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General Remark

A problem is a set of numbers.

A reduction is a way of defining a solution of a problem with the help

of the solutions of another problem.

There are several inequivalent ways of reducing a problem to another

problem.

The differences between different reductions consists in the manner

and extent to which information about B is allowed to settle questions

about A.
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Many-One Reduction

The set A is many-one reducible (m-reducible) to the set B if there is a

total computable function f such that x ∈ A iff f (x) ∈ B for all x.

We shall write A ≤m B or more explicitly f : A ≤m B.

If f is injective, then we are talking about one-one reducibility.
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Examples

1. K is m-reducible to {x | φx = 0}, {x | c ∈ Wx} and {x | φx is total}.

f0(x, y) =

{

0 if x ∈ Wx
↑ if x 6∈ Wx

fN(x, y) =

{

y if x ∈ Wx
↑ if x 6∈ Wx

2. Rice Theorem is proved by showing that K ≤m {x | φx ∈ B}.

fg(x, y) =

{

g(y) if x ∈ Wx
↑ if x 6∈ Wx

x ∈ Wx ⇒ φk(x) = g ∈ B

x 6∈ Wx ⇒ φk(x) = f∅ 6∈ B

3. {x | φx is total} ≤m {x | φx = 0}.

φk(x) = 0 ◦ φx
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Elementary Properties

Let A, B, C be sets.

1. ≤m is reflexive: A ≤m A.

f : A ≤m A is the identity function.

2. ≤m transitive: A ≤m B, B ≤m C⇒ A ≤m C.

Let f : A ≤m B, g : B ≤m C, then g ◦ f : A ≤m C.

3. A ≤m B iff A ≤m B.

If g : A ≤m B, then x ∈ A⇔ f (x) ∈ B; so x ∈ A⇔ g(x) ∈ B.
Hence g : A ≤m B.
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Elementary Properties (2)

4. If A is recursive and B ≤m A, then B is recursive.

g : B ≤m A; then cB(x) = cA(g(x)). So cB is computable.

5. If A is recursive and B 6= ∅,N, then A ≤m B.

Let b ∈ B, c 6∈ B, f (x) =

{

b if x ∈ A;
c if x 6∈ A.

; then f is

computable.

x ∈ A⇔ f (x) ∈ B.

6. If A is r.e. and B ≤m A, then B is r.e.

Let g : B ≤m A, A = Dom(h), (h ∈ C1); then B = Dom(h ◦ g)
(B is r.e.)

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 8/64

Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Elementary Properties (3)

7. (i). A ≤m N iff A = N; (ii). A ≤m ∅ iff A = ∅.

(i).“⇐": By reflexivity, N ≤m N.

(i).“⇒": Let f : A ≤m N, then x ∈ A⇔ f (x) ∈ N. Thus A = N.

(ii). A ≤m ∅ ⇔ A ≤m N ⇔ A = N ⇔ A = ∅.

8. (i). N ≤m A iff A 6= ∅; (ii). ∅ ≤m A iff A 6= N.

(i). “⇒": Let f : N ≤m A, then A = Ran(f ), so A 6= ∅ (f is

total).

(i). “⇐": If A 6= ∅, choose c ∈ A. If g(x) = c, we have
g : N ≤m A.

(ii). ∅ ≤m A⇔ N ≤m A⇔ A 6= ∅ ⇔ A = N.
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Corollary

Corollary. Neither {x | φx is total} nor {x | φx is not total} is
m-reducible to K.

Proof. By contradiction, if {x | φx is total} ≤m K, and K is r.e., then

{x | φx is total} is r.e. (same as {x | φx is not total}).

However, by Rice-Shapiro Theorem, Neither {x | φx is total} nor
{x | φx is not total} is r.e.
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Corollary (2)

Fact. If A is r.e. and is not recursive, then A 6≤m A and A 6≤m A.

Proof. “A 6≤m A": By contradiction, if A ≤m A, then A is r.e., then A is
recursive!

“A 6≤m A": By contradiction, if A ≤m A, then A ≤m A, then A is
recursive!

