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Abstract—Participatory sensing has become a novel and
promising paradigm in environmental data collection. However,
the issue of data quality has not been carefully addressed. Low
quality data contributions may undermine the effectiveness and
prospects of participatory sensing, and thus motivates the need
for approaches to guarantee the high quality of the contributed
data. In this paper, we integrate quality estimation and monetary
incentive, and propose a quality-based surplus sharing method
for participatory sensing. Specifically, we design an unsupervised
learning approach to quantify the users’ data qualities and long-
term reputations, and exploit an outlier detection technique to
filter out anomalous data items. Furthermore, we model the
process of surplus sharing as a cooperative game, and propose a
Shapley value-based method to determine each user’s payment.
We have conducted a participatory sensing experiment, and
the experiment results show that our approach achieves good
performance in terms of both quality estimation and surplus
sharing.

I. INTRODUCTION

The rapid proliferation of smartphones has brought us

an efficient and pervasive way to collect large amounts of

data. On one hand, smartphones are becoming increasingly

indispensable in people’s daily life, not only in communication

and social interaction, but also in sports, health, business,

and navigation. On the other hand, most of the smartphones

are programmable and embedded with various kinds of sen-

sors, e.g., microphone, GPS, compass, accelerometer, and

gyroscope. By designing specific smartphone applications, we

can monitor users’ surrounding environment and infer human

activities. Particularly, participatory sensing [1]–[3], raised in

recent years, utilizes mobile devices to gather, analyze, and

share their local information, e.g., noise, pollution, and traffic

information. It has been applied to various scenarios, including

localization [4]–[7], indoor floorplan construction [8], [9],

environmental monitoring [10], transportation and navigation

[11]–[15], and photo transmission [16].
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Fig. 1. Participatory Sensing Architecture

A typical participatory sensing architecture, as shown in

Fig. 1, consists of three major components: a cloud platform,

mobile device users, and service requesters. After releasing a

sensing campaign, the platform asks part of the mobile device

users to perform sensing tasks, i.e., to use their mobile devices

to collect specific local information and send sensing readings

back to the platform. Based on the collected sensing data, the

platform gets a global view of the users’ local knowledge and

thus can provide certain information to the service requesters.

For instance, the platform asks the mobile phone users to

report their local traffic conditions. After processing and

analyzing the users’ reports, the platform can provide drivers

with real-time traffic status, as well as congestion forecast.

Despite the novelty and potential of participatory sensing,

it has exposed two critical problems. One of the problems

lies on the great differences among the qualities of the users’

contributed data. Since different brands of mobile devices are

produced by different manufactures and are assembled with

diverse series of sensors, they usually have heterogeneous

sensing capabilities, resulting in varying data qualities. Besides

the factors of devices, human behaviors, which are more com-

plicated and less likely to be predicted, could also influence

the data qualities. For example, some users are obedient and

strictly follow the platform’s instructions, while some users

may deliberately contribute low quality data for their own sake.

Some careless users may inadvertently contribute erroneous

data by taking incorrect measurement approaches, such as

putting a phone in the pocket while being asked to collect

noise information. Thus, simply adopting all the contributed

data can be misleading. It is of great necessity to estimate the

users’ data qualities, to filter out anomalous data items, and

also to characterize the users’ sensing behaviors.
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The other problem is how to incentivize the users to contin-

uously participate in the sensing campaign. Since performing

sensing tasks requires the mobile device users to devote their

time, battery consumption, storage spaces, and computation

resources, rational users, who only consider their own benefits,

may not be willing to participate in the sensing campaign

without proper compensation. To motivate the users’ willing-

ness on participation, the platform usually rewards each user

with a certain amount of payment. Most of the existing works

determine the users’ payments by adopting a reverse auction

model. In the auction, each user submits her self-claimed cost

as her bid. Then the platform selects part of the users to

perform sensing tasks and rewards each selected user with a

payment no less than her bid [17]–[20]. However, these reverse

auction-based methods suffer from several critical limitations

in practice. First, it is infeasible to determine a user’s cost

for participating in a sensing campaign, since her devotion,

e.g., battery consumption [21], cannot be precisely quantified

by existing approaches. Second, since the users’ self-claimed

costs cannot reflect their qualities of contributions in a sensing

campaign, determining the users’ payments based solely on

their bids may leaves users with chances to provide low or no

effort, commonly known as “free-riding” [22]. Third, without

quality regulation, collected data may suffer from uneven

levels of qualities, which prevents the platform from providing

reliable services to requesters and thus diminishes the utility

of the platform.

With the objectives of regulating data quality and motivating

the users’ participation, a quality-based payment determination

scheme is badly needed. To the best of our knowledge, none

of the existing works take both monetary incentive and data

quality into consideration. A number of researchers [17]–

[20], [22]–[24] studied the incentive problems in participatory

sensing, but did not provide a way to measure the data quality.

Although Wang et al. [16] and Huang et al. [25] preliminarily

investigated the issues of data quality, they did not consider

the important part of monetary incentives.

In this paper, we jointly consider the problems of quality

estimation and monetary incentives, and propose a quality-

based surplus sharing method, which mainly consists of two

parts: (i) quality estimation module and (ii) surplus sharing
module. In the quality estimation module, we present an

unsupervised learning technique to estimate the users’ data

qualities and characterize their long-term reputations. To im-

prove the accuracy of data analysis, we also detect and filter

out anomalous users, whose sensory readings are far away

from the group consensus. To determine the users’ payments,

we model the process of surplus sharing as a cooperative game,

where the total surplus earned by the platform is based on the

users’ contributions. We adopt the concept of the celebrated

Shapley value [26], [27] to calculate each user’s surplus

share. To tackle the problem of infeasibility in calculating the

Shapley values, we propose an approximate Shapley value cal-

culation algorithm. We show that the proposed surplus sharing

scheme exhibits several desirable properties that indicate that

a user’s payment is proportional to her contribution to the

sensing campaign. We also conduct an experiment to evaluate

our proposed method. Our major contributions are listed as

follows.

