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Recursive Function

Three Basic Functions:

The zero function 0.

The successor function x+ 1.

For each n ≥ 1 and 1 ≤ i ≤ n, the projection function Uni given
by Uni (x1, . . . , xn) = xi.

Three Operations:

Substitution: h(x) ≃ f (g1(x), . . . , gk(x)).

Recursion:

{
h(x, 0) ≃ f (x),
h(x, y + 1) ≃ g(x, y, h(x, y)).

Minimalisation:

{
Bounded: µz<y(f (x, z) = 0),
Unbounded: µy(f (x, y) = 0).
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Primitive Recursive Function

The class PR of primitive recursive functions is the smallest class of

partial functions that contains the basic functions 0, x+ 1, Uni and is

closed under the operations of substitution and recursion.

Note: PR includes the operations of bounded minimalisation, since

it can be rephrased as the combinations of substitution and recursion.

µz<y(f (x, z) = 0) ≃
∑

v<y

(
∏

u≤v

sg(f (x, u))).
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Partial Recursive Functions (Gödel-Kleene, 1936)

The class R of partial recursive functions is the smallest class of

partial functions that contains the basic functions 0, x+ 1, Uni and is

closed under the operations of substitution, recursion and

minimalisation.

Notice that there is no totality restriction placed on the use of the

µ-operator.
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Partial Recursive Functions (Gödel-Kleene, 1936)

Gödel and Kleene originally defined the set R0 of µ-recursive

functions.

In the definition of the µ-recursive functions, the µ-operator is

allowed to apply only if it produces a total function.

In fact R0 is the set of all the total functions in R.
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Partial Recursive Functions are Computable Functions

Theorem. R = C .

Proof. We have proved that R ⊆ C . We have to show the reverse

inclusion.
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Partial Recursive Functions are Computable Functions

Suppose that f (x) is a URM-computable function, computed by a

program P = I1, . . . , Is.

c(x, t) =





r1, the content of R1 after t steps of P(x),
if P(x) has not stopped after t−1 steps;

r1, the final content of R1 if P(x) stops
in less than t steps.

j(x, t) =




k, k is the number of the next instruction after

t steps of P(x) have been performed;
0, if P(x) has stopped after t steps or fewer.

Fact. Both c(x, t) and j(x, t) are primitive recursive.
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Partial Recursive Functions are Computable Functions

If f (x) is defined, then P(x) converges after exactly t0 steps, where

t0 = µt(j(x, t) = 0), and f (x) = c(x, t0).

Else f (x) is undefined ⇒ P(x) ↑ ⇒ j(x, t) 6= 0 and µt(j(x, t) = 0) is
undefined.

Thus function f (x) defined by P(x):

f (x) ≃ c(x, µt(j(x, t) = 0)).

is partial recursive.
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Corollary

Corollary. Every total function in R belongs to R0.

Proof: Suppose f (x) is total in R, then f is URM-computable by a

program P.

Let c and j be the same definitions, which can be obtained without any

use of minimalisation, so they are in R.

Further, since f is total, P(x) converges for every x, so the function
µt(j(x, t) = 0) is total and belongs to R.

Now f (x) = c(x, µt(j(x, t) = 0)), so f is also in R.
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Predicate

A predicate M(x) whose characteristic function cM is recursive is

called a recursive predicate.

A recursive predicate is the same as decidable predicate.
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Alan Turing (23 Jun. 1912 - 7 Jun. 1954)

An English student of Church

Introduced a machine model for effective calculation in “On

Computable Numbers, with an Application to the

Entscheidungsproblem”, Proc. of the London Mathematical

Society, 42:230-265, 1936.

Turing Machine, Halting Problem, Turing Test
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Motivation

What are necessary for a machine to calculate a function?

The machine should be able to interpret numbers

The machine must be able to operate and manipulate numbers

according to a set of predefined instructions

and

The input number has to be stored in an accessible place

The output number has to be put in an accessible place

There should be an accessible place for the machine to store

intermediate results
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One-Tape Turing Machine

A Turing machine has five components:

1. A finite set {s1, . . . , sn} ∪ {⊲, ♯, ⊳} ∪ {2} of symbols.

2. A tape consists of an infinite number of cells, each cell may store a

symbol.