Notation: It contradicts to our intuition that A and A are equally

difficult.

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 11/64

Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Theorem

Theorem. A is r.e. iff A ≤m K.

Proof. “⇐". Since A ≤m K, and K is r.e., then A is r.e.

Suppose A is r.e. Let f (x, y) be f (x, y) =

{

1, if x ∈ A,
↑, if x /∈ A.

By s-m-n Theorem ∃s(x) : N → N such that f (x, y) = φs(x)(y).

It is clear that x ∈ A iff φs(x)(s(x)) is defined iff s(x) ∈ K. Hence
A ≤m K.

Notation. K is the most difficult partially decidable problem.
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Many-One Equivalence

Definition. Two sets A,B are many-one equivalent, notation A ≡m B
(abbreviated m-equivalent), if A ≤m B and B ≤m A.

Theorem. ≡m is an equivalence relation.

Proof.

(1). Reflexivity: A ≤m A⇒ A ≡m A.

(2). Symmetry: A ≡m B⇒ B ≤m A, A ≤m B⇒ B ≡m A.

(3). Transitivity: A ≡m B, B ≡m C ⇒ A ≤m C, C ≤m A⇒ A ≡m C.
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Examples

1. {x | c ∈ Wx} ≡m K.

“⇐": fN(x, y) =

{

y if x ∈ Wx
↑ if x 6∈ Wx

⇒ K ≤m {x | c ∈ Wx}

“⇒": {x | c ∈ Wx} is r.e., so {x | c ∈ Wx} ≤m K.

Thus {x | c ∈ Wx} ≡m K.

2. If A is recursive, A 6= ∅,N, then A ≡m A.

A 6= ∅,N ⇒ A 6= ∅,N.

A is recursive, by previous theorem A ≤m A. Similarly, A ≤m A.
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Example (2)

3. If A is r.e. but not recursive, then A 6≡m A.

A is r.e. but not recursive ⇒ A 6≤m A, A 6≤m A.

4. {x | φx = 0} ≡m {x | φx is total}.

“⇐": φk(x) = 0 ◦ φx ⇒ {x | φx is total} ≤m {x | φx = 0}.

“⇒": Let φk(x)(y) =

{

0 if φx(y) = 0;
↑ if φx(y) 6= 0.

.

Then φx = 0 ⇔ φk(x) is total ⇒ {x | φx = 0} ≤m {x | φx is total}.
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m-Degree

Definition. Let dm(A) be {B | A ≡m B}.

Definition. An m-degree is an equivalence class of sets under the

relation ≡m. It is any class of sets of the form dm(A) for some set A.

A recursive m-degree is an m-degree that contains a recursive set.

An r.e. m-degree is an m-degree that contains an r.e. set.
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Expression

Definition. The set of m-degrees is ranged over by a,b, c, . . ..

Definition (Partial Order on m-Degree). Let a, b be m-degrees.

(1). a ≤m b iff A ≤m B for some A ∈ a and B ∈ b.

(2). a <m b iff a ≤m b and b 6≤m a (a 6= b).

The relation <m is a partial order.

Notation. From the definition of ≡m,
a ≤m b ⇔ ∀A ∈ a,B ∈ b,A ≤m B.
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Theorem

Theorem. The relation <m is a partial ordering of m-degrees.

Proof.

(1) By transitivity a ≤m b, b ≤m c implies a ≤m c.

If a ≤m b and b ≤m a, we have to prove that a = b.

(2) Irreflexivity: Let A ∈ a and B ∈ b, then we have A ≤m B and
B ≤m A, so A ≡m B. Hence a = b.

Consequently, <m is partial ordering.
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Some Facts

1. o and n are respectively the recursive m-degrees {∅} and {N}.

A ≤m N ⇔ A = N; A ≤m ∅ ⇔ A = ∅.

2. The recursive m-degree 0m consists of all the recursive sets except

∅,N.
0m ≤m a for any m-degree a other than o and n.

