Gödel Number*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

CS363-Computability Theory

*Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

CSC363-Computability Theory@SJTU

Gödel Number

1/35

Gödel Coding The Diagonal Method

Xiaofeng Gao

Numbering Programs
Gödel Encoding

General Remark

The set of the programs are countable.

More importantly, every program can be coded up **effectively** by a number in such a way that a unique program can be recovered from the number.

Gödel Co The Diagonal Me The s-m-n Theo

Outline

- Gödel Coding
 - Numbering Programs
 - Gödel Encoding
 - Numbering Computable Functions
- 2 The Diagonal Method
 - Cantor's Diagonal Argument
 - First Example
 - General Technique
- 3 The s-m-n Theorem
 - Simple Form
 - Full Version

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

2/35

Gödel Coding
The Diagonal Method

Numbering Programs
Gödel Encoding
Numbering Computable Functi

Denumerability and Enumerability

A set *X* is denumerable if there is a bijection $f: X \to \mathbb{N}$.

An enumeration of a set X is a surjection $g : \mathbb{N} \to X$; this is often represented by writing $\{x_0, x_1, x_2, \ldots\}$. It is an enumeration *without repetitions* if g is injective.

Let *X* be a set of "finite objects".

Then X is effectively denumerable if there is a bijection $f: X \to \mathbb{N}$ such that both f and f^{-1} are effectively computable functions.

Effective Denumerability

Fact. $\mathbb{N} \times \mathbb{N}$ is effectively denumerable.

Proof. A bijection $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is defined by

$$\pi(m,n) \stackrel{\text{def}}{=} 2^m (2n+1) - 1,$$

 $\pi^{-1}(l) \stackrel{\text{def}}{=} (\pi_1(l), \pi_2(l)),$

where

$$\pi_1(x) \stackrel{\text{def}}{=} (x+1)_1,$$
 $\pi_2(x) \stackrel{\text{def}}{=} ((x+1)/2^{\pi_1(x)} - 1)/2.$

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

Effective Denumerability

Fact. $\bigcup_{k>0} \mathbb{N}^k$ is effectively denumerable.

Proof. A bijection $\tau: \bigcup_{k>0} \mathbb{N}^k \to \mathbb{N}$ is defined by

$$\tau(a_1,\ldots,a_k) \stackrel{\text{def}}{=} 2^{a_1} + 2^{a_1+a_2+1} + 2^{a_1+a_2+a_3+2} + \ldots + 2^{a_1+a_2+a_3+\ldots,a_k+k-1} - 1.$$

Now given x we can find a unique expression of the form

$$2^{b_1} + 2^{b_2} + 2^{b_3} + \ldots + 2^{b_k}$$

that equals to x + 1. It is then clear how to define $\tau^{-1}(x)$.

Effective Denumerability

Fact. $\mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+$ is effectively denumerable.

Proof. A bijection $\zeta: \mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+ \to \mathbb{N}$ is defined by

$$\zeta(m,n,q) \stackrel{\text{def}}{=} \pi(\pi(m-1,n-1),q-1),
\zeta^{-1}(l) \stackrel{\text{def}}{=} (\pi_1(\pi_1(l)) + 1, \pi_2(\pi_1(l)) + 1, \pi_2(l) + 1).$$

CSC363-Computability Theory@SJTU

Gödel Number

The Diagonal Method The s-m-n Theorem

Gödel Encoding

Let \mathscr{I} be the set of all instructions.

Let \mathcal{P} be the set of all programs.

The objects in \mathcal{I} , and \mathcal{P} as well, are 'finite objects'.

They must be effectively denumerable.

Gödel Number

Gödel Encoding

Theorem. \mathcal{I} is effectively denumerable.

Proof. The bijection $\beta: \mathscr{I} \to \mathbb{N}$ is defined as follows:

$$eta(Z(n)) = 4(n-1),$$
 $eta(S(n)) = 4(n-1)+1,$
 $eta(T(m,n)) = 4\pi(m-1,n-1)+2,$
 $eta(J(m,n,q)) = 4\zeta(m,n,q)+3.$

The converse β^{-1} is easy.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

10/3

The Diagonal Method The s-m-n Theorem Numbering Programs
Gödel Encoding
Numbering Computable Functions

Gödel Encoding

The number $\gamma(P)$ is called the Gödel number of P.

$$P_n$$
 = the program with Gödel number n
= $\gamma^{-1}(n)$

Gödel Encoding

Theorem. \mathscr{P} is effectively denumerable.

Proof. The bijection $\gamma: \mathscr{P} \to \mathbb{N}$ is defined as follows:

$$\gamma(P) = \tau(\beta(I_1), \ldots, \beta(I_s)),$$

assuming $P = I_1, \ldots, I_s$.

The converse γ^{-1} is obvious.

