2015 44th International Conference on Parallel Processing

Sheriff: A Regional Pre-Alert Management Scheme
in Data Center Networks

Xiaofeng Gao, Wen Xu, Fan Wu, Guihai Chen
Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, 200240, China
gao-xf@cs.sjtu.edu.cn, xuwen.sjtu@gmail.com, fwu@sjtu.edu.cn, gchen@cs.sjtu.edu.cn

Abstract—As the base infrastructure to support various cloud
services, data center draws more and more attractions from both
academia and industry. A stable, effective, and robust data center
network (DCN) management system is urgently required from
institutions and corporations. However, existing management
schemes have several problems, including the difficulty to manage
the entire network with heterogeneous network components by a
centralized controller; and the short-sighted mechanism to deal
with resource allocation, congestion control, and VM migration.

In this paper, we design Sheriff: a distributed pre-alert and
management scheme for DCN management. Sheriff is a regional
self-automatic control scheme at end host side to balance network
traffic and workload. It includes two phases: prediction and man-
agement. Each end-host predicts possible overload and congestion
by prediction strategy based on ARIMA and Neural Network
methodology, and perform an ALERT message. Delegated local
controllers then monitor their dominating region and activate
localized protocols VMMIGRATION to manage the network. We
illustrate the predication accuracy by network traces from a local
data center service provider; examine the management efficiency
by simulations on both Fat-Tree topology and Bcube topology;
and prove that VMMIGRATION is an approximation with ratio
3+ % where p is a constant predefined in local search algorithm.
Both numerical simulations and theoretical analysis validate the
efficiency of our design. In all, Sheriff is a fast and effective
scheme to better improve the performance of DCN.

I. INTRODUCTION

With the rapid development of cloud computing, data center
networks (DCNs) become indispensable infrastructures for
cloud services like web search, e-business, and social net-
working. IT companies have made tremendous investments in
DCNs to support their online services and cloud platforms.
The performance of DCNs impacts directly on the quality of
cloud services, which implies the significance of efficient DCN
management. However, existing DCN management system has
several drawbacks discussed as follows.

This work has been supported in part by the State Key Development
Program for Basic Research of China (973 project 2014CB340303), the
National Natural Science Foundation of China (Grant number 61202024,
61422208, 61472252, 61272443 and 61133006), the Natural Science Founda-
tion of Shanghai (Grant No.12ZR1445000), Shanghai Educational Develop-
ment Foundation (Chenguang Grant No.12CG09), Shanghai Pujiang Program
13PJ1403900, and in part by Jiangsu Future Network Research Project No.
BY2013095-1-10, CCF-Intel Young Faculty Researcher Program and CCF-
Tencent Open Fund. We also would like to thank Wei Wei, Xuanzhong Wei,
Tao Chen, and Zhangxuan Gu for their contribuctions on the early versions
of this paper.

0190-3918/15 $31.00 © 2015 IEEE
DOI 10.1109/ICPP.2015.76

669

Centralization vs Distribution: Typically, DCN has a
centralized manager to perform network management [1]-
[5]. A centralized manager configures routes and distributes
routing information to end-hosts. It must apply parallelism
and fast route computation approaches to fit increasing scale
of modern data centers and meet the demands of the traffic
characteristics [6]. Towards the real-time web applications in
production data centers, the response time of the centralized
manager may increases sharply when the enormous parallel
requests occur. Hotspots [3], [7] and elephant flows [1], [8]
will also exacerbate the performance of DCNs by increasing
considerable latency. Some request flows may have expired
while the centralized manager still works with the out-of-
date information. Additionally, with the rapid growth of cloud
applications, the scope of DCN expands tremendously in
recent years [9], possibly with upgraded or heterogenous com-
ponents, bringing difficulty to centralized manager to monitor
and control every running state of the system. To overcome the
above shortcomings, distributed managers, also referred to as
devolved controllers, are introduced to leverage the workload
and provide quick responses for real-time web application-
s [10]-[15]. Currently ONOS V1.1.0 supports running multiple
controllers in a clustered mode when the underlying OpenFlow
switches are connected to more than one controller [16], which
makes devolved controller management a practical strategy to
manage a DCN system.

Contingency vs Pre-Control: Servers are always oversub-
scribed (especially when they host hundreds of virtual ma-
chines). Such scheme incurs unwanted problems like overload,
low average resource efficiency, bandwidth shortage, and high
packet loss rate. Switches in DCN may have congestions
because of bursty links and unbalanced traffic, resulting pack-
ets lost and greatly increasing job completion time. Existing
schemes apply congestion control like VM migration [17]-
[20], QCN [21]-[23], when congestion appears or devices are
overloaded. Such contingency-oriented mechanism only works
after detecting errors, which is harmful to device prevention
and system maintenance. On the contrary, if we can detect the
unusual condition ahead of time, precisely predict the future
tendency and pre-control the system, we would protect system
from damage and extend the system lifetime.

Since a certain application such as telecommunication has
an explicit diurnal traffic pattern [24], the traffic or CPU uti-

cps™

Conference Publishing Services

lization of a web application in the data centers is predictable.
We can enable servers to forecast performance and report
to distributed managers. The managers then take some early
warnings and react in advance to avoid congestions. Some
researchers also considered workload prediction as one way to
multiplex resource demands, alleviate traffic congestion, and
reduce hotspot effect [25], but they did not consider distributed
management and balancing problem between each clusters.

Consequently, in this paper we design a novel distributed
pre-alert and management scheme for DCN, named Sheriff. It
is a regional self-automatic control scheme at end host side to
balance traffic and workload according to reasonable predic-
tions, such that the system will achieve a global optimization.
Sheriff includes two phases: prediction and management. Each
delegated controller predicts possible overload and congestion
of the entities in its dominating region by prediction strategy
based on ARIMA and Neural Network time series techniques,
and perform ALERT messages. They then activate local proto-
cols VMMIGRATION to migrate workload at server side and
improve network performance. In all, by simply inserting a
shim layer on each rack, Sheriff can automatically monitor
its dominating region and provide quick response when it
detects unusual situations. Instead of balancing workload after
detecting congestion or device overloading, Sheriff predicts
possible trend by time series forecasting. It solves potential
problems before they actually happens, which protects devices
and reduce maintenance costs tremendously.