A is recursive, B ≤m A⇒ B is recursive;

A is recursive and B 6= ∅,N ⇒ A ≤m B.

3. ∀ m-degree a, o ≤m a provided a 6= n; n ≤m a provided a 6= o.

N ≤m A⇔ A 6= ∅; ∅ ≤m A⇔ A 6= N.
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Facts (2)

4. An r.e. m-degree consists of only r.e. sets.

If A is r.e. and B ≤m A, then B is r.e.

5. If a ≤m b and b is an r.e. m-degree, then a is also an r.e. m-degree.

If A is r.e. and B ≤m A, then B is r.e.

6. The maximum r.e. m-degree dm(K) is denoted by 0
′

m.

A set A is r.e. iff A ≤m K.
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Illumination

CSC363-Computability Theory@SJTU Xiaofeng Gao Reducibility and Degree 21/64



Reduction and Degree
Relative Computability

Turing Reducibility

Many-One Reduction
Degrees
m-Complete r.e. Set

Facts about r.e. m-Degrees

1. Excluding o and n, there is a minimum r.e. m-degree 0m (in fact 0m
is minimum among all m-degrees).

2. The r.e. m-degrees form an initial segment of the m-degrees; i.e.,

anything below an r.e. m-degree is also r.e.

3. There is a maximum r.e. m-degree 0′m.

4. While there are uncountably many m-degrees, only countably

many of these are r.e.
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Algebraic Structure

Theorem. The m-degrees form an upper semi-lattice.
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Group

In mathematics, a group is an algebraic structure consisting of a set

together with an operation (G, •) that combines any two of its
elements to form a third element.

To qualify as a group, the set and the operation must satisfy four

conditions (group axioms), namely closure, associativity, identity and

invertibility.

closure: a, b ∈ G⇒ a • b ∈ G.

associativity: (a • b) • c = a • (b • c).

identity: ∀a ∈ G, ∃ identity element e ∈ G, s.t. e • a = a • e = a.

invertibility: ∀a ∈ G, ∃inverse b ∈ G s.t. a • b = b • a = e (b = a−1).
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Lattice

In mathematics, a lattice is a partially ordered set (poset) (L,≤) in
which any two elements have a unique supremum (also called a least

upper bound or join) and a unique infimum (also called a greatest

lower bound or meet).

To qualify as a lattice, the set and the operation must satisfy tow

conditions: join-semilattice, meet-semilattice.

join-semilattice: ∀a, b ∈ L, the set {a, b} has a join a ∨ b.
(the least upper bound)

meet-semilattice: ∀a, b ∈ L, the set {a, b} has a meet a ∧ b.
(the greatest lower bound)
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The Name “Lattice"

The name "lattice" is suggested

by the form of the Hasse diagram

depicting it. I.e., the right pic-

ture is the lattice of partitions of

a four-element set {1, 2, 3, 4}, or-
dered by the relation "is a refine-

ment of".
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Upper Semi-lattice

Theorem. Any pair of m-degrees a, b have a least upper bound; i.e.

there is an m-degree c such that

(i). a ≤m c and b ≤m c (c is an upper bound);

(ii). c ≤m any other upper bound of a, b.
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Proof

(i). Pick A ∈ a, B ∈ b, and let C = A⊕ B, i.e.,

C = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}.

Then

x ∈ A⇔ 2x ∈ C =⇒ A ≤m C;

x ∈ B⇔ 2x+ 1 ∈ C =⇒ B ≤m C;

Thus c is an upper bound of a, b.
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Proof (2)

(ii). Let d is an m-degree such that a ≤m d, and b ≤m d.

∀D ∈ d, suppose f : A ≤m D and g : B ≤m D. Then

x ∈ C ⇔ (x is even &
x

2
∈ A) ∨ (x is odd &

x− 1

2
∈ B)

⇔ (x is even &f (
x

2
) ∈ D) ∨ (x is odd &g(

x− 1

2
) ∈ D)

Thus we have h : C ≤m D if we define h =

{

f ( x
2
) if x is even;

g( x−1
2
) if x is odd.

