not recursive = A4 £,, A, A £ A.

4. {x| ¢r =0} =, {x | ¢y is total}.
“=" dp) = 00 ¢y = {x | ¢y is total} <y {x | ¢ = 0}.

o 0 if ¢r(y) = 0;
=": Let gbk(x)(}/) :{ 4 1f§rg; #£0. °

Then ¢y = 0 & ¢y(y) is total = {x | ¢y = 0} <,y {x | &y is total}.
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m-Degree

Definition. Let d,,(4) be {B | 4 =, B}.

Definition. An m-degree is an equivalence class of sets under the
relation =,,. It is any class of sets of the form d,(4) for some set 4.

A recursive m-degree is an m-degree that contains a recursive set.
An r.e. m-degree is an m-degree that contains an r.e. set.

Reduction and Degree
Degrees

Expression

Definition. The set of m-degrees is ranged over by a, b, c, .. ..

Definition (Partial Order on m-Degree). Let a, b be m-degrees.
(1. a<, biff4 <, BforsomeA € aand B € b.
(2).a<, biffa<,bandb £, a(a#b).

The relation <, is a partial order.

Notation. From the definition of =,,,
a<,bseV4dea Beb,4<,B.
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Theorem

Reduction and Degree
Degrees

Theorem. The relation <,, is a partial ordering of m-degrees.
Proof.

(1) By transitivity a <,, b, b <,, ¢ implies a <,, c.

Ifa <, bandb <, a, we have to prove that a = b.

(2) Irreflexivity: Let A € a and B € b, then we have 4 <, B and
B <, 4,504 =, B. Hence a = b.

Consequently, <, is partial ordering.

“omputability Theor: Reducibility and Degree

Some Facts

1. 0 and n are respectively the recursive m-degrees {@} and {N}.
A<, N A=N;A<, 0 A=030.

2. The recursive m-degree 0,, consists of all the recursive sets except
7, N.
0,, <,, a for any m-degree a other than o and n.

A is recursive, B <,, A = B is recursive;
Aisrecursive and B # @, N = 4 <, B.
3. V m-degree a, 0 <,, a provided a # n; n <, a provided a # o.

N<, A A4A#+£0,9<,4< A4#N.

omputabilit; Reducibility and Degree
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Facts (2)

Reduction and Degree
Degrees

[llumination

4. Anr.e. m-degree consists of only r.e. sets.
IfAisre. and B <,,, 4, then B isr.e.

5. Ifa <, b and b is an r.e. m-degree, then a is also an r.e. m-degree.

If Aisre. and B <,, 4, then Bisr.e.

6. The maximum r.e. m-degree d,,(K) is denoted by 0/,.
AsetAdisre. iff 4 <, K.

Reducibility and Degree
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non r.e.

All m-degrees
0,
P4

/ re. A \
’m-degreeS\

other than |
'o,n, 0,0,
\
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Facts about r.e. m-Degrees

Reduction and Degree
Degrees

Algebraic Structure

1. Excluding o and n, there is a minimum r.e. m-degree 0,, (in fact 0,,
is minimum among all m-degrees).

2. The r.e. m-degrees form an initial segment of the m-degrees; i.e.,
anything below an r.e. m-degree is also r.e.

3. There is a maximum r.e. m-degree 0/,.

4. While there are uncountably many m-degrees, only countably
many of these are r.e.
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Theorem. The m-degrees form an upper semi-lattice.
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Lattice

In mathematics, a group is an algebraic structure consisting of a set
together with an operation (G, e) that combines any two of its
elements to form a third element.

To qualify as a group, the set and the operation must satisfy four
conditions (group axioms), namely closure, associativity, identity and
invertibility.
closure: a,be G=aebecG.
associativity: (aeb)ec=ae(bec).
identity: Va € G, Jidentity element e € G, s.t. eea =aee = a.
invertibility: Va € G, Jinverse b € Gst.aeb=bea=c(b=a"").

In mathematics, a lattice is a partially ordered set (poset) (L, <) in
which any two elements have a unique supremum (also called a least
upper bound or join) and a unique infimum (also called a greatest
lower bound or meet).

To qualify as a lattice, the set and the operation must satisfy tow
conditions: join-semilattice, meet-semilattice.

join-semilattice:  Va, b € L, the set {a, b} has a joina V b.
(the least upper bound)

meet-semilattice:  Va, b € L, the set {a, b} has a mect a A b.
(the greatest lower bound)
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The Name “Lattice"

Reduction and Degree

Upper Semi-lattice

Degrees

1234

The name "lattice" is suggested
by t.he' forrp of the Hasse'diagrgm G B I I T
depicting it. L.e., the right pic- A \

o

ture is the lattice of partitions of N XU NN
a four-element set.{l, %, 3,4}, or- 12020\ "I VANV
dered by the relatlon "is a reﬁne- 1/23/4 ~14/2/3\ 1/24)3  13/2/4  12/3/4 _1/2/34
ment of".