• First, we propose an unsupervised learning method to

quantify the users’ data qualities, and to characterize

their long-term reputations based on their quality records.

We also apply an outlier detection technique to improve

platform’s estimation accuracy.

• Second, we model the process of surplus sharing as a

cooperative game, and discuss several desirable properties

in designing a surplus sharing scheme. We propose a

Shapley value-based surplus sharing method that satisfies

our design requirements. We also present an approximate

Shapley value calculation algorithm to reduce the com-

putation complexity.

• Third, we have conducted a noise monitoring experiment

for more than 12 hours, and collected over 450,000

data items. Our experiment results show that our method

achieves good performance in both quality estimation and

surplus sharing.

The rest of the paper is organized as follows. We first briefly

review related work in Section II. In Section III, we present

our system model. The quality estimation module and the

surplus sharing model are presented in Section IV and Section

V, respectively. In Section VI, we conduct an experiment and

evaluate our proposed method. Finally, we conclude this paper

in Section VII.

II. RELATED WORK

The concept of participatory sensing was initialized by

Burke et al. [1], after which a good number of researchers have

studied various applications of participatory sensing. Azizyan

et al. [4] proposed a logical localization technique based on

ambient fingerprintings, e.g., optical, acoustic, and motion

attributes. LiFS [5], Zee [6], and FreeLoc [7] are three differ-

ent physical indoor localization methods that deploy mobile

devices to track the indoor environment. CrowdInside [8] and

Jigsaw [9] both leverage smartphone sensors to automatically

construct indoor floor plan. PEIR [10] is a participatory

sensing application that calculates personalized estimates of

environmental impact and exposure based on data collected

from mobile phones. SmartPhoto [16] is a smartphone-based

resource-aware crowdsourcing approach for image sensing.

Besides, participatory sensing has also been applied to traffic

and navigation, e.g., estimating traffic delay [11], finding the

most fuel-efficient routes for vehicles [12], predicting bus

arrival time [13], finding on-street parking spaces [14], and

automatically updating road maps [15].

Participatory sensing has also been intensively studied from

the theoretical perspectives, especially based on the market

model, where users are modeled as rational and are only

interested in maximizing their own benefits. Lee and Hoh

[17] studied the user participation problem and proposed

an incentive mechanism to minimize incentive cost, while

maintaining an adequate number of participants. Later, Jaimes

et al. [23] extended Lee and Hoh’s work to a location-based
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scenario with budget constraint. Yang et al. [18] considered

both the platform-centric model and the user-centric model,

and provided incentive mechanisms for them respectively.

Koutsopoulos [19] modeled the participatory sensing as a

reverse auction, and studied the design of optimal frugal

mechanism. Zhao et al. [20] studied the online task allocation

in participatory sensing with budget constraint. The most

closely related works to ours are [22] and [25]. Zhang and

van der Schaar [22] proposed a reputation-based protocol to

incentivize users to contribute high level of effort, but they

simply assumed that the users’ behaviors could be classified

into binary sets (i.e., good or bad) and did not provide any

method to measure the qualities of the users’ contributions.

Huang et al. [25] proposed a quality and reputation framework

for noise monitoring, but they neither eliminated anomalous

users nor considered the monetary incentives.

Outlier detection [28], which has been widely studied in the

field of data mining, has also been applied to sensor network

to detect faulty nodes and improve sensing accuracy [29], [30].

It can be mainly classified into model-based and consensus-

based. A model-based outlier detection technique requires

prior knowledge of the data distribution and tends to detect

data instances that deviate from the expectation. Whereas,

the consensus-based protocols measure the confidence of data

instances based on the group consensus and thus do not need

additional data models. The consensus-based approaches can

be further classified into distance-based [31] and density-

based [32], depending on which consistency metric (distance

or density) is used. In this paper, we apply a distance-based

outlier detection technique [31] to detect anomalous users.

Shapley value [26], [27] is a powerful tool for surplus

sharing in cooperative games, where multiple players coop-

erate with each other to generate a surplus and the problem

is to determines each player’s surplus share. It has been

applied to various scenarios. Misra et al. [33] studied the

incentive problem in peer-to-peer scenario and proposed a fluid

Shapley value approach to guarantee that each peer receives

a payment proportional to its contribution. Narayanam and

Narahari applied Shapley value to discover influential nodes

in social networks [34]. Ma et al. [35] studied the profit

sharing in ISP settlement, and presented a sharing mechanism

based on Shapley value. Dong et al. [21] modeled the energy

accounting as cooperative game, and provided a Shapley

value-based approach to determine the energy consumption

of each application in a smartphone.

III. SYSTEM OVERVIEW

In this section, we present an overview of our proposed

participatory sensing architecture.

We consider a general participatory sensing scenario, where

the platform’s objective is to monitor an unknown environmen-

tal condition (e.g., noise, temperature, or traffic condition). To

this end, mobile device users are asked to gather and share

their local environmental information, which will be used by

the platform to generate its estimation of real environment.

Since the accuracy of the collected data may vary among
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Campaign Result Generation

Shapley Value Calculation

Mobile Devices
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Fig. 2. System Overview

users, it is of great necessity to quantify the users’ data quality,

s.t., the users’ contributed data will be treated differentially in

producing the campaign estimation. Furthermore, the users’

payments will be determined based on their data qualities.

