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Three Basic Functions

The Basic Functions

Lemma. The following basic functions are computable.

1 The zero function 0.
2 The successor function x+ 1.

3 For each n ≥ 1 and 1 ≤ i ≤ n, the projection function Un
i given

by Un
i (x1, . . . , xn) = xi.
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Proof

These functions correspond to the arithmetic instructions for URM.

1 0: program Z(1);
2 x+ 1: program S(1);
3 Un

i : program T(i, 1).
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Substitution Theorem

Suppose that f (y1, . . . , yk) and g1(x), . . . , gk(x) are computable
functions, where x = x1, . . . , xn. Then the function h(x) given by

h(x) ≃ f (g1(x), . . . , gk(x))

is a computable function.

Question: what is the domain of definition of h(x)?

Note: h(x) is defined iff g1(x), · · · , gk(x) are all defined and
(g1(x), · · · , gk(x)) ∈ Dom(f ). Thus, if f and g1, · · · , gk are all total
functions, then h is total.
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Proof (Construction)

Let F,G1, . . . ,Gk be programs in standard form that compute

f , g1, . . . , gk.

Let m be max{n, k, ρ(F), ρ(G1), . . . , ρ(Gk)}.

Registers:

[. . .]m1 [x]
m+n
m+1[g1(x)]

m+n+1
m+n+1 . . . [gk(x)]

m+n+k
m+n+k
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URM Program for Substitution

I1 : T(1,m+ 1)

...

In : T(n,m+ n)
In+1 : G1[m+ 1, . . . ,m+ n → m+ n+ 1]

...

In+k : Gk[m+ 1, . . . ,m + n → m+ n+ k]
In+k+1 : F[m+ n+ 1 . . . ,m+ n+ k → 1]

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive Function 9/54

Basic Functions
Substitution
Recursion

Minimalisation

Definition
Variable Sequences

Computable Function with Variable Sequences

Theorem. Suppose that f (y1, . . . , yk) is a computable function and
that xi1 , . . . , xik is a sequence of k of the variables x1, . . . , xn (possibly
with repetitions). Then the function h given by

h(x1, . . . , xn) ≃ f (xi1 , . . . , xik)

is computable.

Proof. h(x) ≃ f (Un
i1(x), . . . ,U

n
ik(x)).
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Form New Functions

Rearrangement: h1(x1, x2) ≃ f (x2, x1);
Identification: h2(x) ≃ f (x, x);
Adding Dummy Variables: h3(x1, x2, x3) ≃ f (x2, x3).
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An Example

The function f (x1, x2, x3) = x1 + x2 + x3 is computable.

Proof. Since x+ y is computable, by substituting x1 + x2 for x, and x3
for y in x+ y we can claim that f is computable.

Note: When the functions g1, · · · , gk substituted into f , it is not
necessarily involving all of the variables x1, · · · , xn to guarantee the
computability of the new function.

CSC363-Computability Theory@SJTU Xiaofeng Gao Recursive Function 12/54

Basic Functions
Substitution
Recursion

Minimalisation

Definition
Examples
Corollary

Recursion Equations

Suppose that f (x) and g(x, y, z) are functions. The function obtained
from f (x) and g(x, y, z) by recursion is defined as follows:

{

h(x, 0) ≃ f (x),
h(x, y + 1) ≃ g(x, y, h(x, y)).
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Domain of h

h may not be total unless both f and g are total.

The domain of h satisfies:
(x, 0) ∈ Dom(h) iff x ∈ Dom(f );
(x, y + 1) ∈ Dom(h) iff (x, y) ∈ Dom(h)

and (x, y, h(x, y)) ∈ Dom(g).
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Uniqueness

Theorem. Let x = {x1, · · · , xn},and suppose that f (x) and g(x, y, z)
are functions; then there is a unique function h(x, y) satisfying the
recursion equations

{

h(x, 0) ≃ f (x),
h(x, y + 1) ≃ g(x, y, h(x, y)).

Note: When n = 0 (x do not appear), the recursion equations take the

form
{

h(0) = a,
h(y + 1) ≃ g(y, h(y)).
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Computability Theorem

Theorem. h(x, y) is computable if f (x) and g(x, y, z) are computable.
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Proof

Registers:

[. . .]m1 [x]
m+n
m+1[y]

m+n+1
m+n+1[k]

m+n+2
m+n+2[h(x, k)]

m+n+3
m+n+3.