[

1/2/3/4
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Theorem. Any pair of m-degrees a, b have a least upper bound; i.e.
there is an m-degree ¢ such that

(1). a <, cand b <, ¢ (¢ is an upper bound);

(i1). ¢ <,, any other upper bound of a, b.

CSC363-Computability Theory@SITU

Xiaofeng Gao

Reducibility and Degree

Reduction and Degree
Degrees

Reduction and Degree
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(1). PickA € a,B€ b,andlet C =4 @ B, i.e.,

C={2x|xeAd}U{2x+1|xe€B}.

Then
xeEAEs2xe C= A4 <, C,

xeEBs2x+1€(C= B<,

Thus ¢ is an upper bound of a, b.

Xiaofeng Gao
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Proof (2)

(i1). Let d is an m-degree such that a <,, d,and b <,, d.
VD e d,suppose f : 4 <,, Dand g : B <,, D. Then

1

xeC & (xiseven&%c EA)\/(xisodd&x— € B)

2
x—1

o (xiseven &f(’z—“) € D)V (xis 0dd &g(*5—) € D)

Thus we have 4 : C <,, D if we define h = { f(ZL

Hence ¢ <, d.
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if x is even;
g(*5~) ifxisodd.
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m-Complete r.e. Set

Definition

Definition. An r.e. set is m-complete if every r.e. set is m-reducible to
it.

Notation. 0/, the m-degree of K is maximum among all r.e.
m-degrees, and thus K is m-complete r.e. set (or just called

m-complete set).

Computability Theo Reducibility and Degree

Reduction and Degree

m-Complete r.e. Set

Theorem

Theorem. The following statements are valid.
(1) K is m-complete.
(i1) A4 is m-complete iff 4 =, K iff A isr.e. and K <, 4.

(iii) 0/, consists exactly of all the m-complete sets.

Computability Theory( Reducibility and Degre
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m-Complete r.e. Set

Examples

The following sets are m-complete.

(@) {x [ c € Wy}

(i) Every non-trivial r.e. set of the form {x | ¢, € £}.
(iii) {x | ¢x(x) = 0}.

(iv). {x | x € Ey}.
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m-Complete r.e. Set

Creative Set

Theorem. Any m-complete set is creative.

Proof. If A is m-complete, 4 is r.e. set.

Also, K <,, 4,50 K <,, A. Thus 4 is productive.
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m-Complete r.e. Set

Myhill’s Theorem

Reduction and Degree

m-Complete r.e. Set

m-Complete r.e. Sets

Myhill’s Theorem. A set is m-complete iff it is creative.

Computability Theo Reducibility and Degree

Corollary. If a is the m-degree of any simple set, then
0,, <na <, 0, (Simple sets are not m-complete).

Proof. Simple sets are designed to be neither recursive nor creative.

Computability Theory( Reducibility and Degree

Relative Computability

Relative Computability

Comparison

m-reducibility has two unsatisfactory features:
(1) The exceptional behavior of & and N.
(i) The invalidity of 4 #,, 4 in general.

The problem is due to the restricted use of oracles.

Eg xcdiffxg 4
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Relative Computability

Suppose y is a total unary function.

Informally a function £ is computable relative to , or x-computable,
if f can be computed by an algorithm that is effective in the usual
sense, except from time to time during computations f is allowed to
consult the oracle function Y.

Such an algorithm is called a y-algorithm.

Reducibility and Degree
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Relative Computability

URMO - Unlimited Register Machine with Oracle

A URM with oracle, URMO for short, can recognize a fifth kind of
instruction, O(n), for every n > 1.

If x is the oracle, then the effect of O(n) is to replace the content r,, of
Ry by X(ra)-

PX denote the program P when used with the function x in the oracle.

PX(a) | b means the computation PX(a) with initial configuration
ai,az, - ,a,,0,0,--- stops with the number b is register R;.
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[1lumination
Oracle
v
7
// !
r i
11 4
n / X(rn)
i Vd
| 4
1
r‘ rZ r] R r"l
Rl RZ RS Rn
With resulting configuration
Ty s & x(r,)
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Relative Computability

URMO-Computable

Relative Computability

Let x be a unary total function, and suppose the /" is a partial function
from N" to N.

(a) Let P be a URMO program, then P URMO-computes f relative
to x (or f is xy-computed by P) if, for every a € N" and b € N,
PX(a) | bifff(a) ~ b.