We shall fix this particular coding function γ throughout.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

11/35

Gödel Coding
The Diagonal Method
The s-m-n Theorem

Gödel Encoding

Numbering Computable Function

Gödel Encoding

Let P be the program T(1,3), S(4), Z(6).

$$\beta(T(1,3)) = 18, \beta(S(4)) = 13, \beta(Z(6)) = 20.$$

$$\gamma(P) = 2^{18} + 2^{32} + 2^{53} - 1.$$

Gödel Encoding

Consider P_{4127} .

$$4127 = 2^5 + 2^{12} - 1.$$

$$\beta(I_1) = 4 + 1, \beta(I_2) = 4\pi(1,0) + 2.$$

So
$$P_{4127}$$
 is $S(2)$; $T(2, 1)$.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

Numbering Programs

Numbering Computable Functions

The Diagonal Method
The s-m-n Theorem

Numbering Computable Functions

Let a = 4127. Then $P_{4127} = S(2)$; T(2, 1).

$$\phi_{4127}(x) = 1,$$

$$W_{4127} = \mathbb{N},$$

$$E_{4127} = \{1\}.$$

$$\phi_{4127}^{(n)}(x_1, \dots, x_n) = x_2 + 1,$$

$$W_{4127}^n = \mathbb{N}^n,$$

$$E_{4127}^n = \mathbb{N}^+.$$

Numbering Computable Functions

Suppose $a \in \mathbb{N}$ and $n \ge 1$.

$$\phi_a^{(n)} = \text{the } n \text{ ary function computed by } P_a$$

$$= f_{P_a}^{(n)},$$
 $W_a^{(n)} = \text{the domain of } \phi_a^{(n)} = \{(x_1, \dots, x_n) \mid P_a(x_1, \dots, x_n) \downarrow\},$
 $E_a^{(n)} = \text{the range of } \phi_a^{(n)}.$

The super script (n) is omitted when n = 1.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

15/35

Gödel Coding The Diagonal Method The s-m-n Theorem Numbering Programs
Gödel Encoding
Numbering Computable Functions

Numbering Computable Functions

Suppose $f = \phi_a$. Then a is an index for f.

There are an infinite number of indexes for f.

Let $\begin{cases} f(0) = 0; \\ f(m+1) = \mu z(\phi_z^{(n)} \neq \phi_{f(0)}^{(n)}, \cdots, \phi_{f(m)}^{(n)}), \end{cases}$

We use the enumeration $\phi_0^{(n)}, \phi_1^{(n)}, \phi_2^{(n)}, \cdots$ (with repetitions) to

Numbering Computable Functions

Theorem. \mathcal{C}_n is denumerable.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

18/35

CSC363-Computability Theory@SJTU

Proof

Xiaofeng Gao

The Diagonal Method

Then $\phi_{f(0)}^{(n)}$, $\phi_{f(1)}^{(n)}$, $\phi_{f(2)}^{(n)}$, \cdots is an enumeration of \mathscr{C}_n without

Gödel Number

Cantor's Diagonal Argument

19/35

e Diagonal Method

Numbering Programs
Gödel Encoding
Numbering Computable Functions

Corollary

Corollary: \mathscr{C} is denumerable.

Proof: Since $\mathscr{C} = \bigcup_{n \geq 1} \mathscr{C}_n$, the corollary follows from the fact that a denumerable union of denumerable sets is denumerable.

Explicitly, for each n let f_n be the function to give an enumeration of \mathscr{C}_n without repetitions. Let π be the bijection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Define $\theta : \mathscr{C} \to \mathbb{N}$ by

$$\theta\left(\phi_{f_n(m)}^{(n)}\right) = \pi(m, n-1),$$

then θ is a bijection.

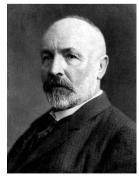
Cantor's Diagonal Argument

construct one without repetitions.

In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument or the diagonal method, was published in 1891 by Georg Cantor.

It was proposed as a mathematical proof for uncountable sets.

It demonstrates a powerful and general technique that has been used in a wide range of proofs.



Georg Cantor 1845-1918

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

0/35

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

22/35

The Diagonal Method

Theorem. There is a total unary function that is not computable.

Proof. Suppose $\phi_0, \phi_1, \phi_2, \dots$ is an enumeration of \mathscr{C}_1 . Define

$$f(n) = \begin{cases} \phi_n(n) + 1, & \text{if } \phi_n(n) \text{ is defined,} \\ 0, & \text{if } \phi_n(n) \text{ is undefined.} \end{cases}$$

The function f(n) is not computable.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

23/35

Gödel Coding
The Diagonal Method
The s-m-n Theorem

Cantor's Diagonal Argument First Example General Technique

Diagonal Method

We suppose that in this table the word 'undefined' is written whenever $\phi_n(m)$ is not defined.

The function f was constructed by taking the diagonal entries on the table $\phi_0(0), \phi_1(1), \phi_2(2), \cdots$ and systematically changing them, obtaining $f(0), f(1), \cdots$ such that f(n) differs from $\phi_n(n)$, for each n.