We note that the environmental conditions may differ a-

mong distinct locations and moments. For example, the traffic

conditions at two different locations may not be the same

at the same time. Even at the same location, they may vary

among different moments. To tackle the spatial and temporal

inconsistencies, the participatory sensing campaign is divided

into tasks, each of which has its specified area and period

[23], [36]. The users are allowed to choose and participate in

their interested tasks. For clarity of illustration, we consider

the quality estimation and surplus sharing for one task in the

rest of the paper.

We assume that a task (e.g., noise monitoring in a specific

park) has K time slots with the same duration T . The set

of users within the region of the task is denoted by N =
{1, 2, . . . , n}. In each time slot k, 1 ≤ k ≤ K, each user

i ∈ N submits her sensing data xi,k to the platform, and is

rewarded with payment pi,k.

Fig. 2 shows the architecture of our proposed participatory

sensing system, which primarily consists of a quality estima-

tion module and a surplus sharing module. The quality esti-

mation module is adopted to quantify the users’ qualities and

reputations, to classify the users into normal or anomalous, and

to calculates the platform’s estimation of the real environment.

Based on the results from the quality estimation module, the

surplus sharing module applies the Shapley value to determine

the users’ payments.

In the quality estimation module, the platform utilizes an

unsupervised learning technique to estimates the users’ data

qualities Qk = {q1,k, . . . , qn,k} in each slot k without the

knowledge of the ground truth, where qi,k represents the

relative accuracy of the user i’s contributed data. Although

quality estimation can provide comparisons of the users’ data

in current slot, it neglects the users’ historical behaviors and

only presents a temporal view of the users’ data qualities. To

completely characterize the credibility of the users’ data, a

reputation component is introduced to aggregate each user i’s
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historical quality records to quantify her reputation Ri,k after

k slots. A high reputation score Ri,k means that user i has

been contributing high quality data in the past slots and thus

her data xi,k in current slot k is more likely to be accurate.

To improve the accuracy of our generated estimation, we

apply an outlier detection technique [31] to classify the users

into two sets, i.e., a set of normal users N
N
k and a set of

anomalous users NA
k , depending on whether one’s sensing data

is far away from the group consensus. The data contributed by

the anomalous users is considered to be faulty and thus should

be filtered out in the process of campaign result generation.

Finally, based on the results from reputation estimation and

outlier detection, we generate our real-time campaign result

x̄k, which is our estimation for environmental condition.

In the surplus sharing module, we determine each user’s

payment by modeling the campaign as a multi-player co-
operative game [37], i.e., players participate in a game and

the game generates a surplus which will be divided among

the players. We note that the term “cooperative” means that

players can influence the total generated surplus via both

cooperation and competition. In participatory sensing, the

game is the sensing campaign, the players are the mobile

device users, and the surplus is the platform’s profit from the

campaign. We assume that the platform’s profit is proportional

to the credibility of its generated campaign result, where the

credibility of campaign result is based on the credibility of

normal users NN
k . We analyze several desirable properties in

surplus sharing and propose a Shapley value-based method.

We show that the proposed method perfectly fits our design

requirements. To tackle the exponential complexity of Shapley

value computation, we further propose an efficient algorithm

to calculate the approximate Shapley value of each user.

We summarize the frequently used notations in Table I.

TABLE I
FREQUENTLY USED NOTATIONS

Notation Description

N, n Set of users and the number of users

S Subset of users

i, j User

K, k The number of slots and slot

T The duration of each slot

Xk, xi,k Data set and i’s data in slot k
Qk, qi,k Quality set and i’s quality in slot k
Ri,k User i’s reputation after slot k

N
N
k ,NA

k Normal users and anomalous users in slot k
wk Cluster centroid in slot k
x̄k Campaign result in slot k
pi,k The payment of i in slot k
v(S) The surplus generated by the set S of users

θi,k User i’s Shapley value in slot k

θ̂i,k User i’s approximate Shapley value in slot k
o, φ(S) One permutation and set of permutations of S

prei(o) User i’s predecessor in the permutation o

IV. QUALITY AND REPUTATION ESTIMATION

In this section, we present detailed designs of the quality

estimation module. This module takes raw sensing data from

the users as input, quantifies the users’ data qualities and

reputations, and then filters out anomalous data items. Finally,

the platform produces the campaign result, which is the

estimation of real physical environment.

A. Quality Estimation

In a time slot k, given the set of the users’ sensing data

Xk = {x1,k, . . . , xn,k}, the quality estimation component

calculates the users’ data qualities Qk = {q1,k, . . . , qn,k}.
Since the ground truth is not known, we rely on the observation

that the majority of users contribute reliable data, and utilize

the data aggregation with highest density as the criterion to

measure the users’ data qualities.

We treat the set of sensing data Xk as a cluster and denote

the distance between any two data items xi,k and xj,k by

dist(xi,k, xj,k). The distance measurement function dist(),
specified by the sensing platform, measures the similarity

between different data items. It could be their Euclidean

distance, cosine distance, or any other specified similarity

distance. A smaller distance usually indicates higher similarity,

and vice versa. We also define the centroid of the cluster,

denoted by wk, to be the data point that minimizes the sum of

weighted squared distances between wk and each user’s data.

wk = argmin
wk

n∑
i=1

(dist2(wk, xi,k)× qi,k). (1)

The quality of each user i’s data is measured based on its

deviation di,k from the cluster centroid, shown in Equation (2).

Intuitively, data with higher quality is in closer proximity to

the cluster centroid than lower quality ones, which results in

a smaller di,k.

di,k = dist2(wk, xi,k). (2)

Let λ be the sum of deviations, i.e., λ =
∑n

i=1 di,k. We

update qi,k using the fixed point iteration [25], [30] based on

the following equation:

qi,k =

1
di,k
λ +ε∑n

j=1
1

dj,k
λ +ε

, (3)

where ε is a small constant real number. The quality estimation

algorithm is presented in Algorithm 1. We note that qi,k is a

real number within (0, 1) and
∑n

i=1 qi,k = 1. Our algorithm

converges when each user’s quality variation between two

consecutive iterations is lower than a pre-defined threshold.