We provide three ways to prove the efficiency of Sheriff:
First, we illustrate a network trace prediction evaluation with
real application data from ZopleCloud Corporation. Next, we
prepare various simulations on typical switch-centric DCN and
server-centric DCN such as Fat-Tree and Bcube to evaluate our
management algorithm. Finally, we give a theoretical proof
showing that VMMIGRATION is an approximation with ratio
3 + 2, where p is a constant in Local Search Algorithm.
Both numerical experiments and theoretical proof validate the
efficiency of Sheriff. To the best of our knowledge, we are the
first to propose a pre-alert management scheme for DCN with
distributed managers, which has both theoretical and practical
significance in the related areas.

The rest of paper is organized as follows. In Sec. 11, we pro-
vide the preliminaries and overview of Sheriff system design.
We formulate the problem in Sec. III. Then, Sec. IV presents
the pre-alert mechanism and distributed migration algorithms
are shown in Sec. V-B. Finally, we provide an evaluation of
our system including theoretical analysis in Sec. VI. Sec. VII
and Sec. VIII are related works and conclusion.

II. PRELIMINARIES AND SYSTEM DESIGN
A. System Environment and Constraints

Facility and Environment Settings: We use standard rack
with 0.6m wide, 2m tall, 1m deep and each rack is partitioned
into 42 rack units (denoted by U). A typical server occupies
1-2U and switches occupy 1U for a top-of-rack (ToR) switch
up to 21U for large aggregation and core switches [9]. Note
that all equipments must be placed in a rack and racks are

670

positioned alongside each other to form rows in data centers
with approximately 2m space between two rows [26].

Network Settings: We take Fat-Tree [27] as an example
to illustrate our design, which can be easily implemented in
other DCN topologies. We suppose that a DC rack comprises
40 servers connected to an ToR switch which has 48 1Gbps
and up to 4 10Gbps ports. The ToR is connected to aggregation
switches (to network with other racks) with 10 Gbps links.

We adopt virtual machines (VMs) as the unit of resource
allocation for multiple tenants in the cloud. In our model, we
operate the systems by VMs on physical machines according
to their dependency relations.

B. Distributed Controller and Shim Layer

To achieve distributed management, we need to partition
the network into regions and deploy local managers for each
region. According to the physical design of DCN, a natural
choice is to append shim layer on each rack to make policy
compliance mandatory by monitoring variations on each server
and forcing all traffic into congestion-controlled tunnels. The
shim layer should run by the management software in the
virtualization or platform network stack, where it is well-
isolated from tenant code. Shim layer should be responsible
for the following supervisory tasks:

1) provisioning and monitoring local servers in the rack

(e.g., Autopilot, Azure Fabric);

2) periodically checking flow samples coming into/out

from the ToR switch of its local rack;

3) detecting the congestion feedback from aggregation

switches, core switches and other ToR switches.

A basic unit of a DCN is the union of servers, ToR switch
located at the same rack. A shim not only in charge of
monitoring the basic unit, but also manages the local system
according to difference situation. The detailed discussion of
shim management will be shown in Sec IIL

C. Symbols and Topology Construction

Firstly, define v; as the ToR controller for each rack in DCN,
which is responsible for managing and monitoring the servers
inside each rack (usually it is combined together with the ToR
switch). Easy to see, the Ethernet architecture within a rack
in the network will not change during any working process
for DCN. Therefore, using v; as the smallest network unit in
DCN is reasonable and precise.

Let V = {v1,va,...,v,} as the set of delegation nodes
in DCN. Each v; charges a set of servers (to avoid symbol
confliction with switches, we denote server as host). Define
H; = {h},h%,... hi*} the set of hosts in rack v;. Each
rack contains a list of hosts/servers, thus let SR; as the index
set of hosts for each v;. Set SR = {SRy,SRo,...,SR,}.
Further, we can package multi-tier enterprise applications into
virtual machines (VMs) and deploy VMs into physical servers.
Correspondingly, set M = {m1,ma,...,mg} the set of VMs
in DCN. We map each VM to its host h; by an index list
VM;. Let VM = {VM;, VMas, ..., VM, } as the collection

S Core Layer

S8 % Aggregation Layer

Shim Layer v
Top-Of-Rack Switch Top-Of-Rack Switch Top-Of-Rack Switch Top-Of-Rack Switch Top-Of-Rack Switch

i

n 1 2 3 1 2 1 1 2 3
i | hﬂl M || " || e | hﬂ h“ h'ﬂ

hll

s] o [mi] eee |z

T
hi3

33 s || 155 ||| 43) s i |[s 83| My i v;:Shim Layer

h14

hy:Physical Host

Rack 1 Rack 3

Rack 4 Rack 8

Fig. 1. The Architecture of Sheriff with Fat-Tree Topology

of such VM lists. Finally, define S = {s1,s2,...,5;:} as the
set of aggregation switches and core switches in DCN.

Fig. 1 shows the architecture of Sheriff, using an eight pods
Fat-Tree topology as an example. As it shows, every host h;;
could contains certain number of VMs (mfj) and it connects to
the shim layer v; on the top of rack. Shim layer also connects
to a certain number of switches. They all together construct
the communication.

There are two kinds of graphs in a DCN, which are:

Wired Network Graph: Define G, = (V,, E,) as the
underlying DCN. Intuitively, V. = V U S, representing the
combination of delegation nodes (shims) for each rack together
with switches in the network. F,. contains two types of edges,
one with notation (v;,s;), which means switch s; connects
to the ToR switch binding with v;. Another type is (s;, s;),
which means switch s; is directly connected with s;.

Dependency Graph: A dependency graph represents the
relationship among pairs of VMs for their interdependencies
and inter-communications patterns. Let G4 = (V| E4). Next, if
(vi,v;) € Eq, then there exist h;, € v;, hjp € v;, ML, € hiq,
mY, € hjp, such that m}, and m, are dependent with each
other if any communication takes places between them. Due
to inherent coupling between VMs and the resource shortages,
two dependent VMs usually cannot reach an accommodation
if they are hosted at the same physical server simultaneous-
ly [18]. Thus, the dependency graph can also be viewed as a
conflict graph for VM migration.

In all, Table I summarizes main notations used in this paper.

TABLE I
MAIN NOTATIONS
Sym Description Sym Description
V = {uv} Set of shim nodes |[C(e) Capacity of e
S ={si} Set of switches D(e) Distance of e

H; = {hi;} Set of hosts in v; B(e) Available Bandwidth
M;; = {mf;} Setof VMs in h;; |T(e) Transmission time
G,=(VUS,E,) Regular wired graph | P(e) Utility Rate
Ga=(V, Ey) Dependency graph ij Location function

Na(vs) v;’s neighbors in G4|x:;, Edge function
P(vi,v5) Path from v; to v; |B; Bandwidth threshold
Cost(vi,vy) VM migration cost |C, Cost of initialization
P Local change size Cy Unit cost per distance

671

III. PROBLEM FORMULATION

A. Potential Problems and Corresponding Solutions

As a server/switch may crash or overload under some specif-
ic circumstances, we do not take crash errors into consideration
since we assume that they could be resolved by backup system.
Next, we analyze the overload situation as follows:

1) Servers may be overloaded, for example, when its CPU
utilization or memory utilization reaches up to 90%.
Other conditions include outburst traffic, high power
consumptions, etc. When facing these situations, we will
migrate or reshuffle VMs to accommodate workload
spikes and/or resource shortages.

