

THEORY OF COMPUTATION

Outline

- What is Theory of Computation?
- History of Computation
- Branches and Development

2/23/2016

Xiaofeng Gao - Slide 01 for CS363, 2016

The Essential Question

 Back to 1930's, mathematical logicians first began to explore the meaning of computation, using one question——

What are the fundamental capabilities and limitations of computers?

2

2

Definition

- In theoretical computer science, the theory of computation is the branch that deals with whether and how efficiently problems can be solved on a model of computation, using an algorithm.
- Three major branches
 - Automata Theory
 - Computability Theory
 - Computational Complexity Theory

2/23/2016

Xiaofeng Gao - Slide 01 for CS363, 2016

Computability Theory

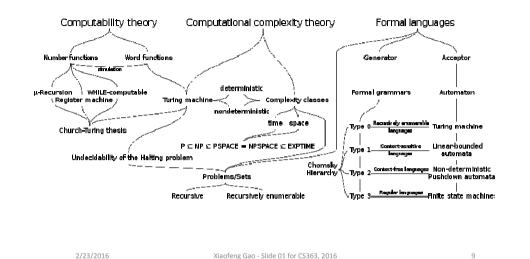
- What problem is solvable on a computer?
 - Whether a mathematical statement is true/false
 - Halting Problem (easy to formulate, impossible to solve by TM)
 - Rice's Theorem
 For all non-trivial properties of partial functions, it is undecidable whether a Turing machine computes a partial function with that property.
- Closely related to recursion theory
 - Theoretical models of computers
 - Lead to the construction of actual computers

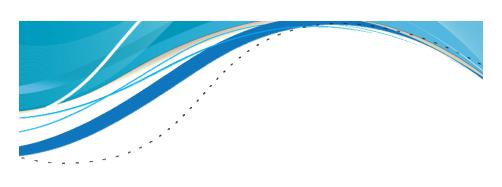
2/23/2016

Automata Theory

- The study of abstract mathematical machines and the computational problems that can be solved using these machine
- Automata → Greek word (Αυτόματα)
 something is doing something by itself
- Play a role in several applied areas of CS
 - Finite automation: text processing, compilers, hardware design

 Context-free Grammar: programming languages, artificial intelligence


```
2/23/2016
```


Xiaofeng Gao - Slide 01 for CS363, 2016

Computational Complexity Theory

- Given a problem, how much resource do we need to compute it?
 - How efficiently the problem can be solved
 - Execution time (Time Complexity)
 - Memory space (Space Complexity)
- Classify the difficulty of computer problems
 - E.g., Complexity classes P and NP
 - What makes some problems computationally hard and others easy?

Relationship

HISTORY OF COMPUTATION

2/23/2016

Xiaofeng Gao - Slide 01 for CS363, 2016

10

Gottfried Leibniz (1646-1716)

- Leibniz's Law
 - Identity of indiscernibles
 - Anticipate modern logic and analytic philosophy
 - Formal logic / Symboic logic
- Principles of Leibniz's logic
 - All our ideas are compounded from a very small number of simple ideas.
 - Complex ideas proceed from these simple ideas by a uniform and symmetrical combination.

David Hilbert (1862-1943)

- Hilbert's 23 Problems
 - International Congress of Mathematicians in Paris in 1900
- 2nd: Prove that the axioms of arithmetic are consistent.
 - The compatibility of arithmetical axioms
 - Consistency
 - Completeness
- Foundational Crisis of Mathematics
 - Russell's paradox

Germany

2/23/2016

2/23/2016

Kurt Gödel (1906-1978)

- Gödel's Complete Theorem
 - 1929
 - First Order Logic (predicate calculus)
- Gödel's Incomplete Theorem
 - 1931

- Kunt Gördel
- On Formally Undecidable Propositions of "Principia Mathematica" and Related Systems
- for any computable axiomatic system that is powerful enough to describe the arithmetic of the natural numbers (Peano axioms), that:
 - If the system is consistent, it cannot be complete.
 - The consistency of the axioms cannot be proven within the system.

21	5	С	12	0	1
4/	4	5/	2	U	1

Xiaofeng Gao - Slide 01 for CS363, 2016

13

Alan Turing (1912 – 1954)

- Foundation of Computation Theory
 - On Computable Numbers, with an Application to the Entscheidungs Problem (decision problem), 1936
- Turing Machine
 - the most powerful possible "reasonable" model of computation
 - reformulated Kurt Gödel's universal arithmetic-based formal language
- Turing Award
 - 1966
 - Association for Computing Machinery (ACM)

```
2/23/2016
```

Xiaofeng Gao - Slide 01 for CS363, 2016

UK

14

Alonzo Church (1903 – 1995)

- Lambda Calculus (λ-calculus)
 - a way to formalize mathematics through the notion of functions, in contrast to the field of set theory
- Church–Turing thesis
 - Everything algorithmically computable is computable by a Turing machine

USA

Stephen Kleene (1909 – 1994)

- Church's Student
- Founder of Recursion Theory
 - Kleene hierarchy
 - Kleene algebra
 - Kleene star (Kleene closure)
 - Kleene's recursion theorem
 - Kleene fixpoint theorem

John von Neumann (1903 – 1957)

- Logical Design of EDVAC
 - 1945 (101 pages)
 - First Draft of a Report on the EDVAC
- Von Neumann architecture
 - Referential model
 - processing unit
 - arithmetic logic unit
 - processor registers

Hartmanis and Stearns

- On the computational complexity of algorithms (1965)
 - Foundation of Computational Complexity

Xiaofeng Gao - Slide 01 for CS363, 2016

- TIME(f(n))
- Time Hierarchy Theorem
- Derandomization
- Hardness of approximation
- Interactive proof system

Hungarian-American

2/23/2016

Xiaofeng Gao - Slide 01 for CS363, 2016

Control Unit

Memory

Arithmetic

Logic Unit

Accumulator

Input Output

Stephen Cook (1939 -)

- University of Toronto
- The Complexity of Theorem Proving Procedures (1971)
 - Polynomial-time reduction
 - NP-completeness
 - P vs. NP problem
- Turing Award (1982)
 - Feasibly Constructive Proofs and the Propositional Calculus

USA

The Future ...

2/23/2016

- Distributed & Parallel System
- Approximation & Randomization
- Algorithmic Game Theory

19

.

٠

18

Xiaofeng Gao - Slide 01 for CS363, 2016

21