Hence c ≤m d.
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Definition

Definition. An r.e. set is m-complete if every r.e. set is m-reducible to

it.

Notation. 0′m, the m-degree of K is maximum among all r.e.

m-degrees, and thus K is m-complete r.e. set (or just called

m-complete set).
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Theorem

Theorem. The following statements are valid.

(i) K is m-complete.

(ii) A is m-complete iff A ≡m K iff A is r.e. and K ≤m A.

(iii) 0′m consists exactly of all the m-complete sets.
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Examples

The following sets are m-complete.

(i) {x | c ∈ Wx}.

(ii) Every non-trivial r.e. set of the form {x | φx ∈ B}.

(iii) {x | φx(x) = 0}.

(iv). {x | x ∈ Ex}.
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Creative Set

Theorem. Any m-complete set is creative.

Proof. If A is m-complete, A is r.e. set.

Also, K ≤m A, so K ≤m A. Thus A is productive.
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Myhill’s Theorem

Myhill’s Theorem. A set is m-complete iff it is creative.
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m-Complete r.e. Sets

Corollary. If a is the m-degree of any simple set, then

0m <m a <m 0′m (Simple sets are not m-complete).

Proof. Simple sets are designed to be neither recursive nor creative.
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m-reducibility has two unsatisfactory features:

(i) The exceptional behavior of ∅ and N.

(ii) The invalidity of A 6≡m A in general.

The problem is due to the restricted use of oracles.

E.g. x ∈ A iff x 6∈ A
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Relative Computability

Suppose χ is a total unary function.

Informally a function f is computable relative to χ, or χ-computable,
if f can be computed by an algorithm that is effective in the usual

sense, except from time to time during computations f is allowed to

consult the oracle function χ.

Such an algorithm is called a χ-algorithm.
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URMO - Unlimited Register Machine with Oracle

A URM with oracle, URMO for short, can recognize a fifth kind of

instruction, O(n), for every n ≥ 1.

If χ is the oracle, then the effect of O(n) is to replace the content rn of
Rn by χ(rn).

Pχ denote the program P when used with the function χ in the oracle.

Pχ(a) ↓ b means the computation Pχ(a) with initial configuration
a1, a2, · · · , an, 0, 0, · · · stops with the number b is register R1.
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URMO-Computable

Let χ be a unary total function, and suppose the f is a partial function

from N
n to N.

(a) Let P be a URMO program, then P URMO-computes f relative

to χ (or f is χ-computed by P) if, for every a ∈ N
n and b ∈ N,

Pχ(a) ↓ b iff f (a) ≃ b.

(b) The function f is URMO-computable relative to χ (or

χ-computable) if there is a URMO program that

URMO-computes it relative to χ.

C χ is the set of all χ-computable functions.
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Facts

(i) χ ∈ C χ.

Use URMO program O(1).

(ii) C ⊆ C χ.

Any URM program is a URMO program.

(iii) If χ is computable, then C = C χ.

Since C ⊆ C χ, we need to prove C χ ⊆ C . χ is computable, then

whenever a value of χ is requested simply compute it by the

algorithm for χ. By Church’s thesis, f is computable.

(iv) C χ is closed under substitution, recursion and minimalisation.

Construct corresponding URMO programs.

(v) If ψ is a total unary function that is χ-computable, then C ψ ⊆ C χ.

By Church’s thesis.
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Partial Recursive Function

The class Rχ of χ-partial recursive functions is the smallest class of
functions such that

(a) the basic functions are in Rχ.

(b) χ ∈ Rχ.

(c) Rχ is closed under substitution, recursion, and minimalisation.

χ-recursive, χ-primitive recursive are defined in the obvious way.

Theorem. For any χ, Rχ = C χ.
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Numbering URMO programs

Let’s fix an effective enumeration of all URMO programs

Q0,Q1,Q2, . . . .

Let φχ,nm be the n-ary function χ-computed by Qm.

Let φχm be φ
χ,1
m .