2) Congestion may appear in switches and we can detect
this by checking the content of the QCN feedback
information [28] and modify the rate at end host to reach
the goal of easing the congestion.

B. Pre-Alerts and Actions

Shim monitors servers and switches according to their
feedbacks piggyback the value of target items.

1) The local computing device on each server will periodi-
cally collect information including CPU utilization rate,
memory, disk I/O, uplink traffic through ToR to check
the QoS performance and predict the future evolution
of server’s workload (as background service). Server
will report an ALERT value to its dominating shim
if ALERT exceeds the pre-defined THRESHOLD. The
prediction phase applies classical time series ARIMA
model and NN model, and then selects the best result
by comparison, which will be illustrated in Sec. IV.

2) Similarly, each switch will detect the flow congestion
and use the DSCP bits of the DS field in IP header (or
VLAN Priority Code Point bit if DSCP is needed for
other uses) for signaling congestion flows. Such bits can
be modified through most existing congestion-control
protocol (like OpenFlow). Alternatively, if DCN applies
QCN-like protocols, it can return the sender a special
feedback according to current queue length.

3) Specially, shim should monitor the uplink flow rate of
its local ToR proactively and distinguish the possibility
of uplink congestion. We also refer it as a kind of alert.

When a shim detects alerts from servers or switches, it will
produce immediate reaction based on the following conditions:

Alert from Servers: If v; receives an ALERT from its local
host h;;, it means h;; cannot afford the working load from its
VM’s. v; will then select a group of VM’s in h;; and try to
migrate them into nearby neighbors to reduce overload of h;;.

Alert from ToR Switch: If v; receives alert from its ToR;,
it means shim detects a potential uplink congestion at ToR;. At
this moment shim should arrange a group of selected VM’s and
apply VM migration to release the workload of ToR; through
wired links to neighbor racks.

Alert from Outer Switches: If v; detects alerts from outer
switch s;, it will figure out the conflict flows from a set of
local VM’s. Then v; should reroute portion of flows to their
destinations without passing through hot switches.

Usually, live VM migration require additional memory,
bandwidth, and short service downtime [17], which is more
expensive and slower than flow rerouting. Thus shim will
implement flow reroute first and then deal with VM migration.

C. Cost Functions

VM migration requires additional cost. We imply six-stage

pre-copy live migration [17] from mk to my,:
k

1) Imitialization: m;; is selected for migration to host fyq.
Block devices mirrored and free resources maintained.

2) Reservation: Initialize m;, container on target host.

3) Iterative Pre-Copy: RAM is sent in the first iteration.
Enable shadow paging and copy dirty pages iteratively.

4) Stop&Copy: Suspend mfj for a final transfer round.

5) Commitment: hpq confirms successful transmission.

6) Activation: m;, is active and resumes normal operation.

As shown in Fig. 2, we define ¢ as the initialization and
reservation time, ¢o the pre-copy time; ¢3 the final migration
time, and ¢, the commitment and activation time. Set C,
as the cost of initialization, reservation, commitment, and
activation process since it is hard to analyze these complicated
stages involving CPU, memory, and storage. Without loss of
generality, we assume C). is the same for every VM, which is
the computing cost of VM migration. Since the downtime in
VM migration is a short period of 60ms [17], we ignore the
influence of downtime and set the cost into zero.

Next, let us discuss transmission cost. Deﬁne P(v;,v5) as
the path from v; to v; (v; can be h;; or m - for simplicity),
C(e) as the maximum capacity of e. Next, set D(e) as the
physical distance of e, and B(e) equals to the smaller one
of current available bandwidth and bandwidth in request on
e. Note that B(e) must be greater than a threshold value B;.
Thus, the transmission cost is > _.c p(,, ,,)(07(¢) +nP(e)),

my;.C (l,p(l,(ll,ty

where T(e) =]BT is the transmission time and
P(e) = gge; denotes the utilization rate of the bandwidth.

¢ and n are predefined parameters.

1 !
Pre- ! Iterative Pre-Copy Stop! H Commitment
Migration & | Activation
. Copy
Reservation! {
i
k [
VM i I i
Resources :
1 i
m" : I
Pq__g :
T i
I 1 1
k [i
m; N I
T e
Network ! L i
Traffic oy i
i
m, J: -’k sl
T
| i time
t ! t, [
Fig. 2. Six Stage for Live VM Migration

Finally, we add dependency cost for VM migration. If G,
is the original dependency graph while G is the updated one
if we complete VM migration from mk to my,,. Next, the
changes to communicate with mf] to that with g, brings
communication cost. Define Ngy(v;) as the nelghbor set of
v; in Gy (includes v;), G[Ng(v;)] the induced graph from
G, with pathes to connect Ny(v;), and Cy the unit cost
per distance in G4, then we get the dependency cost is

(ZCEGT[Nd(Uz‘)] D(C) B ZCGGT[N(;(UP)] D(C)) Ca. Let G, =
G, [Ni(v;)]\ G-[N/(v;)] where N, denote the new state after
mi‘J is migrated to m,,,. To 51mp11ty this equation, we define
characteristic functlon as
o 1 if H(Uz‘,’l)j) € G,
Xij =1 0 otherwise.
All in all, the cost function of VM migration is

= Cot-CaD(e)xip+ Y (6T (e)+nP(e)). ()

€ P (vi,v)

)

Cost(v;, vp)

Define location function ¢ as

3)

C{C‘ _ 1 if m“- is located on host h;; at v;,
& 0 otherwise.

(similarly, ¢;; = 1 means h;; is located on v;.)

We formulate the global VM migration problem as below:

min > Z Cost(mf;, m7,) 4)
mk, ™,
s.t. £=L =1 3)
vp € Nyp(v;) (6)
Xij =0 O]
hpq-capacity = mf’j.capacity ()
> k=1 ®
mlkijehzj

ALLRT]? >THLD

X my

hij€v; m, Chyj
i?.j’ k7p7q’/,' e {1727‘ A 77L}'

.capacity < B - ToR;.capacity (10)

(11

Eqn. (5) to Eqn. (11) describe the detailed requirements for
VM migration explicitly. Obviously n is the largest number
among all the indices mentioned above. Actually, this global
VM migration problem is NP-Hard because it is reducible

672

from multiple knapsack problem.