· · ·222222222222222222 · · ·

3. A reading head that scans and writes on the cells.

4. A finite set {qS, q1, . . . , qm, qH} of states.

5. A finite set of instructions (specification).
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One-Tape Turing Machine
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Turing Machines, Turing 1936

The input data

⊲s11 . . . s
1
i1
2 . . .2sk1 . . . s

k
ik
⊳2 · · ·

The reading head may write a symbol, move left, move right.

An instruction is of the following three forms:

qisjskql
qisjLql
qisjRql

Notice that there are no instructions of the form qHsjskql.

CSC363-Computability Theory@SJTU Xiaofeng Gao Other Approaches to Computability 18/59



Recursive Functions
Turing Machine
Church’s Thesis

Introduction
One-Tape Turing Machine
Multi-Tape Turing Machine
Discussion

An Example

Suppose a Turing machine M makes use of the alphabet

{0, 1} ∪ {⊲,2, ⊳}.

qS⊲Rq1
q10Rq1
q110q2
q20Rq2
q21Rq1
q1⊳Lq3
q2⊳Lq3
q30Lq3
q31Lq3
q3⊲RqH

⊲ 1 1 0 1 ⊳

q̂S

⊲ 1 1 0 1 ⊳

q̂1

⊲ 0 1 0 1 ⊳

q̂2

⊲ 0 1 0 1 ⊳

q̂2

⊲ 0 1 0 1 ⊳

q̂1

⊲ 0 1 0 1 ⊳

q̂1

⊲ 0 1 0 0 ⊳

q̂2

⊲ 0 1 0 0 ⊳

q̂2

⊲ 0 1 0 0 ⊳

q̂3

⊲ 0 1 0 0 ⊳

q̂3

⊲ 0 1 0 0 ⊳

q̂3

⊲ 0 1 0 0 ⊳

q̂H

CSC363-Computability Theory@SJTU Xiaofeng Gao Other Approaches to Computability 19/59

Recursive Functions
Turing Machine
Church’s Thesis

Introduction
One-Tape Turing Machine
Multi-Tape Turing Machine
Discussion

Turing-Computable Function

The partial recursive function f (x) computed by M is

f (n) =




m, m is the number of 1′s between ⊲ and ⊳,

ifM stops when the input number is n;
↑, otherwise.
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A Turing-Computable Function

The function x+ y is Turing-Computable by:

qS⊲Rq1
q11Bq1
q1BRq2
q21Bq3
q2BRq2
q31Rq3
q3BRq3
q3⊳LqH
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Multi-Tape Turing Machine

A multi-tape TM is described by a tuple (Γ,Q, δ) containing

A finite set Γ called alphabet, of symbols. It contains a blank

symbol 2, a start symbol �, and the digits 0 and 1.

A finite set Q of states. It contains a start state qstart and a halting

state qhalt .

A transition function δ : Q× Γk → Q× Γk−1 × L, S,Rk,
describing the rules of each computation step.

Example: A 2-Tape TM will have transition function (also named as

specification) like follows:

〈qs,�,�〉 → 〈q1,�,R,R〉
〈q1, 0, 1〉 → 〈q2, 0, S,L〉
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Computation and Configuration

Computation, configuration, initial/final configuration
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A 3-Tape TM for the Palindrome Problem

A palindrome is a word that reads the same both forwards and

backwards. For instance:

ada, anna, madam, and nitalarbralatin.

Requirement: Give the specification ofM with k = 3 to recognize

palindromes on symbol set {0, 1, ⊲, ⊳,2}.
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Preparation

To recognize palindrome we need to check the input string, output 1 if

the string is a palindrome, and 0 otherwise.

Initially the input string is located on the first tape like

“⊲ 0110001 ⊳222 · · · ", strings on all other tapes are “⊲222 · · · ".

The head on each tape points the first symbol “⊲" as the starting state,

with state mark qS.

In the final state qF , the output of the k
th tape should be “⊲ 1 ⊳ 2" if

the input is a palindrome, and “⊲ 0 ⊳ 2" otherwise.
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A 3-Tape TM for the Palindrome Problem

Q = {qs, qh, qc, ql, qt, qr}; Γ = {2,�,�, 0, 1}; two work tapes.