Program:

T(1,m + 1)

...

T(n+ 1,m + n+ 1)

F[1, 2, . . . , n → m+ n+ 3]

Iq : J(n + m+ 2, n + m+ 1, p)
G[m+ 1, . . . ,m+ n,m + n+ 2,m + n+ 3 → m+ n+ 3]

S(n+ m+ 2)

J(1, 1, q)
Ip : T(n+m+ 3, 1)
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Flow Diagram
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Addition

Let add: N2 → N, add(x, y) := x+ y.

add(x, 0) = x+ 0 = x
add(x, y + 1) = x+ (y+ 1) = (x+ y) + 1

= add(x, y) + 1

Therefore,

add(x, 0) = f (x)
add(x, y + 1) = g(x, y, add(x, y))

where

f : N→ N, f (x) := x,
g : N3 → N, g(x, y, z) := z+ 1.
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Multiplication

Let mult: N2 → N, mult(x, y) := x · y.

mult(x, 0) = x · 0 = 0

mult(x, y + 1) = x · (y+ 1) = x · y+ x
= mult(x, y) + x

Therefore,

mult(x, 0) = f (x)
mult(x, y + 1) = g(x, y,mult(x, y))

where

f : N→ N, f (x) := 0,

g : N3 → N, g(x, y, z) := z+ x.
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Power Function

Let power: N2 → N, power(x, y) := xy

power(x, 0) = x0 ≃ 1

power(x, y + 1) = x(y+1) ≃ xy · x

Therefore,

power(x, 0) = f (x)
power(x, y + 1) = g(x, y, power(x))

where

f : N→ N, f (x) := 1,

g : N2 → N, g(x, y, z) := z · x.
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Predecessor

Let pred: N→ N, pred(x) := x−̇1 =

{

x− 1 if x > 0,

0 otherwise.

pred(0) = 0

pred(x + 1) = x

Therefore,

pred(0) = f (x) = 0

pred(x + 1) = g(x, pred(x))

where

f : N→ N, f (x) := 0,

g : N2 → N, g(x, y) := x.
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Conditional Subtraction

Let sub: N2 → N, sub(x, y) := x−̇y def
=

{

x− y, if x ≥ y,
0, otherwise.

sub(x, 0) = x−̇0 ≃ x
sub(x, y + 1) = x−̇(y+ 1) ≃ (x−̇y)−̇1.

Therefore,

sub(x, 0) = f (x)
sub(x, y + 1) = g(x, y, sub(x))

where

f : N→ N, f (x) := x,
g : N2 → N, g(x, y, z) := z−̇1.
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Sign

Let sg: N→ N,

sg(x) def
=

{

0, if x = 0,

1, if x 6= 0.
:

sg(0) ≃ 0,

sg(x+ 1) ≃ 1.

sg(x) def
=

{

1, if x = 0,

0, if x 6= 0.
:

sg(x) ≃ 1−̇sg(x).
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Other Examples

Absolute Function (ABS): |x− y| ≃ (x−̇y) + (y−̇x).

Factorial: x!

0! ≃ 1,

(x + 1)! ≃ x!(x + 1).

Minimum: min(x, y) ≃ x−̇(x−̇y).

Maximum: max(x, y) ≃ x+ (y−̇x).
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Remainder

rm(x, y) def
= the remainder when y is devided by x:

rm(x, y + 1)
def
=

{

rm(x, y) + 1, if rm(x, y) + 1 6= x,
0, if rm(x, y) + 1 = x.

The recursive definition is given by

rm(x, 0) = 0,

rm(x, y + 1) = (rm(x, y) + 1)sg(|x− (rm(x, y) + 1)|).
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Quotient

qt(x, y) def
= the quotient when y is devided by x:

qt(x, y + 1)
def
=

{

qt(x, y) + 1, if rm(x, y) + 1 = x,
qt(x, y), if rm(x, y) + 1 6= x.