IV. PRE-ALERT MECHANISM

Pre-alert scheme mainly contains three steps: (1). period-
ically collect information that may help for forecast. (2).
respectively process each feature (e.g. network traffic) of
collected information with prediction models that can best
explain it. Here, we use the combination of Autoregressive
Integrated Moving Average (ARIMA) model and Nonlinear
Autoregressive Neural Network (NARNET) model to make
predictions. (3). After predicting future value of all features,
we propose a scheme to calculate an alert which indicates the
seriousness of the condition of one VM. Finally, delegated
controller collects alerts from all VMs in its dominating range
every 1" seconds. Details will be discussed as follows.

A. Collecting Necessary Information

Each host mf] will monitor information that may be useful
to predict future state and in our scenario we mainly take
CPUfj, MEMfJ Iij and TRFfj into consideration. These
four factors will be considered together as a workload profile
Wk = [CPUJ;, MEM},, 10};, TRF}] where CPU};
represents the current CPU load of mfj at time ¢ and MEM”
Iij, TRFZ present memory untility, disk IO rate and network
traffic respectively. One thing to note is that each element of
the workload profile should be normalized to [0, 1].

Fig. 3-5 show the raw data of CPU, I/O, and Traffic records
we collect from a local data center service provider. As we
know, different applications may have different influence on
hosts” performance. Prior works show hosts running MySQL
tends to be CPU-bound, host running Apache/PHP tends to be
memory-bound, whereas Map-Reduce applications may take
up a lot of network bandwidth. When these applications use up
resource it obtains, QoS may not be guaranteed. Thus, taking
these factors into consideration is necessary.

Each v; also monitors the queue length of the associated
ToR switch periodically. Using the historic information about
the queue length, we can predict future queue length. Since
each machine is equipped with a pacer as in [8], great variance
of the queue length is not likely to happen and this will make
it easy for predicting the congestion in ToR switch.

ij°

B. Forecasting the Expected State

From evaluating the traces from a real-world data center, we
find that traditional time series methods still work for DCN.

In the following part, we will mainly focus on the alert
model and we will mainly discuss the time series of network
traffic without loss of generality. The underlying techniques
we use towards different features of ij are the same.

ARIMA: Given a time series of a feature of ij, say,
uplink traffic TRFfj, denote it as {Y:;} where ¢ is an integer
index and Y; is a real number without any loss of generality.
Define the lag operator L by L° = Y;_; and the lag-1
difference operator V are defined in the obvious way, i.e.,

LY, =Y,_;,
VY, = v(v/7lY;), for j > 1, with vOV; = V;.

673

We can use Box-Jenkins method to specify the parameters
of ARIMA model which can predict workload by learning
trend, periodicity and autocorrelation in usage history.

For a particular series {Y;}, we first difference the non-
stationary series to remove periodicity and trends in {Y;}
to obtain a stationary series {Y:} by which we can apply
an autoregressive moving-average (ARMA) process. Hence
we have an ARIMA(p,d, q) process that well explains the
original time series {Y;}. Now we have ¢(L)v?Y; = 0(L)Z;
where {Z;} ~ WN(0,0?) denotes the uncorrelated white
noise with zero mean, and ¢(L) = 1 — ¢1(L) — ... — ¢, LP
and (L) =1+6,L+...+6,L? are polynomial operators in
L of degrees p and gq.

Given {Yi,...,Y;}, P.Yiyp (b > 0) is denoted as the
h-step-ahead conditional mean prediction for Y;.;, that is,
the predicted value of Y;,; given history data up to time ¢.
Once the parameter for ARIMA is decided using Box-Jenkins
method, we can derive the expected value of Y;. as follows:

1) ONE-STEP-AHEAD: In one-step-ahead prediction sce-
nario, we can use the minimum mean square error
(MMSE) forecast method to forecast future trend at one
time unit. Since each time we should obtain a forecast
range of the prediction result, we can use the method in
to decide the predicted value, denoted as Yi ;.

2) K-STEP-AHEAD: The k-step-ahead value can be com-
puted recursively using the one-step-ahead value as the
historical data. Hence, we can effectively predict future
workload for subsequent &k time unit.

The result can be formulated as

PYyin = (V)T PYoin. (12)

NARNET: ARIMA performs well when an initial dif-
ferencing step can be applied to remove non-stationarity.
However, ARIMA is a linear time series model and may not
work otherwise. Applying neural network to work out a non-
linear model seems intuitive.

Here we choose nonlinear autoregressive neural network
(NARNET) which can be trained to predict a time series from
that series past values.The structure for an ordinary NARNET.

Let NARNET (ni,nh) denotes a nonlinear autoregressive
neural network with ni inputs and nh outputs. Such a model
can be described algebraically as

Y, = F(Yi_1,Yi_a,...) +¢€ (13)

where Y; is the variable of interest, and ¢ is the error term.
We can then use this model to predict the value of Y; .
Dynamic Model Selection: Statistical methods and neural
networks are commonly used for time series prediction. While
ARIMA are good at modeling linear, dynamic signals, NAR-
NET are reliable for modeling nonlinear, dynamic and chaotic.
For a period of time, the time series {Y;_p,Yi—pt1,...,Y:}
may appear to conform to the assumption of one model.
Therefore, instead of applying one model only, it would be
better for us to make use of both models to better predict the
workload profile. Another reason for use to select not a use

100 ’ 1200

M \‘\ I \"

I !
WM il H“

\" | (\W[
‘\ | WY(|

Disk 10 Rate (MB)

CPU Utilization (%)

) 5 10 15 20) 5 10
Time (hours)

Fig. 3. Raw Data of CPU Utility

a single model is that it is pretty difficult to determine the
parameter. For instance, different number of hidden layer nh
can greatly influence the prediction accuracy.

We use the mean square predication error over a period T},

t
1
MSEf(t,T,) = =— > (ERRORy(i))’
P i=t—Tp+1

(14)

with ERROR ¢ (7) denote the error at time unit ¢ as fitness metric
for each method f at time ¢ during period [t — T}, t].