Start State:

〈qs,�,�,�〉 → 〈qc,�,�,R,R,R〉

Begin to copy:

〈qc, 0,2,2〉 → 〈qc, 0,2,R,R, S〉
〈qc, 1,2,2〉 → 〈qc, 1,2,R,R, S〉
〈qc,�,2,2〉 → 〈ql,2,2,L, S, S〉

Return back to the leftmost:

〈ql, 0,2,2〉 → 〈ql,2,2,L, S, S〉
〈ql, 1,2,2〉 → 〈ql,2,2,L, S, S〉
〈ql,�,2,2〉 → 〈qt,2,2,R,L, S〉

Begin to compare:

〈qt,�,�,2〉 → 〈qr,�, 1, S, S,R〉
〈qt, 0, 1,2〉 → 〈qr, 1, 0, S, S,R〉
〈qt, 1, 0,2〉 → 〈qr, 0, 0, S, S,R〉
〈qt, 0, 0,2〉 → 〈qt, 0,2,R,L, S〉
〈qt, 1, 1,2〉 → 〈qt, 1,2,R,L, S〉

Ready to terminate:

〈qr,�,�,2〉 → 〈qh,�,�, S, S, S〉
〈qr, 0, 1,2〉 → 〈qh, 1,�, S, S, S〉
〈qr, 1, 0,2〉 → 〈qr, 0,�, S, S, S〉
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Language System

Let Σ = {a1, . . . , ak} be the set of symbols, called alphabet.

A string (word) from Σ is a sequence ai1 , · · · , ain of symbols from Σ.

Σ∗ is the set of all words/strings from Σ. (Kleene Star)

For example, if Σ = {a, b}, we have

Σ∗ = {a, b}∗ = {Λ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .}.

Λ is the empty string, that has no symbols. (ε)
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{0, 1,2,�} vs. Larger Alphabets

Fact: If f : {0, 1}∗ → {0, 1}∗ is computable in time T(n) by a TMM

using the alphabet set Γ, then it is computable in time 4 log |Γ|T(n) by
a TM M̃ using the alphabet {0, 1,2,�}.
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{0, 1,2,�} vs. Larger Alphabets

Suppose M has k tapes with the alphabet Γ.

A symbol of M is encoded in M̃ by a string σ ∈ {0, 1}∗ of length
log |Γ|.

A state q in M is turned into a number of states in M̃

q,

〈q, σ11 , . . . , σ
k
1〉 where |σ

1
1 | = . . . = |σk1| = 1,

· · · ,

〈q, σ1
log |Γ|, . . . , σ

k
log |Γ|〉, the size of σ

1
log |Γ|, . . . , σ

k
log |Γ| is log |Γ|.
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{0, 1,2,�} vs. Larger Alphabets

To simulate one step ofM, the machine M̃ will

1 use log |Γ| steps to read from each tape the log |Γ| bits encoding
a symbol of Γ,

2 use its state register to store the symbols read,

3 use M’s transition function to compute the symbols M writes and

M’s new state given this information,

4 store this information in its state register, and

5 use log |Γ| steps to write the encodings of these symbols on its
tapes.
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{0, 1,2,�} vs. Larger Alphabets

Example: {0, 1,2,�} vs. English Alphabets
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Single-Tape vs. Multi-Tape

Define a single-tape TM to be a TM that has one read-write tape.

Fact: If f : {0, 1}∗ → {0, 1}∗ is computable in time T(n) by a TMM

using k tapes, then it is computable in time 5kT(n)2 by a single-tape
TM M̃.
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Single-Tape vs. Multi-Tape

The basic idea is to interleave k tapes into one tape.

The first n+ 1 cells are reserved for the input.

Every symbol a of M is turned into two symbols a, â in M̃, with

â used to indicate head position.
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Single-Tape vs. Multi-Tape

The outline of the algorithm:

The machine M̃ places � after the input string and then starts copying

the input bits to the imaginary input tape. During this process

whenever an input symbol is copied it is overwritten by �.

M̃ marks the n+ 2-cell, . . ., the n+ k-cell to indicate the initial head
positions.

M̃ Sweeps kT(n) cells from the (n+ 1)-th cell to right, recording in
the register the k symbols marked with the hat _̂.

M̃ Sweeps kT(n) cells from right to left to update using the transitions

of M. Whenever it comes across a symbol with hat, it moves right k

cells, and then moves left to update.
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Unidirectional Tape vs. Bidirectional Tape

Define a bidirectional Turing Machine to be a TM whose tapes are

infinite in both directions.