The recursive definition is given by

qt(x, 0) = 0,

qt(x, y + 1) = qt(x, y) + sg(|x − (rm(x, y) + 1)|).
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Conditional Division

div(x, y) def
=

{

1, if x|y,
0, if x6 |y. : div(x, y) = sg(rm(x,y)).
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Definition by Cases

Suppose that f1(x), . . . , fk(x) are computable functions, and
M1(x), . . . ,Mk(x) are decidable predicates, such that for every x
exactly one of M1(x), . . . ,Mk(x) holds. Then the function g(x) given
by

g(x) ≃



















f1(x), if M1(x) holds,
f2(x), if M2(x) holds,
...

fk(x), if Mk(x) holds.

is computable.

Proof. g(x) ≃ cM1
(x)f1(x) + . . .+ cMk(x)fk(x).
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Algebra of decidability

Suppose that M(x) and Q(x) are decidable predicates; then the
following are also decidable.

1 not M(x)

2 M(x) and Q(x)
3 M(x) or Q(x)

Proof:

1 1−̇cM(x)
2 cM(x) · cQ(x)
3 max(cM(x), cQ(x))
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Bounded Sum and Bounded Product

Bounded sum:

∑

z<0

f (x, z) ≃ 0,

∑

z<y+1

f (x, z) ≃
∑

z<y
f (x, z) + f (x, y)

Bounded product:

∏

z<0

f (x, z) ≃ 1,

∏

z<y+1

f (x, z) ≃ (
∏

z<y
f (x, z)) · f (x, y)

They are computable if f (x, z) is total and computable.
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Bounded Sum and Bounded Product

By substitution the following functions are also computable

∑

z<k(x,w)

f (x, z)

and
∏

z<k(x,w)

f (x, z)

if k(x,w) is total and computable.
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Bounded Minimization Operator, or µ-Operator

µz < y(· · · ): the least z less than y such that · · ·

µz<y(f (x, z) = 0)
def
=

{

the least z < y, such that f (x, z) = 0;
y if there is no such z.
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µ-Operator

Theorem.

If f (x, z) is total and computable, then so is µz<y (f (x, z) = 0).
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Proof

Consider h(x, v) =
∏

u≤v
sg(f (x, u)) (Computable).

Given x, y, suppose z0 = µz < y(f ((x), y) = 0). Easy to see,

if v < z0, then h((x), v) = 1;

if z0 ≤ v < y, then h((x), v) = 0;

Thus z0 =
∑

v<y
h((x), v).

So µz<y(f (x, z) = 0) ≃ ∑

v<y
(
∏

u≤v
sg(f (x, u))) is computable.
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Bounded Minimization Operator, or µ-Operator

Corollary: If f (x, z) and k(x,w) are total and computable functions,
then so is the function

µz<k(x,w) (f (x, z) = 0).

Proof. By substitution of k(x,w) for y in the computable function
µz<y (f (x, z) = 0).
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Suppose that R(x, y) is a decidable predicates. Then the following
statements are valid:

1 the function f (x, y) ≃ µz<y R(x, y) is computable;
2 the following predicates are decidable:

a) M1(x, y) ≡ ∀z < yR(x, z);
b) M2(x, y) ≡ ∃z < yR(x, z).

Proof.
1 f (x, y) = µz < y(sg(CR(x, z)) = 0).
2 a) cM1

(x, y) =
∏

z<y
cR(x, z).

b) M2(x, y) ≡ not (∀z < y(not R(x, z)))
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Theorem. The following functions are computable.

(a) D(x) = the number of divisors of x;

(b) Pr(x) =
{

1, if x is prime,
0, if x is not prime. ;

(c) px = the x-th prime number;

(d) (x)y =







k, k is the exponent of py in the prime
factorisation of x, for x, y > 0,

0, if x = 0 or y = 0.

.
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Proof.

(a) D(x) ≃∑

y≤x div(y, x).

(b) Pr(x) ≃ sg(|D(x) − 2|).

(c) px can be recursively defined as follows:

p0 ≃ 0,

px+1 ≃ µz ≤ (px! + 1)(z > px and z is prime).

(d) (x)y ≃ µz<x(pz+1
y 6 |x).
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Prime Coding

Suppose s = (a1, a2, . . . , an) is a finite sequence of numbers. It can be
coded by the number

b = pa1+1
1 pa2+1

2 . . . pan+1
n .