Then we will choose the predicted value of model f among
models of different parameters and methods with the minimum
MSE((t,T,). For example, consider the case of four predic-
tors, two of them are ARIMA model, ARIMA(p1,d;1,q1)
and ARIMA (pa,ds, g2) respectively, and two are NARNET
model, NARNET (niy, nh1), NARNET (nia, nhs). To simpli-
fy the discussion, we use one-step-ahead prediction instead
of k-step-ahead prediciton. We will take past 7) data as
inputs to these four models and we will get T-seconds-ahead
(one-step-ahead) predictions of each server’s work portfolio.
We will calculate the minimum value of MSE(¢t,T,) of
each model f. Suppose ARIMA (ps, da, g2) have the minimum
MSE(t,T,), then we will use it as the predicted value.

C. Alert Scheme

After making the T-seconds-ahead predictions of each serv-
er’s work load we will describe how to use the workload
profile of m - to give an alert to the delegation node indicating
that it is in serlous condition.

The seriousness of the condition can be evaluated using the
following equation:

max(WF) if 3z € WE(z > THRESHOLD
ALERTF, = (W35) . u),
& 0 otherwise.
After mj; generated its ALERTf;, mj; can wait v; for

further commands. v; will periodically collect alerts from its
neighbor nodes and use these alerts to decide VMMIGRATION
or FLOWREROUTE process. Details will be discussed in
Sec. V-B.

V. ALERT-MIGRATION ALGORITHM

A. Centralized Alert-Migration Algorithm

Since the conditions and conclusions in VMMIGRATION
problem are similar to the very famous problem the k-median
to some extent, we can use some steps to transform the
VMMIGRATION problem into a typical k-median problem.

Time (hours)

Fig. 4. Raw Data Of Disk I/O Rate

15 20 3 4 5 6
Time (days)

Raw Data of Weekly Traffic

Fig. 5.

As a result, we not only prove that this problem is NP-
hard, but give the newest k-median approximate algorithm and
approximate ratio. Next we will transform VMMIGRATION
problem into k-median problem.

1) Simplification: Consider the cost function we get before,

= Cr+CaD(e)x;+ Y _ (0T (e)+nP(e)). (15)
e€P(vi,vp)

Cost(v;, vp)

We can easily find that C, is a constant so we just need to
consider CyD(e)x7, and 3_ ¢ p(,, o) (0T(e)+nP(e)). Then
we want to explain that dependent cost is only a function
of v; and v, transmission cost is a function of v;, v, and
the edges between them. In other words, actually we can
define functions f(v;,vp) = CqD(e)xj, and g(vi, vp, eip) =

, 0T (e) + nP(e)), in which e;, are the edges
e e e Then, p

Cost(v;,vp) = Cr + f(vi,vp) + g(vi, Up, €ip)- (16)

Apparently, VMMIGRATION problem is all about the source
and the destination of VM migration, involving only v;, v, and
the edges between them (noted as e;p). In the other words,
transmission cost can be written as g(v;, vp, €;,). Now we are
trying to explain that the dependent cost is independent of the

choice of path from the source to the destination. Since

1 i (v, vp) €G,
Xip =\ 0 otherwise.

and G, = G,[Nj(vi)] \ G-[N%(v;)], for the fixed v; and v,
the G, [N} (v;)] and G,.[N¥(v,)] are fixed. Further more, G, is
fixed and finally CyD(e)x}, is fixed. So we can use f(v;,vp)
to express the dependent cost. Till now we have proved the
Eqn. (18)

a7

2) Transformation: The next step is using efficient algorith-
m to transform g(v;, vp, €;p) into G(v;, vy). This means we can
always choose a path that needs the smallest cost for two fixed
v; and v,,. First we construct a graph 7" whose vertices are all
racks. All wired connections are the edges in 7. Also every
edge has a cost. Our aim is to find the best path between any
two racks. This is a all pair shortest path problem. Since in
T there are much more edges than vertices, we choose Floyd-
Warshall algorithm. The time complexity is O(n?). So use this
algorithm we finally get

Cost(vi,vp) = Cr + f(v;,vp) + G(v4,0p). (18)

674

To make it more clear, we can conclude that the cost between
any two racks in T is just Cost(v;, vp) and it do not dependent
on the path between v; and v),.

The last step is to explain the VMMIGRATION problem as
a k-median problem with what we have done above. Let C' be
the source ToRs and F' be all the ToRs. The aim is to find a
subset I of F, and connect every racks in C' with I with the
smallest cost. Apparently between every pair of racks there
exists a cost, how to connect them is a k-median problem.

As for k-median problem, there is a constant ratio algorithm
from [29] with a ratio 3 + €. Further more, [30] find that the
ratio can not be better than 1 + 2/c. All in all, we can solve
the VMMIGRATION problem by this method.

B. Distributed Alert-Migration Algorithm

The distributed Alert-Migration algorithm has five subrou-
tines. Note that each v; runs a copy of algorithm locally.

Alg. 1 is the framework routine processing alerts and
deciding which actions to take according to the type of alerts.
We run it periodically every T time. At the beginning of
each round, v; collects alerts from its dominating region, use
priority function in Alg. 2 to select a group of candidate VMs,
then migrate some VMs in Mg set by VMMIGRATION (Alg. 3
and Alg. 4). We present «, § as different portion of capacity
for migration since it is not necessary to migrate all VM’s.

Algorithm 1: Pre-Alert Management Procedure
Input: Alert set A.
Output: Flow rerouting set M’; VM migration set M},
1 M} =g, My =&, ALERT_TOR = &
2 while A # @ do
3 Pick ALERT,. € A;
4 switch ALERT, do

5 case ALERT, from s;
/I Compute congestion alert from outer switch s
6 F = {m}; | 3 flows out from mf; € h;; €

v; passing through s;}
i = M’ UPRIORITY(F,)

7 case ALERT, from local ToR
8 | ALERT_TOR = ALERT_TOR | J{ALERT, }
9 case ALERT, from h;;
/I Receive overload alert from host h;; € v;
10 F = {m}; | mf; € hi};
1 Mi = M UPRIORITY(F, 1)

2| A_: A\{ALERT, }

13 if ALERT_TOR # & then
/I Detect congestion alert from v;’s local ToR

14 F = {7%57 | mfj S hij,Vhij S ’117;}
| M} = M UPRIORITY(F, f3)

5 VMMIGRATION(M,) :

—

/I Apply VM migration

Alg. 2 is a selection subroutine. To relieve the overload and
congestion problem, we need to move a portion of VM’s from
the candidate list with v and 3 as the satisfaction parameters.

The standard of selection is: firstly remove delay-sensitive
flows, and then select the VM’s with lowest value but largest
size. We mimic a dynamic Knapsack algorithm by taking
allowed capacity as knapsack size and picking up as many
VM’s with lowest value as possible. For convenience, we set
Mbps as the minimum capacity unit. Specifically, if the priority
parameter is one, we only pick one VM with the highest
ALERT to ensure load balancing at the end host side.