B. Reputation Estimation

After determining the users’ data qualities, we present here

the design of reputation estimation component, which utilizes

the users’ historical quality records to estimate their credibility

in a long-term view.

Our reputation estimation is based on the observation that a

person’s reputation in social situations tends to be built up

384383383383383383



Algorithm 1: Quality Estimation

Input: The collected data set Xk = {x1,k, . . . , xn,k}
Output: The users’ data qualities Qk = {q1,k, . . . , qn,k}

1 Initialize qi,k = 1/n, ∀i ∈ N ;

2 Calculate the cluster centroid wk using Equation (1) ;

3 Calculate di,k for every i ∈ N using Equation (2) ;

4 Update qi,k for every i ∈ N using Equation (3);

5 If the iteration has converged, return {qi,k}; Otherwise,

go back to Step 2.
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gradually after a number of honest behaviors, and can be

rapidly torn down after even a few dishonest behaviors [25].

Specifically, we adopt the celebrated logistic function to model

this behavior. The generalized logistic function, also known as

Richard’s curve [38], is formulated below:

Ri,k(q
′
i,k) = A+

B −A(
1 +De−F (q′i,k−M)

)1/h , (4)

where A is the lower asymptote, B is the upper asymptote,

D depends on the value Ri,k(0), F is the growth rate, M
determines the maximum growth, and h affects near which

asymptote maximum growth occurs. Fig. 3 shows an instance

of the logistic function with A = 0, B = 1, D = 1, F =
1,M = 1, and h = 1.

After each time slot k, we update the users’ reputations by

using the logistic function, whose output Ri,k(q
′
i,k) ∈ (0, 1),

is the user i’s updated reputation. The input parameter of the

logistic function q′i,k is calculated as follows:

q′i,k =

k∑
t=1

ωk−t
(
qi,t − 1

n

)
. (5)

As the formula shows, we aggregate historical information

to estimate the users’ reputation by summing up all the past

quality records, where the exponential term ωk−t, with 0 <
ω < 1 being the aging weight, assigns heavier weights to

recent records than older ones. The term qi,t − 1/n is used

to identify whether user i’s data quality in slot t is above the

average, i.e., qi,t − 1/n > 0 means that the quality of xi,t is

above the average and vice versa.

We note that the decrement and increment rates of the users’

reputations should be different. One simple approach is to

classify the users’ behaviors into trustworthy or untrustworthy,

and to assign different aging weights to them [25]. We note

that this approach assigns users with the same label (i.e., trust-

worthy or untrustworthy) the same aging weight. However,

in real scenario, the rate of reputation’s decrement/increment

of a user should be proportional to the degree of the trust-

worthiness/untrustworthiness of her behavior. For example,

a user’s reputation should have larger decrement when she

contributes “very bad” data than “slightly bad” data. Therefore,

we replace ω with 1 − qi,t, when qi,t ≤ 1/n, s.t., the users

with lower quality data have higher aging weights and thus

results in larger reputation decrements. Similarly, for each user

i, whose quality is above the average (i.e., qi,t > 1/n), her

aging weight is her quality qi,t. We learn from our experiment

that the data quality of each user never exceed 0.5, s.t., the

rate of reputation decrement is always larger than the rate of

reputation increment.

q′i,k =

{ ∑k
t=1(1− qi,t)

k−t(qi,t − 1
n ) if qi,t ≤ 1

n ,∑k
t=1 q

k−t
i,t (qi,t − 1

n ) if qi,t >
1
n .

(6)

Thus, to determine the user i’s reputation after k slots,

we first calculate q′i,k using Equation (6) and then apply our

reputation function Equation (4). The function output is i’s
reputation Ri,k.

C. Outlier Detection

In this subsection, we present an outlier detection technique

to find data items that are far away from expectations. For

example, the noise readings recorded by a mobile phone that

is put in the pocket should be counted as outliers. Specifically,

we adopt the concept of distance-based outlier [31], which is

a representative method of proximity-based outlier detection.

For the data set Xk, we define a distance threshold r to be

the reasonable neighborhood of a data item. For each data item

xi,k ∈ Xk, we calculate the number of other data items within

the r-neighborhood of xi,k. If most of the data items are far

away from xi,k, i.e., not in the r-neighborhood of xi,k, then

xi,k is regarded as an outlier. We present the formal definition

below.

Definition 1 (Distance-Based Outlier [31]). Let r (r ≥ 0) be
the distance threshold and μ (0 < μ ≤ 1) be the fraction
threshold. A data object xi,k is DB(r, μ)-outlier if∣∣{xj,k|dist(xi,k, xj,k) ≤ r}∣∣∣∣Xk

∣∣ ≤ μ.

A simple and efficient algorithm, as shown in Algorithm

2, is used to classify the users into normal users N
N
k and

anomalous users NA
k . The data items of these anomalous users

will be filtered out in the process of generating the estimation

of environmental condition.