Note that there was considerable freedom in choosing the value of f(n) (just differ from $\phi_n(n)$). Thus

$$g(n) = \begin{cases} \phi_n(n) + 27^n & \text{if } \phi_n(n) \text{ is defined,} \\ n^2 & \text{if } \phi_n(n) \text{ is undefined,} \end{cases}$$

is another non-computable total function.

Example of uncomputable function

Consider again the construction of f to construct a total uncomputable function. Complete details of the functions ϕ_0, ϕ_1, \cdots can be represented by the following infinite table:

	0	1	2	3	4	
φο	(\$\varphi_0(0))	$\phi_0(1)$	$\phi_0(2)$	$\phi_0(3)$	• • • •	
ϕ_1	$\phi_1(0)$	$\phi_1(1)$	$\phi_1(2)$	$\phi_1(3)$	• • •	
φ2	$\phi_2(0)$	$\phi_2(1)$	$\phi_2(2)$	$\phi_2(3)$	•••	
φ ₃	$\phi_3(0)$	$\phi_3(1)$	$\phi_{3}(2)$	$\phi_3(3)$	•••	
:	:	÷	:	:		

CSC363-Computability Theory@SJTU

Xiaofeng Ga

Gödel Number

24/35

Gödel Codin

The Diagonal Metho

The s-m-n Theorer

Cantor's Diagonal Argum First Example General Technique

Cantor's Diagonal Method

Suppose that χ_0, χ_1, \cdots is an enumeration of objects of a certain kind (functions or sets of natural numbers), then we can construct an object χ of the same kind that is different from every χ_n , using the following motto:

'Make χ and χ_n differ at n.'

The interpretation of the phrase *differ at n* depends on the kind of object involved.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

Diagonal Construction on Sets

Theorem. The power set of \mathbb{N} is not denumerable.

Proof: Contradiction. Suppose that A_0, A_1, \cdots is an enumeration of subsets of \mathbb{N} . We can define a new set B using the diagonal motto, by

$$n \in B$$
 if and only if $n \notin A_n$.

Clearly, for each $n, B \neq A_n$.

Note that $B \in 2^{\mathbb{N}}$, but differs from any A_i in the enumeration, so $2^{\mathbb{N}}$ is not a denumerable set.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

27/35

Gödel Coding
The Diagonal Method
The s-m-n Theorem

Simple Form Full Version

The s-m-n Theorem, simple form

Theorem. Suppose that f(x, y) is a computable function. There is a total computable function k(x) such that

$$f(x,y) \simeq \phi_{k(x)}(y).$$

The s-m-n Theorem

Given a computable binary function f(x, y) (not necessarily total), we get a unary computable function f(a, y) by fixing a value a for x.

We can use a unary computable function $g_a(y) \simeq f(a, y)$ to represent f(a, y), then there is an index e for f(a, y).

$$f(a,y) \simeq \phi_e(y).$$

The S-m-n Theorem states that the index e can be computed from a.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

29/3

Gödel Codir The Diagonal Metho The s-m-n Theore

Simple Form Full Version

The s-m-n Theorem

Proof. Let F be a program that computes f. Consider the following program

$$\left. \begin{array}{l}
 T(1,2) \\
 Z(1) \\
 S(1) \\
 \vdots \\
 S(1) \\
 F
 \end{array} \right\} a \text{ times}$$

The above program can be effectively constructed from a.

Let k(a) be the Gödel number of the above program. It can be effectively computed from the above program.

Notation

The s-m-n theorem is also called Parametrization Theorem because it shows that an index for a computable function (such as g_a) can be found effectively from a parameter (such as a) on which it effectively depends.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

The s-m-n Theorem

The s-m-n Theorem

Theorem. For m, n, there is a total computable (m + 1)-function $s_n^m(_, \mathbf{x})$ such that for all *e* the following holds:

$$\phi_e^{m+n}(\mathbf{x},\mathbf{y}) \simeq \phi_{S_n^m(e,\mathbf{x})}^n(\mathbf{y}).$$

Examples

Let $f(x,y) = y^x$. Then $\phi_{k(x)}(y) = y^x$. For each fixed n, k(n) is an index for v^n .

Let
$$f(x,y) = \begin{cases} y, & \text{if } y \text{ is a multiple of } x, \\ \text{undefined}, & \text{otherwise.} \end{cases}$$
.
Then $\phi_{k(n)}(y)$ is defined if and only if y is a multiple of n .

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

The s-m-n Theorem

Full Version

The s-m-n Theorem

Proof. Given e, x_1, \dots, x_m , we can effectively construct the following program

$$T(n, m + n)$$

 \vdots
 $T(1, m + 1)$
 $Q(1, x_1)$
 \vdots
 $Q(m, x_m)$

where $Q(i, x_i)$ is the program $Z(i), \underline{S(i), \dots, S(i)}$.

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number

CSC363-Computability Theory@SJTU

Xiaofeng Gao

Gödel Number