Algorithm 2: PRIORITY Function
Input: Set of VMs F = {m/;}, Priority factor w
Output: Set of selected VMs VM

1 Eliminate delay-sensitive VMs from JF
2 switch w do

3 case «, (3

4 if w=a then C = o - s;.capacity

5 if w=43 then C = (- ToR;.capacity

6 d[0...C] =LARGE NUMBER

7 V[0...Cl=92

8 foreach m € F do

9 d[m.capacity] = m.value

10 V[m.capacity] = {m}

11 for i =1 to |F| do

12 for j = F;.capacity to C do

13 if d[j — Fi.capacity] + F;.value < d[j]
then

14 d[j] = d|j — F;.capacity] + F;.value

15 V[j] = V[j — Fi.capacity] | J{F:}

16 VM =V[(C]

17 case 1

18 | m=VM € F with max ALERT, VM = {m}

Alg. 3 schedules VM migration process. It generates all
possible new location 7 for candidate VM set F and connect
them with edges with cost as its weight. We apply Minimal
Weighted Matching with time complexity O(n®) to get the
optimal pairs, such as Kuhn-Munkres algorithm (KM) with
relaxation [31]. To avoid conflictions, a node can be migrated
to another place only when the destination’s delegation node
accepts the migration request. Otherwise it rejects the request
and v; should recalculate possible migration destinations.

Correspondingly, Alg. 4 deals with receiver conflictions.
Once a server accepts a VM migration request by FCFS rule, it
will reply an ACK message, otherwise it will reject the request
and send a REJECT message.

All in all, Alg. 1 to Alg.4 form the whole management
process for a delegated manager under different circumstance.

VI. EVALUATIONS

In this section, we present the evaluation of Sheriff in three
parts: first we use the data from real-world data center to
verify our pre-alert system; second, we simulate distributed
VMs migration algorithms, and compare the performance with

675

Algorithm 3: VMMIRGRATION

Input: Set of VMs F = {m},
Output: VM migration solution

T = Available VMs of v, € N,.|J N,
while F # @ do

E, =@

foreach mf”] € F do

\\ foreach m;, < T do

A A W N -

| Em=Em U{(m};, mp,, Cost(vi, v,))}

Construct G,,, = (FUT, En)
8 L = MinimalWeightedMatching(G,);
9 foreach mf‘] € F do

2

d (mk
10 Find (mj;,my,) € £
1 if REQUEST(mj;, m},,) =ACK then
12 Migrate mfj to my,
13 F = F\{mj;

Algorithm 4: REQUEST Action

Input: mg,, m;

Output: ACK,p}gEJECT
1 if 4 = p then
2 if hpq.capacity > m¢,.capacity then
3 hpq-capacity = hpq.capacity — m¢,.capacity;
4 reply ACKS,;;
5 else /I hpy does not have enough capacity
6 | reply REJECTS,;
7 else /I v; is not the candidate delegation

8 | ignore REQUEST message

global optimal performance; finally we will theoretically prove
the accuracy and efficiency of Sheriff.

A. Network Traces Training

In this research, we use the data obtained from a local data
center service provider ZopleCloud Corp. We collect weekly
traffic of a switch, CPU utilization rate of a VM, and the disk
1/0O speed. Fig. 3-5 exhibits the original data. As shown in
Fig. 5, the weekly traffic have its peaks and troughs regularly
and by using Box-Jenkins method, we can see that classical
time series model ARIMA can be a candidate solution.

We use half of the data for training to calculate the parame-
ters of ARIMA(L, 1,1) model via MATLAB and use another
half as the test set. The training and test results are shown in
Fig. 6. Similarly, we find that the model performs well.

However, classical ARIMA method mainly works for linear
data, when confronted with nonlinear data, NARNET with
20 hidden layers, outperforms ARIMA. Thus we will use
NARNET to further explore the ability of our prediction.
Fig. 7 shows its ability in predicting the future, we use 70%
of the dataset to train the model and the other 30% to test
it. The prediction error is also very small and we can hardly
recognize the difference.

Because a dataset may contain both linear data and non-
linear data, we suggest to use this combined model to better
predict the future trend. The result is shown in Fig. 8 with a
smaller minimum square error.

B. Simulation For VMs Migration

We take Fat-Tree with different numbers of pods (from 8 to
48) as the topology for testing. And we assume that five per-
cent of virtual machines in each pod raise alerts for migration.
As mentioned in SECTION V, we solve the VMMIGRATION
problem by turning it into a k-median problem and the k-
median problem can be efficiently dealt with Alg. 5.

Some initial settings are applied to the simulation. C, is set
to 100 which is a constant. Both § and n are set to 1. The
available bandwidth between core switches and aggregation
switches is set to 10 meanwhile the available bandwidth
between aggregation switches and ToRs is set to 1 according
to the fat tree structure. Cy is set to 1 which means the unit
cost per distance in G4. The V M capacity is set up to value
20.

Another network model we use to do the simulation is
Bcube. Here we change the number of the switches each level
of Bcube have from 8 to 48. Most initial settings are the same
as they are in the simulation on Fat-Tree.

As shown in Fig. 9 and Fig. 10, we can find out that
the standard deviation of the workload percentages of all the
servers in the network keeps going down both for Fat-Tree
and Bcube, which means that our VM migration algorithm
makes sense, and the workload becomes more and more
balancing. The algorithm helps increase the utilization rate
of the network.

451 Workload Percentages —s— asr Workload Percentages —s—
40 40

3(]"\(’*\

= =

2 2

Z k]

5z 30 3

8 s 2 s N

=] 2 N“"‘-N

5 5 2 T
s » ElE

AT al 2 0

005 4 6 8 101214 16 1820 22 24 0 2 4 6 8 101214 16 18 20 22 24

VMs Migration Times on Fat-Tree 'VMs Migration Times on Beube

Fig. 9. Sheriff on Fat-Tree Fig. 10. Sheriff on Bcube

We simulate our Sheriff and a global (centralized) optimal
manager. The result of Fat-Tree is shown in Fig. 11 and the
result of Bcube is shown in Fig. 13. It shows that our regional
distributed Sheriff performs quite well even compared to a
centralized optimal manager in these two common models.

We also measure the searching space for matching possible
candidate virtual machines and source virtual machines (which
to be migrated). As shown in Fig. 12 and Fig. 14, the searching
space of regional Sheriff is much smaller than a centralized
manager, which takes all hosts into consideration. Thus, Sher-
iff performs much faster than the centralized manager both for
Fat-Tree and Bcube.