W
χ
m is Dom(φχm) and E

χ
m is Ran(φ

χ
m).
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S-m-n Theorem. For each m, n ≥ 1 there is a total computable

(m+ 1)-ary function smn (e, x) such that for any χ

φχ,m+ne (x, y) ≃ φχ,n
smn (e,x)

(y).

Notice that smn (e, x) does not refer to χ.
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Universal Programs for Relative Computability

Universal Function Theorem. For each n, the universal function

ψχ,nU for n-ary χ-computable functions given by

ψχ,nU (e, x) ≃ φχ,ne (x)

is χ-computable.
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Relativization

Once we have the S-m-n Theorem and the Universal Function

Theorem, we can do the recursion theory relative to an oracle.
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χ-Recursive and χ-r.e. Sets

Let A be a set

(a) A is χ-recursive if cA is χ-computable.

(b) A is χ-r.e. if the partial characteristic function

f (x) =

{

1 if x ∈ A,
↑ if x 6∈ A

is χ-computable.
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χ-Recursive and χ-r.e. Sets

Theorem. The following statements are valid.

(i) For any set A, A is χ-recursive iff A and A are χ-r.e.

(ii) For any set A, the following are equivalent.

A is χ-r.e.

A = Wχ
m for some m.

A = Eχm for some m.

A = ∅ or A is the range of a total χ-computable function.

For some χ-decidable predicate R(x, y), x ∈ A iff ∃y.R(x, y).

(iii) Kχ
def
= {x | x ∈ Wχ

x } is χ-r.e. but not χ-recursive.
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Computability Relative to a Set

Computability relative to a set A means computability relative to its

characteristic function cA.

For example:

PA for PcA (if P is a URMO program),

C A for C cA ,

φAm for φ
cA
m .

WA
m for W

cA
m ,

EAm for E
cA
m ,

KA for KcA ,

A-recursive for cA-recursive

A-r.e. for cA-r.e.

· · ·
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Turing Reducibility and Turing Degrees

The set A is Turing reducible to B, notation A ≤T B, if A has a
B-computable characteristic function cA.

The sets A,B are Turing equivalent, notation A ≡T B, if A ≤T B and
B ≤T A.
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Notation

Suppose A ≤T B and P is the URMO program that computes cA
relative to B. Then ∀x, PB(x) converges and

PB(x) ↓ 1 if x ∈ A
PB(x) ↓ 0 if x 6∈ A

When calculating PB(x) there will be a finite number of requests to
the oracle for a value cB(n) of cB. These requests amount to a finite
number of questions of the form ‘n ∈ B?’.

So for any x, ‘x ∈ A?’ is settled in a mechanical way by answering a
finite number of questions about B.
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Facts.

(i) ≤T is reflexive and transitive.

A ≤T B iff C A ⊆ C B;

(ii) ≡T is an equivalence relation.

A ≡T B iff C A = C B;

(iii) If A ≤m B then A ≤T B.

If f : A ≤m B and P is URM program to compute f , then the

URMO program P, O(1) is B-compute cA.

(iv) A ≡T A for all A.

cA = sg ◦ cA, A is A-recursive =⇒ A ≤T A. (Similarly A ≤T A.)
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Facts. (2)

(v) If A is recursive, then A ≤T B for all B.

Since C ⊆ C χ.

(vi) If B is recursive and A ≤T B, then A is recursive.

If χ is computable, then C = C χ.

(vii) If A is r.e. then A ≤T K.

If A ≤m B then A ≤T B; A set A is r.e. iff A ≤m K.
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Turing Degrees

A set A is T-complete if A is r.e. and B ≤T A for every r.e. set B.

The equivalence class dT(A) = {B | A ≡T A} is called Turing degree
of A, or T-degree of A.

A T-degree containing a recursive set is called a recursive T-degree.

A T-degree containing an r.e. set is called an r.e. T-degree.
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Turing Reducibility and Turing Degrees

The set of degrees is ranged over by a,b, c, . . ..

a ≤ b iff A ≤T B for all A ∈ a and B ∈ b.

a < b iff a ≤ b and a 6= b.