D. Campaign Result Generation

To calculate the environmental estimation in time slot k, we

first eliminate anomalous data items from collected data set to

improve estimation accuracy. Then, we assign each normal

data item xi,k a credibility weight Ri,k, which is user i’s
reputation. The reputation-based cluster centroid, calculated
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Algorithm 2: Distance-Based Outlier Detection

Input: Collected data set {xi,k} in slot k
Output: Normal users N

N
k and Anomalous users N

A
k

1 Initialize N
N
k ← ∅, NA

k ← ∅ ;

2 for i← 1 to n do
3 count← 0 ;

4 for j ← 1 to n and j �= i do
5 if dist(xi,k, xj,k) ≤ r then
6 count← count+ 1 ;

7 end
8 end
9 if count ≥ μn then N

N
k ← N

N
k ∪ {i} ;

10 else N
A
k ← N

A
k ∪ {i} ;

11 end

using the equation below, is the campaign estimation for real

physical environment in current slot k.

x̄k = argmin
x̄k

∑
i∈NN

k

(
dist2(x̄k, xi,k)×Ri,k

)
. (7)

We will show in Section VI that the reputation-based cluster

centroid achieves superior performance than pure quality-

based one.

V. SURPLUS SHARING

To motivate the users’ continuous participation, the platform

needs to reward each user with a proper amount of payment.

However, the platform only has a limited budget. In some

existing works, the platform is assumed to be given a fixed

budget to run the sensing campaign. While in most of the

practical scenarios, especially when the campaign lasts a long

period of time (e.g., up to months or years), the platform usu-

ally has a dynamic cash flow, which means that the campaign

needs to continuously benefit from its real-time estimation.

Naturally, the real-time capital inflows, called surplus, is based

on the credibility of the generated campaign result.

In this section, we mainly consider the problem of non-

fixed surplus sharing, where the total surplus is dynamic and

is earned from the real-time campaign result. We first present

three desirable properties in designing a good surplus sharing

scheme, and discuss several heuristic sharing methods, as well

as their limitations. Then, we introduce the concept of Shapley

value, and propose a Shapley value-based surplus sharing

method. We note that the Shapley value of each user can

be considered as the user’s contribution to the participatory

sensing. Our proposed approach for non-fixed surplus sharing

could also be applied in fixed surplus sharing scenarios (by

adopting a weighted proportional sharing scheme with each

user’s Shapley value being her weight).

Formally, the surplus generated by the platform in each slot

k, called grand surplus, is denoted by v(N), where N is the set

of users and v : 2n →R is the surplus characteristic function.

For any subset of users S ⊆ N, v(S) represents the surplus

earned by the campaign when the set S of users participate.

We also define user i’s surplus share in slot k as pi,k, which is

also called i’s payment. The objective of the surplus sharing

module is to divide the grand surplus v(N) among the users.

A. Desirable Properties in Surplus Sharing

In determining each user’s surplus share, there are several

desirable properties.

Property I: Surplus efficiency. This property indicates that

in each time slot, the sum of the users’ surplus share should

be equal to the grand surplus, i.e.,
∑

i∈N
pi,k = v(N). In other

words, the platform never reserves or overdraws its surplus

budget in any time slot.

Property II: Outliers get nothing and normal users all get
paid. This property is derived from the two-fold goal of the

participatory sensing campaign. On one hand, the platform

wishes to penalize untrustworthy behaviors, s.t., users who

are classified as outliers in some time slot shall get zero

surplus share, since their data is far away from the group

consensus and thus makes no meaningful contributions to the

campaign in that slot. On the other hand, to motivate the users’

continuous participation, every user receives a positive surplus

share as long as she is not counted as an outlier. Formally, if

i ∈ NA
k , then pi,k = 0; otherwise pi,k > 0.

Property III: Monotonic rule. It means that for any two

normal users, the one with higher reputation should gain more

surplus than the other one. This rule indicates the fairness of

surplus sharing, i.e., users’ rewards are proportional to the

qualities of their contributions. Formally, in any slot k, for

any two users i, j ∈ NN
k , if Ri,k > Rj,k, then pi,k > pj,k, and

if Ri,k = Rj,k, then pi,k = pj,k.

B. Several Heuristic Sharing Methods

One simple surplus sharing approach is equal share, i.e.,
to assign each user an equal share of the total surplus

pi,k = v(N)/n. However, this allocation rule suffers from a

serious fairness issue, i.e., users with low quality data earn the

same rewards as those who made high quality contributions,

which may drive the latter group to leave the campaign or to

contribute low quality data.

Another approach is individual surplus contribution, which

assigns each user i with the amount of surplus that the cam-

paign generates when only i participates, i.e., pi,k = v({i}).
This approach takes the users’ data qualities and reputations

into surplus calculation, and thus satisfies monotone rule.

However, it cannot guarantee the surplus efficiency, since the

sum of allocated surplus may not be equal to the surplus

budget, i.e.,
∑

i∈N
pi,k �= v(N).

The third heuristic sharing method is called marginal sur-
plus contribution. It states that the surplus share of each user i
is the difference between total surplus when i participates and

when i does not participate, given all other conditions remain

the same. Formally, pi,k = v(N) − v(N\{i}). This approach

also violates the surplus efficiency, i.e.,
∑

i∈N
pi,k �= v(N).
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C. Shapley Value

Considering the limitations of the previously mentioned

heuristic methods, we present an alternative Shapley value-

based approach, which can achieve all the three desirable

properties.

Definition 2 (Shapley Value [26], [37]). In surplus sharing,
the Shapley value of i is defined by

θi,k(N, v) =
∑

S⊆N\{i}

[
v(S ∪ {i})− v(S)

]|N|!
|S|!(|N| − |S| − 1)!

, (8)

where |S| and |N| are the cardinality of S and N respectively.

The Shapley value is calculated by taking a random permu-

tation of users from the set of all n! possible permutations, and

allocating each user her expected marginal surplus contribution

in this permutation. It has been proved that the Shapley value

is the unique value satisfying the following four axioms [26].

Axiom 1 (Efficiency).
∑

i∈N
θi,k = v(N).

Axiom 2 (Symmetry). If ∀S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪
{j}), then θi,k = θj,k.