Then the length of s can be recovered from

µz<b((b)z+1 = 0),

and the i-th component can be recovered from

(b)i−̇1.
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Unbounded Minimization

µ-function:

µy(f (x, y) = 0) ≃















the least y such that
(i) f (x, y) is defined for all z ≤ y, and
(ii) f (x, y) = 0,

undefined if otherwise.
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Theorem

If f (x, y) is computable, so is µy(f (x, y) = 0).
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Proof

Let F be a program in standard form that computes f (x, y). Let m be

max{n+ 1, ρ(F)}.

Registers:[. . .]m1 [x]
m+n
m+1[k]

m+n+1
m+n+1[0]

m+n+2
m+n+2.

Program:

T(1,m+ 1)

...

T(n,m+ n)
Ip : F[m+ 1,m + 2, . . . ,m+ n+ 1 → 1]

J(1,m + n+ 2, q)
S(m+ n+ 1)

J(1, 1, p)
Iq : T(m+ n+ 1, 1)
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Flow Diagram
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Corollary

Suppose that R(x, y) is a decidable predicate; then the function

g(x) = µyR(x, y)

=

{

the least y such that R(x, y) holds, if there is such a y,
undefined, otherwise.

is computable.

Proof. g(x) = µy(sg(cR(x, y)) = 0).
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Discussion

The µ-operator allows one to define partial functions.

E.g., given f (x, y) = |x− y2|, g(x) ≃ µy(f (x, y) = 0),

we have g is the non-total function

g(x) =
{ √

x, if x is a perfect square
undefined, otherwise.
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Remark

Using the µ-operator, one may define total functions that are not

primitive recursive.

Remark: The set of primitive recursive functions are those definable

from the basic functions using substitution and recursion.
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Ackermann Function

The Ackermann function is defined as follows:

ψ(0, y) ≃ y+ 1,

ψ(x+ 1, 0) ≃ ψ(x, 1),
ψ(x + 1, y+ 1) ≃ ψ(x, ψ(x + 1, y)).
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Ackermann Function

Fact. The Ackermann function is computable.

Definition. A finite set S of triples is said to be suitable if the

followings hold:

(i) if (0, y, z) ∈ S then z = y+ 1;

(ii) if (x+ 1, 0, z) ∈ S then (x, 1, z) ∈ S;
(iii) if (x+ 1, y+ 1, z) ∈ S then ∃u.((x + 1, y, u)∈S) ∧ ((x, u, z)∈S).
Three conditions correspond to the three clauses in the definition of ψ.

The definition of a suitable set S ensures the following property:

If (x, y, z) ∈ S, then

(i) z = ψ(x, y);
(ii) S contains all the earlier triple (x1, y1, ψ(x1, y1)) that are needed to
calculate ψ(x, y).
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Computability Proof

Moreover, for any particular pair of numbers (m, n) there is a suitable
set S such that (m, n, ψ(m, n)) ∈ S. For instance, let S be the set of

triples (x, y, ψ(x, y)) that are used in the calculations of ψ(m, n).

Note a triple (x, y, z) can be coded up by single positive number
2x3y5z. A finite set {u1, . . . , uk} can be coded up by pu1 · · · puk .

Hence a finite set of triples can be coded by a single number v. Let Sv
denote the set of triples coded by the number v. then

(x, y, z) ∈ Sv ⇔ p2x3y5z divides v.

So ‘(x, y, z) ∈ Sv’ is a decidable predicate of x, y, z, and v; and if it
holds, then x, y, z < v.
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Computability Proof (Cont.)

Let R(x, y, v) be “v is a legal code and ∃z < v((x, y, z)∈Sv)”.

R(x, y, v) is decidable using the techniques and functions of earlier
sections.

Thus the function f (x, y) = µvR(x, y, v) is a computable function that
searches for the code of a suitable set containing (x, y, z) for some z.

As a result, the Ackermann function ψ(x, y) = µz((x, y, z)∈Sf (x,y)) is
computable.
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Ackermann Function

The Ackermann function is not primitive recursive.

It grows faster than all the primitive recursive functions.
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