(b) The function f"is URMO-computable relative to x (or

x-computable) if there is a URMO program that
URMO-computes it relative to .

¢ X is the set of all x-computable functions.

CSC363-Computability Theo
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(i) x € €.
Use URMO program O(1).
(i) € C ¢x.

Any URM program is a URMO program.
(ii1) If x is computable, then ¢ = €X.

Since ¢ C X, we need to prove €X C €. x is computable, then
whenever a value of x is requested simply compute it by the
algorithm for y. By Church’s thesis, / is computable.

(iv) €X is closed under substitution, recursion and minimalisation.

Construct corresponding URMO programs.

(v) If ¢ is a total unary function that is y-computable, then €% C &X.
By Church’s thesis.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree




Relative Computability

Partial Recursive Function

The class ZX of y-partial recursive functions is the smallest class of
functions such that

(a) the basic functions are in ZX.
(b) x € Z#X.

(c) %X is closed under substitution, recursion, and minimalisation.

x-recursive, y-primitive recursive are defined in the obvious way.

Theorem. For any y, ZX = ¢X.
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Relative Computability

Numbering URMO programs

Let’s fix an effective enumeration of all URMO programs

Q0>Q17Q27""

Let ¢" be the n-ary function y-computed by Q,,,.
Let ¢ be ¢

Wo is Dom(¢n) and Ey is Ran(dn).
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Relative Computability

Numbering URMO programs

Relative Computability

S-m-n Theorem. For each m,n > 1 there is a total computable
(m + 1)-ary function s”'(e, x) such that for any y

O (x,¥) = B ().

Notice that 57" (e, x) does not refer to y.
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Universal Programs for Relative Computability

Universal Function Theorem. For each #n, the universal function
" for n-ary x-computable functions given by

Py (e, %) = X" (x)

is y-computable.
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Relativization

Relative Computability

x-Recursive and y-r.e. Sets

Once we have the S-m-n Theorem and the Universal Function
Theorem, we can do the recursion theory relative to an oracle.
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Let 4 be a set
(a) A4 1is x-recursive if ¢4 is y-computable.

(b) A is x-r.e. if the partial characteristic function

fx) = { * gi ;j’ is y-computable.
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Relative Computability

Relative Computability

x-Recursive and y-r.e. Sets

Theorem. The following statements are valid.
(i) For any set 4, A4 is y-recursive iff 4 and 4 are y-r.e.

(i1) For any set A4, the following are equivalent.
@ Ais x-re.
@ A = W) for some m.
@ A = E) for some m.
@ A = () or A is the range of a total y-computable function.

@ For some y-decidable predicate R(x,y), x € 4 iff Jy.R(x,y).

f . .
(iii) KX & {x | x € W} is x-r.e. but not x-recursive.

49/64

Computability Relative to a Set

Computability relative to a set 4 means computability relative to its
characteristic function c.

For example:

P4 for P4 (if P is a URMO program),
¢4 for €4,

¢ for <.

W4 for wes,

E2 for E<4,

K for K¢,

A-recursive for cy-recursive

A-r.e. for cy-r.e.
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Turing Reducibility and Turing Degrees

Turing Reducibility

Notation

The set A4 is Turing reducible to B, notation A <7 B, if 4 has a
B-computable characteristic function cy.

The sets 4, B are Turing equivalent, notation 4 =7 B, if 4 <7 B and
B <7 A.
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Suppose A <7 B and P is the URMO program that computes c4
relative to B. Then Vx, P5(x) converges and

PB(x) | 1ifx € 4
PB(x) L 0ifx ¢ A4

When calculating P (x) there will be a finite number of requests to
the oracle for a value cp(n) of cz. These requests amount to a finite
number of questions of the form ‘n € B?’.

So for any x, ‘x € A?’ is settled in a mechanical way by answering a
finite number of questions about B.
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Turing Reducibility

Turing Reducibility

(1) <7 is reflexive and transitive.
A <r Biff €1 C €5,

(i1) =7 is an equivalence relation.
A =7 Biff ¢4 = €5;

(i) If4 <,, Bthen 4 <r B.

Iff: 4 <, Band P is URM program to compute f, then the
URMO program P, O(1) is B-compute c4.

(iv) A =7 A for all A.
c; =580 cy, A is A-recursive = 4 <r A. (Similarly 4 <7 4.)

Xiaofeng Gao

54/64

Facts. (2)

(v) If 4 is recursive, then A < B for all B.
Since € C €X.

(vi) If B is recursive and A <7 B, then 4 is recursive.
If x is computable, then € = €X.