Axiom 3 (Dummy). If ∀S ⊆ N\{i}, v(S ∪ {i}) = v(S), then
θi,k = 0.

Axiom 4 (Additivity). For any two surplus function v1 and
v2, θi,k(v1) + θi,k(v2) = θi,k(v1 + v2), ∀i ∈ N.

The efficiency axiom states that the sum of the users’

surplus share should be equal to the grand surplus, which

matches the property of the surplus efficiency in Section V-A.

The symmetry axiom indicates that two users having equal

marginal surplus contributions should receive the same amount

of surplus share. The dummy axiom says that a user who does

not contribute to surplus generation should receive nothing,

i.e., outliers receive zero surplus share. These two axioms

satisfy the requirements of our second and third desirable

property respectively. The additivity axiom means that com-

bining two games into one, each user’s received surplus share

remains the same. In our setting, the additivity says that the

total revenue received by any user in the long period campaign

should be equal to the sum of her surplus share gained in every

single slot.

We note that the four axioms are inherent properties of our

surplus sharing. With a well-defined surplus function, e.g.,
v(S) is monotone increasing subject to

∑
i∈S

Ri,k, we can

guarantee that a user with a higher reputation has a larger

Shapley value than lower reputation one, since she contributes

more to the marginal surplus v(S ∪ {i}) − v(S). Besides, if

a user’s marginal contribution is positive, then her Shapley

value is positive. We present an instance of surplus function

in Section VI-A.

Our Shapley value-based surplus sharing rule is presented

below. In each slot, the payments of anomalous users are zero,

while the payment of each normal user is her Shapley value

with NN
k being the grand coalition.

Algorithm 3: Shapley Value Approximation

Input: The number of samples m
Output: Approximated Shapley value θ̂i

1 Initialize count← 0 and θ̂i ← 0, ∀i ∈ N
N
k ;

2 while count < m do
3 Sample o ∈ φ(NN

k ) with probability 1
|NN

k |! ;
4 foreach i ∈ N

N
k do

5 Calculate prei(o);

6 θ̂i ← θ̂i + v(prei(o) ∪ {i})− v(prei(o));
7 end
8 count← count+ 1;

9 end
10 θ̂i ← θ̂i/m, ∀i ∈ N

N
k ;

pi,k =

{
0 if i ∈ N

A
k

θi,k(N
N
k , v) if i ∈ N

N
k

(9)

D. Approximate Shapley Value

Due to the appealing properties of Shapley value and its

excellent match for our model, we reward each normal user

with the surplus share of her Shapley value. However, we

observe that the number of subset of NN
k is exponential

to its cardinality, therefore the calculation of Shapley value

involves an exponential time complexity. When the number of

normal users is large, this approach would be impractical. To

settle this computational infeasibility, we propose an efficient

approximation of the Shapley value based on random samping.

Let φ(NN
k ) denote the set of all |NN

k |! permutations of NN
k ,

and θ̂i represent the approximated Shapley value of user i. For

any sampled permutation o ∈ φ(NN
k ), the set of users appeared

before i is defined as the predecessors of i, denoted by prei(o).
For example, a sampled permutation is shown below, as well

as i’s and j’s predecessors.

i’s predecessor︷ ︸︸ ︷
1, 2, · · · , i− 1, i, i+ 1, · · · , j − 1︸ ︷︷ ︸

j’s predecessor

, j, j + 1, · · · , |NN
k |

Our proposed algorithm, as shown in Algorithm 3, randomly

selects m samples from φ(NN
k ) with equal probability. For

each sampled permutation o ∈ φ(NN
k ), we calculate the prede-

cessor of the each user i. Then, the algorithm iteratively sums

up each user’s marginal contributions over the predecessors of

each sample. The estimated Shapley value will be the average

of the marginal contributions over the samples. The payment

of each user i in time slot k is shown below:

pi,k =

{
0 if i ∈ N

A
k ,

θ̂i,k(N
N
k , v) if i ∈ N

N
k .

(10)

We note that the complexity of our proposed algorithm is

O(m|NN
k |), which is in polynomial time. In addition, it can be

proved that the approximate Shapley value also satisfies all the

four axioms of the original Shapley value. Due to limitations

of space, we omit the proof in this paper.
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VI. EVALUATIONS

In this section, we conduct a participatory sensing experi-

ment to evaluate our proposed methods. We first describe our

experiment setup in Section VI-A, and then present experiment

results in Section VI-B and Section VI-C.

A. Experiment Setup

We consider a noise monitoring participatory sensing ap-

plication, where mobile devices are required to measure their

ambient noise level and then the platform generates the noise

estimation based on the collected sensing readings.

In our experiments, 10 mobile devices are deployed to

act as participatory sensing users, including 5 first-generation

Google Nexus 7 tablets (D1 to D5) and 5 second-generation

Google Nexus 7 tablets (D6 to D10). All of them are carried

with Android 4.4.3 operating system. The ambient noise is

measured and recorded by an off-the-shelf application, called

NoiseTube [39], which samples the acoustic signal and cal-

culates the sound level every second in decibel (dB). Our

experiment is conducted in a 10m× 8m room to ensure that

the sound attenuation in distance is trivial. A computer, which

continuously plays movies, serves as the noise source and is

placed in the center of the room. Mobile devices are deployed

around the computer as shown in Fig 4. We also deploy a

WENSN WS1361 decibel meter to measure the ground truth.