Fact: If f : {0, 1}∗ → {0, 1}∗ is computable in time T(n) by a
bidirectional TM M, then it is computable in time 4T(n) by a TM M̃

with one-directional tape.
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Unidirectional Tape vs. Bidirectional Tape

The idea is that M̃ makes use of the alphabet Γ× Γ.

Every state q of M is turned into q̄ and q.
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Unidirectional Tape vs. Bidirectional Tape

Let H range over {L, S, R} and let −H be defined by

−H =




R, if H = L,
S, if H = S,
L, if H = R.

M̃ contains the following transitions:

〈q, (�,�)〉 → 〈q, (�,�),R〉
〈q, (�,�)〉 → 〈q, (�,�),R〉

〈q, (a, b)〉 → 〈q′, (a′, b),H〉 if 〈q, a〉 → 〈q′, a′,H〉
〈q, (a, b)〉 → 〈q′, (a, b′),−H〉 if 〈q, b〉 → 〈q′, b′,H〉
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Turing-Computability

Let T C be the set of Turing computable functions.

Theorem. R = T C = C .

Proof. The proof of the inclusion T C ⊆ R is similar to the proof of

C ⊆ R. There could be many ways to show that R ⊆ T C .
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Computability on Domains other than N

URM that handle integers. We need a subtraction instruction.

(1). Each register contains an integer;

(2). There is an additional instruction S−(n) for each n = 1, 2, 3, · · ·
that has the effect of subtracting 1 from the contents of register Rn.
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Alphabet Domain

Let Σ = {a1, . . . , ak} be the set of symbols, called alphabet.

Σ∗ is the set of words/strings.

Λ is the empty string.

στ is the concatenation of σ and τ .
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Computability on Alphabet Domain

Suppose Σ = {a, b}. The set RΣ of partial recursive functions on Σ∗

is the smallest set that satisfies the following properties:

It contains the following basic functions:

f (σ) = Λ,

f (σ) = σa,

f (σ) = σb,

Uni (σ1, . . . , σn) = σi.

RΣ is closed under substitution.
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Computability on Alphabet Domain

RΣ is closed under recursion:

h(σ,Λ) ≃ f (σ),

h(σ, τa) ≃ g1(σ, τ, h(σ, τ)),

h(σ, τb) ≃ g2(σ, τ, h(σ, τ)).

RΣ is closed under minimalisation:

h(σ) ≃ µτ(f (σ, τ ) = Λ).

Here µτ means the first τ in the natural ordering Λ, a, b, aa, ab, ba,
bb, aaa, aab, aba, · · ·
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Two Questions

1. How do different models of computation compare to each other?

2. How do these models characterize the informal notion of effective

computability?
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Other Approaches to Computability

1. Gödel-Kleene (1936): Partial recursive functions.

2. Turing (1936): Turing machines.

3. Church (1936): λ-terms.

4. Post (1943): Post systems.

5. Markov (1951): Variants of the Post systems.

6. Shepherdson-Sturgis (1963): URM-computable functions.

Fundamental Result: Each of the above proposals for a

characterization of the notion of effective computability gives rise to

the same class of functions.
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Church-Turing Thesis

Question: How well is the informal intuitive idea of effectively

computable function captured by the various formal

characterizations?

Church-Turing Thesis.

The intuitively and informally defined class of effectively computable

partial functions coincides exactly with the class C of

URM-computable functions.

The functions definable in all computation models are the same. They

are precisely the computable functions.

It was called Church Thesis by Kleene. Gödel accepted it only after

he saw Turing’s equivalence proof.
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Church-Turing Thesis

Church-Turing thesis is not a theorem, but it has the status of a claim

or belief which must be substantiated by evidence.

Evidence:

⊲ The Fundamental result: many independent proposals for a

precise formulation of the intuitive idea have led to the same

class of functions C .

⊲ A vast collection of effectively computable functions has been

shown explicitly to belong to C .

⊲ The implementation of a program P on the URM to compute a

function is an example of an algorithm. Thus all functions in C

are computable in the informal sense.

⊲ No one has ever found a function that would be accepted as

computable in the informal sense, that does not belong to C .
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Church-Turing Thesis

No one has come up with an intuitively computable function that is

not recursive.

When you are convincing people of the computability of your

functions, you are constructing an interpretation from your model to a

well-known model.