676

Traffic (MB)

Performance of ARIMA Model in Predicting the Traffic of Switch
T

" original Data -
Predicted Value ——
Bias

Performance of Neural Network Model

Performance of Combined Model in Predicting the Traffic of Switch
100 T T T T T T

Toriginal Data '

Original Data -
g

Predicted Value o

Traffic (MB)

il TARIMA — +
Training Outpul —+— b Predicted Value of NARNET
Test Output —— | 4! N Bias

-

Traffic (MB)

200

300

L i i
200 400 450

i
450

L i i
250 300 400

350 400 450 0
s o Prediction Error & 0 Prediction Error Prediction Error
% :5%_‘71,, S S O RV RS S Bl PP {,i E; zgt“ B TR PSR VOV U P 4,,,1 T e
= g - ; ; ‘ ‘ . . ; Error . X X X i i
Time Unit Time Unit Time Unit
Fig. 6. Training Result for ARIMA Fig. 7. Training Result for Neural Network Fig. 8. Training Result for the Combination
2000 T T T . . .
5000 | [olobal Optimal Conralized Manager = Till now, we have find a destination ToRs set and a smallest
ssono L Sheriff ~e~ Sl Sheriff -+ cost. Therefore, the total approximation ratio of Alg. 3 is 3—1—%
; g)
5 1200 y 2, 1200 and the time complexity is O(n3*?).
© 9000 Z s
6000 > 3 / VII. RELATED WORK
Z 400
3000 e .
""0 g //] The related researches on DCN can be categoried as follows:
5710 15 20 25 30 35 40 45 50 0 0N e 18 20 sabione R ;
Number of Pods £ in Fat Tres Notmber of Pods £ in Eut Tree Network performance predl‘ctlon. Rich WO]k.l [33], [34.1]
proposed Network Weather Service(NWS) to provide dynamic
)) short-time resource performance forecasts in metacomputing
Fig. 11. Output: APP vs OPT Fig. 12. Search Space Compare . , .. .
environments. Bey-Beghdad’s prediction model is based on
36000 L. 56000 the control of multiple Local Adaptive Network-based Fuzzy
Global Optimal —e— g 49000 | Centralized Manager —e— al .
30000 et e ool et e] Inference Systems Predictors. [35].
A y & 35000 VM migration: Clark et al. [17] presented the design,
g 2h
g 180 , g implementation and evaluation of high-performance OS migra-
12000 » d 2 Lm0 tion built on top of the Xen virtual machine monitor. Nelson et
6000 ¥
‘ ey 7000 » al. [36] proposed a fast and transparent application migration
0 TR
5 1015 20 25 30 35 40 45 50 20468 10 1214 06 18 20 system. Ye et al. [37] compared the live migration efficiency
Bcube with each level having k switches Bcube with each level having & switches . . .
with different resource reservation approaches and proposed
corresponding optimization methods.
Fig. 13. Output: APP vs OPT Fig. 14. Search Space Compare

C. Approximation Ratio

In this section, we will think about the approximation ratio
of Alg. 3. At first we have a graph 7' with all ToRs as its
vertices. And the edges are the cost of the connections between
ToRs both in real wire way. These means 7' is a graph with
multiply edges. By applying Floyd, we can get a new graph
T’ as a complete one and without multiply edges. According
to [32], the precise algorithm has time complexity O(n?).

Then according to our proof before, it is a k-median problem
now. The Local Search [29] algorithm (Alg. 5) performs best
in solving k-median problem. It has an approximation ratio
3+ % with time complexity O(n?).

Algorithm 5: LOCAL SEARCH ALGORITHM
Input: The number of destination ToRs m, edge costs,
size of local change p
Output: Optimal solution of m ToRs

1 S +— an arbitrary feasible solution of m ToRs.

2 while 35’ € B(S) such that cost(S’) < cost(S) and S’
can be got by change p ToRs in S do

3| S ¢

4 return S

Distributed controllers: Shieh et al. [38] proposed Seawall,
a network bandwidth allocation scheme based distributed
controller which gives a weight for each entity (VM, process,
etc.) and guarantees the allocated bandwidth of the entity
is proportional to its weight. In [10], [11], [15], researchers
investigated the use of multiple independent devolved con-
trollers that manages a part of the network only to solve
the scalability problem of networking instead of a single
centralized controller.

VIII. CONCLUSION

In this paper we design a fast distributed pre-alert manage-
ment scheme Sheriff in data center network, which can domi-
nate its local region by one hop wired neighbors. Sheriff will
monitor the change of local VM’s and predict possible ALERT
situation. It then applies FLOWREROUTE or VMMIGRATION
for portion of selected VM’s to balance the traffic and
workload. Since each local manager adjusts network traffic
locally, they need to communicate between each other to avoid
conflictions. We examine the prediction accuracy of Sheriff
by network traces from a local data center service provider;
illustrate the management efficiency by simulation on Fat-
Tree and Bcube topologies; and prove that VMMIGRATION
is a approximation with ratio 3 + 2, where p is the size
of local change in Local Search Algorithm. Both numerical
experiments and theoretical analysis validate the efficiency of

677

Sheriff. It is the first attempt to manage DCN comprehensively
by local managers.

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
USENIX Symposium on Networked Systems Design and Implementation
(USENIX NSDI), San Jose, USA, 2010, pp. 281-296.

C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better Never
than Late: Meeting Deadlines in Datacenter Networks,” in ACM In-
ternational Conference on the applications, technologies, architectures,
and protocols for computer communication (ACM SIGCOMM), Toronto,
Canada, 2011, pp. 50-61.

A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable
and Flexible Data Center Network,” in ACM International Conference on
the applications, technologies, architectures, and protocols for computer
communication (ACM SIGCOMM), Barcelona, Spain, 2009.

R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A Scalable Fault-
Tolerant Layer 2 Data Center Network Fabric,” in ACM International
Conference on the applications, technologies, architectures, and proto-
cols for computer communication (ACM SIGCOMM), Barcelona, Spain,
2009, pp. 39-50.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving Energy in Data
Center Networks,” in USENIX Symposium on Networked Systems Design
and Implementation (USENIX NSDI), San Jose, USA, 2010.

T. Benson, A. Akellaand, and D. A. Maltz, “Network Traffic Charac-
teristics of Data Centers in the Wild,” in ACM Internet Measurement
Conference (ACM IMC), Melbourne, Australia, 2010, pp. 267-280.