(vit) If 4 isr.e. then 4 <7 K.
If4 <, Bthend <7 B;AsetAisre. iff 4 <, K.
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Turing Degrees

Turing Reducibility

Turing Reducibility and Turing Degrees

A set A is T-complete if 4 is r.e. and B <7 A4 for every r.e. set B.

The equivalence class dr(4) = {B | A =r A} is called Turing degree
of A4, or T-degree of 4.

A T-degree containing a recursive set is called a recursive T-degree.

A T-degree containing an r.e. set is called an r.e. T-degree.
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The set of degrees is ranged over by a, b, c, .. ..
a<biff4 <ryBforall4 € aand B € b.
a<biffa<banda#b.

The relation < is a partial order.
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Turing Reducibility

Theorem

(1) There is precisely one recursive degree 0, which consists of all the
recursive sets and is the unique minimal degree.

If A is recursive, then 4 <7 B for all B;
A <7 B, then A is recursive.

If B 1s recursive and

(ii) Let 0" be the degree of K. Then 0 < 0’ and 0’ is a maximum
among all r.e. degrees.

From (i), 0 < 0’; 0 # 0’ since K is not recursive. Since 4 is r.e. =
A <7 K, we have if a is any r.e. degree, a < 0.

(iii) dp(4) € dr(4); and if diy(4) <»y dp(B) then dr(4) < dr(B).
If4 <,, Bthen 4 <7 B.

Xiaofeng Gao
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Turing Reducibility

Jump Operation

Theorem. The following statements are valid.

(i) K4 &ef {x|x e wi}is Are.

Since KX is x-r.e.
(i) If B is A-r.e., then B <7 K“.

By relativised s-m-n theorem, if B is A-r.e., then B <,, K4.
(iii) If 4 is recursive then K4 =7 K.

“e="K <7 K4 since K is A-r.e. for any 4;

“="1f 4 is recursive then A-computable partial characteristic
function of K4 is actually computable (if y is computable, then
€ = €X). Hence K4 isr.e., and K4 <7 K.

(iv) 4 <7 KA.

“4 <p K4" is given by (ii). “4 #r K" is given by “KX is y-r.e.

but not y-recursive."
CSC363-Computability The SITU
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Turing Reducibility

Relativization

Turing Reducibility

Jump Operation

(v) If 4 <7 B then K4 <; K5.
If A <7 B, then since K is A-r.e. it is also B-r.e., so K4 <, K5.
(vi) If 4 =7 B then K4 =7 K5.

Follows immediately from (v).

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree

K4 is a T-complete A-r.e. set. Also called the completion of 4, or the
jump of 4, and denoted as A’.

Definition. The jump of a, denoted a’, is the degree of K* for any
A€ a.

Notation (1). By Relativization jump is a valid definition because the
degree of K4 is the same for every 4 € a.

Notation (2). The new definition of 0’ as the jump of 0 accords with
our earlier definition of 0’ as the degree of K.
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Turing Reducibility

Basic Properties

Turing Reducibility

Theorem. For any degree a and b, the following statements are valid.
()a<a.

(ii) Ifa < b then a’ < b’

(ili) IfB € b, A € aand B is A-r.e. thenb < a’.
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Important Results

Theorem. Any degrees a, b have a unique least upper bound.
Theorem. Any non-recursive r.e. degree contains a simple set.

Theorem. There are r.e. sets 4, Bs.t. A £r Band B £7 A. Hence, if
a, b are dr(A4), dr(B) respectively, a £ b and b £ a, and thus
0<a<0and0<b<0.

Degrees a, b such that a £ b and b £ a are called incomparable
degrees, denoted as a | b.

Theorem. For any r.e. degree a > 0, there is an r.e. degree b such
that b | a.
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Turing Reducibility

Important Results (2)

Sack’s Density Theorem. For any r.e. degrees a < b there is anr.e.
degree ¢ witha < ¢ < b.

Sack’s Splitting Theorem. For any r.e. degrees a > 0 there are r.c.
degrees b, ¢ such thatb <ac <aanda=bUc (hence b | ¢).

Lachlan, Yates Theorem.

(a). dr.e. degrees a, b > 0 such that 0 is the greatest lower bound of a
and b.

(b). dr.e. degrees a, b having no greatest lower bound (either among
all degrees or among r.e. degrees).

Shoenfield Theorem. There is a non-r.e. degree a < (/.

Spector Theorem. There is a minimal degree. (A minimal degree is a
degree m > 0 such that there is no degree a with 0 < a < m).

Theorem. For any r.e. m-degree a >,, 0p,, 3 an r.e. m-degree b s.t.

) d
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