Recall that our objective is to estimate the users’ data

qualities and characterize their long-term behaviors. According

to the real life experiences, we artificially create situations

where users may adopt incorrect sensing approaches and have

various behaviors. In noise monitoring application, the correct

measurement approach is to expose the mobile device directly

to air. However, in real scenarios, users may intentionally or

unintentionally take the wrong measurement approaches, e.g.,
placing the phone in a pocket or bag, which may blemish

their data qualities. To simulate these differences, in our

experiment, most devices take the proper sensing method,

while some devices are covered by clothes or put into a bag to

simulate incorrect approaches. For simplicity, we refer “1” to

the correct measurement approach and “0” to incorrect ones.

Besides, we divide users into several categories and assign

each category a specific sensing behavior, shown in Table II.

In our setting, device D3 and D9 are strictly obedient to the

platform’s instructions and always expose their mobile devices

to air. Device D1 and D7 are rigorous in performing the

sensing task correctly, but there are 10%∼20% unavoidable

time when they have to put their devices into pockets or bags.

TABLE II
USER BEHAVIOR CLASSIFICATION

Category Device Description
Obedient user 3,9 always being “1”
Rigorous user 1,7 with 80%∼90% possibility being “1”
Careless user 5,8,10 with 60%∼70% possibility being “1”
Indifferent user 4 with 50% possibility being “1”
Malicious user 2,6 with <10% possibility being “1”
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Fig. 5. Result Comparison

The category with largest number of users is careless and we

assume careless users have 60%∼70% being “1”. Device 4 is

indifferent of the sensing task and he places his device into or

out of his pocket any time he wants, thus with half percentage

being “1”. Malicious users, such as D2 and D6, deliberately

contribute erroneous data in most of the time.

Our experiment lasts 750 minutes with the slot duration

being 1 minute, and collects over 450,000 data items in total.

Based on user behavior classification, we manually change the

measuring approaches of the devices (either exposed to air

or covered by clothes) with their predefined possibilities. For

instance, for device D8, we reset its sensing approach every

15 minutes with 60%∼70% possibility exposed to air and

30%∼40% covered by clothes. Detailed deployment settings

and graphical presentations of sensing data are provided in

our technical report [40]. It can be clearly observed that the

detected noise level with the device exposed is about 5 dB

higher than covered.

In the quality estimation module, we adopt the Euclidean

distance to measure the similarity between any two data items.

We note that in the noise monitoring scenario, each user’s

sensing reading in any slot is a vector consisting 60 elements

(since the slot duration is 60 seconds) and thus the arithmetic

operations used in quality estimation are correspondingly

vector operations. The ε used in Equation (3) is 0.01 and we

388387387387387387
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Fig. 7. Comparisons of different surplus sharing methods

iterate our quality estimation algorithm for 10,000 times each

slot. The parameters for the generalized logistic function are:

A = 0, B = 1, D = 1, F = 1, M = 1, and h = 1. In

outlier detection, the default distance threshold r and fraction

threshold μ are 4 and 0.31 respectively.

In surplus sharing module, we apply the same surplus

function below to every sensing slot:

v(S) = V × g(|S|)∑i∈S
Ri,k

|S| , (11)

where V = 1000 is the scaling factor and g(n) = n/(n+1000)
is the Bühlmann credibility function [41], which is widely

used in credibility theory to model the relationship between

the number of users and the credibility of the user-generated

results.

B. Experiment Results of Quality Estimation

Recall that our sensing result is generated by finding the

Reputation-weighted Centroid of the Normal user cluster,

denoted by RCN, i.e., the distance is weighted with reputation

and the cluster is formed by normal users, as Equation (7).

Similarly, we define QCN (quality-weighted centroid of nor-

mal users), CN (raw centroid of normal users), RC (reputation-

weighted centroid of users), QC (quality-weighted centroid of

users) and C (raw centroid of users). Mathematical definitions

are provided in our technical report [40].

We compare our sensing results with the ground truth

by adopting the Root Mean Square Deviation (RMSD).

For any given data vector xi,k, the RMSD is defined as√
dist2(xi,k, x̂k)/T , where x̂k is the ground truth in slot k.

Fig. 5(a) shows the RMSDs of raw centroid (C) and our

campaign result (RCN) in every slot. We can see that the

RMSD of RCN is about 50% lower than the raw centroid.

To get a complete comparisons of different campaign result

calculation methods, for each method, we sum up its RMSDs

of the total 750 slots, and provide the results in Fig. 5(b).

We observe that under the same cluster (either N or NN
k ), the

reputation-weighted centroid always results in lowest sum of

RMSDs, while the raw centroid the highest. That is because

that the reputation-based methods completely characterize the

users’ credibility, while raw centroid methods do not consider

the quality differences of collected data and treat all the

users equally. The quality-weighted centroid methods involve

data qualities in their result calculation, but they never take

the users’ long-term reputations into consideration. That is

why QC’s and QCN’s sum of RMSDs are lower than raw

centroid methods (C and CN) but higher than reputation-

weighted ones (RC and RCN). It can also be observed that

sensing results calculated using normal-user cluster NN
k results

in lower sum of RMSDs than user cluster N, which indicates

that eliminating anomalous data items improves the accuracy

of the campaign result.

Fig. 6 presents the comparisons of qualities, reputation-

s, and outlier occurrences of all the users, where quality

and reputation are measured using their average value, i.e.,∑750
k=1 qi,k/750 and

∑750
k=1 Ri,k/750 respectively. The outlier

occurrence of a user is the number of times when she is count-

ed as an outlier. We observe that the users’ qualities and rep-

utations are proportional to the level of their obedience, while

the outlier occurrences are inversely proportional to that, which

aligns to our user behavior classification. For example, the

obedient users (D3 and D9) have the highest qualities, highest

reputations, and fewest outlier occurrences. Rigorous users

(D1 and D7) have the second highest qualities/reputations and

second lowest outlier occurrences. Malicious users (D2 and

D6) receive approximately zero qualities and reputation scores,

with outlier occurrences over 80% of the total slots.