D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Aug-
menting Data Center Networks with Multi-Gigabit Wireless Links,” in
ACM International Conference on the applications, technologies, archi-
tectures, and protocols for computer communication (ACM SIGCOMM),
Toronto, Canada, 2011, pp. 38—49.

A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-Overhead
Datacenter Traffic Management using End-Host-Based Elephant Detec-
tion,” in IEEE International Conference on Computer Communications
(IEEE INFOCOM), Shanghai, China, 2011, pp. 1629-1637.

A. Curtis, T. Carpenter, M. Elsheikh, A. Lopez-Ortiz, and S. Keshav,
“REWIRE: An Optimization-Based Framework for Unstructured Data
Center Network Design,” in IEEE International Conference on Comput-
er Communications (IEEE INFOCOM), Orlando, USA, 2012.

A. S.-W. Tam, K. Xi, and H. J. Chao, “Use of Devolved Controllers in
Data Center Networks,” in IEEE International Conference on Computer
Communications (IEEE INFOCOM), Shanghai, China, pp. 596-601.
A.-W. Tam, K. Xi, and H. J. Chao, “Scalability and resilience in data
center networks: Dynamic flow reroute as an example,” in /EEE Global
Telecommunications Conference (IEEE GLOBECOM), 2011, pp. 1-6.
A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in USENIX Proceedings of the 2010 internet network
management conference on Research on enterprise networking (USENIX
INM/WREN), 2010, pp. 3-3.

C. A. Macapuna, C. E. Rothenberg, and M. F. Magalhaes, “In-packet
bloom filter based data center networking with distributed openflow
controllers,” in IEEE Global Telecommunications Conference (IEEE
GLOBECOM), 2010, pp. 584-588.

A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (ACM SIG-
COMM HotSDN), vol. 43, no. 4, 2013, pp. 7-12.

W. Liang, X. Gao, F. Wu, G. Chen, and W. Wei, “Balancing traffic
load for devolved controllers in data center networks,” in IEEE Global
Communications Conference (GLOBECOM), 2014, pp. 2258-2263.
Open Networking Lab, “http://onosproject.org/,” Feb.10th, 2015.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, 1. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in USENIX
Symposium on Networked Systems Design and Implementation (USENIX
NSDI), Boston,USA, 2005, pp. 273-286.

V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and
S. Banerjee, “Application-aware Virtual Machine Migration in Data Cen-
ters,” in IEEE International Conference on Computer Communications
(IEEE INFOCOM), Shanghai, China, 2011, pp. 66-70.

678

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

F. Tso, K. Oikonomou, E. Kavvadia, and D. Pezaros, “Scalable traffic
aware virtual machine management for cloud data centers,” IEEE Inter-
national Conference on Distributed Computing Systems (IEEE ICDCS),
pp- 238-247, 2014.

B. Cao, G. Xiaofeng, C. Guihai, and J. Yaohui, “Nice: Network-aware
vm consolidation scheme for energy conservation in data centers,” in
IEEE International Conference on Parallel and Distributed Systems
(IEEE ICPADS), 2014.

M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, B. Prab-
hakar, and M.Seaman, “Data Center Transport Mechanisms: Congestion
Control Theory and IEEE Standardization,” in Allerton Conference on
Communication, Control, and Computing, Illinois, USA, 2008.

A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “AF-
QCN: Approximate Fairness with Quantized Congestion Notification for
Multi-tenanted Data Centers,” in IEEE Annual Symposium on High-
Performance Interconnects (IEEE HOTI), Stanford, USA, 2010.

Y. Hayashi, H. Itsumi, and M. Yamamoto, “Improving Fairness of
Quantized Congestion Notification for Data Center Ethernet Networks,”
in IEEE International Conference on Distributed Computing Systems
(IEEE ICDCS), Minneapolis, USA, 2011, pp. 20-25.

N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
Datacenter Bulk Transfers with NetStitcher,” in ACM International
Conference on the applications, technologies, architectures, and proto-
cols for computer communication (ACM SIGCOMM), Toronto, Canada,
2011, pp. 74-85.

W. Wei, X. Wei, T. Chen, X. Gao, and G. Chen, “Dynamic correlative
vm placement for quality-assured cloud service,” in IEEE International
Conference on Communications (IEEE ICC), 2013, pp. 2573-2577.

S. Kandula, J. Padhye, and P. Bahl, “Flyways To De-Congest Data
Center Networks,” in ACM Workshop on Hot Topics in Networks (ACM
HotNets), New York, USA, 2009, pp. 1-6.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity Da-
ta Center Network Architecture,” in ACM International Conference on
the applications, technologies, architectures, and protocols for computer
communication (ACM SIGCOMM), Seattle, USA, 2008, pp. 63-74.

Y. Zhang and N. Ansari, “On Mitigating TCP Incast in Data Center
Networks,” in IEEE International Conference on Computer Communi-
cations (IEEE INFOCOM), Shanghai, China, 2011, pp. 51-55.

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and
V. Pandit, “Local search heuristics for k-median and facility location
problems,” SIAM Journal on Computing (SIAM SICOMP), vol. 33, no. 3,
pp. 544-562, 2004.

K. Jain, M. Mahdian, and A. Saberi, “A new greedy approach for facility
location problems,” in ACM Symposium on Theory of computing (ACM
STOC), 2002, pp. 731-740.

J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of ACM, vol. 19, no. 2,
pp. 248-264, 1972.

R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345.

R. Wolski, “Dynamically forecasting network performance using the
Network Weather Service,” Cluster Computing, pp. 119-132, 1998.

R. Wolski, N. T. Spring, and J. Hayes, “The network weather service:
a distributed resource performance forecasting service for metacomput-
ing,” Future Generation Computer Systems, vol. 15, pp. 757-768, 1999.
K. Bey-Beghdad, F. Benhammadi, Z. Guessoum, and A. Mokhtari,
“CPU load prediction using neuro-fuzzy and bayesian inferences,”
Neurocomputing, vol. 74, pp. 1606—-1616, 2011.

M. Nelson, B. hong Lim, and G. Hutchins, “Fast Transparent Migra-
tion for Virtual Machines,” in USENIX Annual Technical Conference
(USENIX ATC), Anaheim,USA, 2005, pp. 391-394.

K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live Migration
of Multiple Virtual Machines with Resource Reservation in Cloud
Computing Environments,” in IEEE International Conference on Cloud
Computing (IEEE CLOUD), Washington DC, USA, 2011, pp. 267-274.
A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
Data Center Network,” in USENIX Symposium on Networked Systems
Design and Implementation (USENIX NSDI), Boston,USA, 2011.