Church-Turing Thesis is universally accepted. It allows us to give an

informal argument for the computability of a function.

We can make use of a computable function without explicitly defining

it.
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How to prove the computability of a function f ?

There are two methods open to us:

Write a program that URM-computes f or prove by indirect

means that such a program exists.

Give an informal (though rigorous) proof that given informal

algorithm is indeed an algorithm that serves to compute f , then

appeal Church’s thesis and conclude that f is URM-computable.

(proof by church’s thesis).

CSC363-Computability Theory@SJTU Xiaofeng Gao Other Approaches to Computability 49/59

Recursive Functions
Turing Machine
Church’s Thesis

Computability on Domains other than N
Characterization and Effectiveness of Computation Models
Description
Proof by Church’s Thesis

Example 1

Let P be a URM program; define a function f by

f (x, y, t) =





1 if P(x) ↓ y after t or fewer steps
of the computation P(x);

0 otherwise.

Prove the computability of f .
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Informal Algorithm

Given (x, y, t), simulate the computation P(x): carrying out t steps of
P(x) unless this computation stops after fewer than t steps.

If P(x) stops after t or fewer steps, with y finally in R1, then
f (x, y, t) = 1.

Otherwise (P(x) stops in t or fewer steps with some number other than
y in R1, or if P(x) has not stopped after t steps), we have f (x, y, t) = 0.
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Analysis

Simulation of P(x) for at most t steps is clearly a mechanical
procedure, which can be completed in a finite amount of time.

Thus, f is effectively computable.

Hence, by Church’s Thesis, f is URM-computable.

CSC363-Computability Theory@SJTU Xiaofeng Gao Other Approaches to Computability 52/59

Recursive Functions
Turing Machine
Church’s Thesis

Computability on Domains other than N
Characterization and Effectiveness of Computation Models
Description
Proof by Church’s Thesis

Example 2

Suppose that f and g are unary effectively computable functions.

h(x) =

{
1 if x ∈ Dom(f ) or x ∈ Dom(g);
undefined otherwise.

Prove the computability of h.
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Informal Algorithm

Given x, start the algorithms for computing f (x) and g(x)
simultaneously. If and when one of these computations terminates,

then stop altogether, and set h(x) = 1.

Otherwise, continue indefinitely.
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Analysis

This algorithm gives h(x) = 1 for any x such that either f (x) or g(x) is
defined; and it goes on for ever if neither is defined.

Thus, we have an algorithm for computing h, and hence, by Church’s

Thesis, h is URM-computable.
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Example 3

Let f (n) = the nth digit in the decimal expansion of π.

Prove the computability of f .

(So we have f (0) = 3, f (1) = 1, f (2) = 4, etc.)
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Proof

We can obtain an informal algorithm for computing f (n) as follows.
Consider Hutton’s series for π:

π =
12

5

{
1+

2

3

(
1

10

)
+
2 · 4

3 · 5

(
1

10

)2

+ · · ·

}

+
14

25

{
1+

2

3

(
1

50

)
+
2 · 4

3 · 5

(
1

50

)2

+ · · ·

}

=

∞∑

n=0

(n!2n)2

(2n+ 1)!

{
12

5

(
1

10

)n
+
14

25

(
1

50

)n}

=
∞∑

n=0

hn (defined as)
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Proof (Cont.)

Let sk =
k∑
n=0

hn, by theory of infinite series sk < π < sk +
1
10k

.

Since sk is rational, the decimal expansion of sk can be effectively

calculated to any desired number of places using long division.

Thus the effective method for calculating f (n) (given a number n) can
be described as:

Find the first N ≥ n+ 1 such that the decimal expansion

sN = a0.a1a2 · · · anan+1 · · · aN · · · does not have all of an+1 · · · aN
equal to 9. Then put f (n) = an.

Note: Such an N exists, for otherwise the decimal expansion of π

would end in recurring 9, making π rational.
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Proof (Cont.)

To see that this gives the required value, suppose that am 6= 9 with

n < m ≤ N. Then by the above

sN < π < sN +
1

10N
≤ sN +

1

10m
.

Hence a0.a1 · · · an · · · am · · · < π < a0.a1 · · · an · · · (am + 1) · · · . So
the nth decimal place of π is indeed an.

Thus by Church’s Thesis, f is computable.
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