The relation ≤ is a partial order.
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Theorem

(i) There is precisely one recursive degree 0, which consists of all the

recursive sets and is the unique minimal degree.

If A is recursive, then A ≤T B for all B; If B is recursive and

A ≤T B, then A is recursive.

(ii) Let 0′ be the degree of K. Then 0 < 0′ and 0′ is a maximum

among all r.e. degrees.

From (i), 0 ≤ 0′; 0 6= 0′ since K is not recursive. Since A is r.e. ⇒
A ≤T K, we have if a is any r.e. degree, a ≤ 0′.

(iii) dm(A) ⊆ dT(A); and if dm(A) ≤m dm(B) then dT(A) ≤ dT(B).

If A ≤m B then A ≤T B.
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Jump Operation

Theorem. The following statements are valid.

(i) KA
def
= {x | x ∈ WA

x } is A-r.e.

Since Kχ is χ-r.e.

(ii) If B is A-r.e., then B ≤T K
A.

By relativised s-m-n theorem, if B is A-r.e., then B ≤m K
A.

(iii) If A is recursive then KA ≡T K.

“⇐" K ≤T K
A since K is A-r.e. for any A;

“⇒" If A is recursive then A-computable partial characteristic

function of KA is actually computable (if χ is computable, then

C = C χ). Hence KA is r.e., and KA ≤T K.

(iv) A <T K
A.

“A ≤T K
A" is given by (ii). “A 6≡T K

A" is given by “Kχ is χ-r.e.
but not χ-recursive."
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Relativization

(v) If A ≤T B then K
A ≤T K

B.

If A ≤T B, then since K
A is A-r.e. it is also B-r.e., so KA ≤T K

B.

(vi) If A ≡T B then K
A ≡T K

B.

Follows immediately from (v).
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Jump Operation

KA is a T-complete A-r.e. set. Also called the completion of A, or the

jump of A, and denoted as A′.

Definition. The jump of a, denoted a′, is the degree of KA for any

A ∈ a.

Notation (1). By Relativization jump is a valid definition because the

degree of KA is the same for every A ∈ a.

Notation (2). The new definition of 0′ as the jump of 0 accords with

our earlier definition of 0′ as the degree of K.
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Basic Properties

Theorem. For any degree a and b, the following statements are valid.

(i) a < a′.

(ii) If a < b then a′ < b′

(iii) If B ∈ b, A ∈ a and B is A-r.e. then b ≤ a′.
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Important Results

Theorem. Any degrees a,b have a unique least upper bound.

Theorem. Any non-recursive r.e. degree contains a simple set.

Theorem. There are r.e. sets A, B s.t. A 6≤T B and B 6≤T A. Hence, if
a, b are dT(A), dT(B) respectively, a 6≤ b and b 6≤ a, and thus

0 < a < 0′ and 0 < b < 0′.

Degrees a, b such that a 6≤ b and b 6≤ a are called incomparable

degrees, denoted as a | b.

Theorem. For any r.e. degree a > 0, there is an r.e. degree b such

that b | a.
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Important Results (2)

Sack’s Density Theorem. For any r.e. degrees a < b there is an r.e.

degree c with a < c < b.

Sack’s Splitting Theorem. For any r.e. degrees a > 0 there are r.e.

degrees b, c such that b < a c < a and a = b ∪ c (hence b | c).

Lachlan, Yates Theorem.

(a). ∃ r.e. degrees a, b > 0 such that 0 is the greatest lower bound of a

and b.

(b). ∃ r.e. degrees a, b having no greatest lower bound (either among
all degrees or among r.e. degrees).

Shoenfield Theorem. There is a non-r.e. degree a < 0′.

Spector Theorem. There is a minimal degree. (A minimal degree is a

degree m > 0 such that there is no degree a with 0 < a < m).

Theorem. For any r.e. m-degree a >m 0m, ∃ an r.e. m-degree b s.t.
b | a.
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