C. Experiment Results of Surplus Sharing

Fig. 7(a) shows the total payment received by each devices,

i.e.,
∑750

k=1 pi,k, where m is the number of permutations

sampled. We note that m = 10! = 3, 628, 800 is the original
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Shapley value calculation method, while m = 1, 000, 000 and

362, 880 are both approximate ones. We observe that the users’

total payments are nearly the same under different values

of m, which indicates that the approximate Shapley value

also satisfies all the four properties of the original Shapley

value. Besides, each user’s total payment is proportional to the

quality of her contribution. For example, obedient users (D3

and D9) receive the most payments, while malicious users (D2

and D6) receive nearly zero payments.
We also compare the performance of Shapley value with

three heuristic methods mentioned in Section V-B, which are

equal share, individual contribution, and marginal contribution

respectively. Fig. 7(b) compares the total received payments

by each user under different surplus sharing methods, and Fig.

7(c) compares the sum of allocated surplus
∑n

i=1

∑750
k=1 pi,k

with the grand surplus. We can see that the equal share method

satisfies surplus efficiency, but violates the second and third

desirable properties in Section V-A, since it never considers

the users’ data qualities. The other two heuristic methods have

the similar surplus distribution patterns as Shapley value, but

they violate the surplus efficiency.

VII. CONCLUSION

In this paper, we have considered the quality-base surplus

sharing problem for participatory sensing. We have proposed

a method to quantify users’ data qualities and reputations,

and have applied an outlier detection technique to improve

estimation accuracy. Based on the cooperative game model, we

have proposed an approximate Shapley value-based method to

determine users’ surplus shares. Our experiment results have

shown that our approach achieves good performance in terms

of both quality estimation and surplus sharing.

REFERENCES

[1] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” Center for Embedded
Network Sensing, 2006.

[2] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, “A survey of mobile phone sensing,” Communications
Magazine, IEEE, vol. 48, no. 9, pp. 140–150, 2010.

[3] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” Communications Magazine, IEEE, vol. 49, no. 11,
pp. 32–39, 2011.

[4] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Surroundsense:
mobile phone localization via ambience fingerprinting,” in MobiCom,
2009.

[5] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: wireless
indoor localization with little human intervention,” in MobiCom, 2012.

[6] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee:
zero-effort crowdsourcing for indoor localization,” in MobiCom, 2012.

[7] S. Yang, P. Dessai, M. Verma, and M. Gerla, “Freeloc: Calibration-free
crowdsourced indoor localization,” in INFOCOM, 2013.

[8] M. Alzantot and M. Youssef, “Crowdinside: automatic construction of
indoor floorplans,” in SIGSPATIAL, 2012.

[9] R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, and X. Li,
“Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing,” in
MobiCom, 2014.

[10] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen,
E. Howard, R. West, and P. Boda, “PEIR, the personal environmental
impact report, as a platform for participatory sensing systems research,”
in MobiSys, 2009.

[11] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “Vtrack: accurate, energy-aware road
traffic delay estimation using mobile phones,” in SenSys, 2009.

[12] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher,
“Greengps: a participatory sensing fuel-efficient maps application,” in
MobiSys, 2010.

[13] P. Zhou, Y. Zheng, and M. Li, “How long to wait?: predicting bus arrival
time with mobile phone based participatory sensing,” in MobiSys, 2012.

[14] S. Nawaz, C. Efstratiou, and C. Mascolo, “Parksense: a smartphone
based sensing system for on-street parking,” in MobiCom, 2013.

[15] Y. Wang, X. Liu, H. Wei, G. Forman, C. Chen, and Y. Zhu, “Crowdatlas:
Self-updating maps for cloud and personal use,” in MobiSys, 2013.

[16] Y. Wang, W. Hu, Y. Wu, and G. Cao, “Smartphoto: a resource-
aware crowdsourcing approach for image sensing with smartphones,”
in MobiHoc, 2014.

[17] J.-S. Lee and B. Hoh, “Sell your experiences: a market mechanism based
incentive for participatory sensing,” in PerCom, 2010.

[18] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing,” in MobiCom,
2012.

[19] I. Koutsopoulos, “Optimal incentive-driven design of participatory sens-
ing systems,” in INFOCOM, 2013.

[20] D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint,” in INFOCOM, 2014.

[21] M. Dong, T. Lan, and L. Zhong, “Rethink energy accounting with
cooperative game theory,” in MobiCom, 2014.

[22] Y. Zhang and M. van der Schaar, “Reputation-based incentive protocols
in crowdsourcing applications,” in INFOCOM, 2012.

[23] L. G. Jaimes, I. Vergara-Laurens, and M. A. Labrador, “A location-based
incentive mechanism for participatory sensing systems with budget
constraints,” in PerCom, 2012.

[24] T. Luo, H.-P. Tan, and L. Xia, “Profit-maximizing incentive for partici-
patory sensing,” in INFOCOM, 2014.

[25] K. L. Huang, S. S. Kanhere, and W. Hu, “Are you contributing
trustworthy data?: the case for a reputation system in participatory
sensing,” in MSWiM, 2010.

[26] L. S. Shapley, “A value for n-person games,” DTIC Document, Tech.
Rep., 1952.

[27] A. E. Roth, The Shapley value: essays in honor of Lloyd S. Shapley.
Cambridge University Press, 1988.

[28] J. Han and M. Kamber, “Data mining: concepts and techniques,” Morgan
Kaufmann, vol. 5, 2001.

[29] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-based
framework for high integrity sensor networks,” ACM Transactions on
Sensor Networks (TOSN), vol. 4, no. 3, p. 15, 2008.

[30] C. T. Chou, A. Ignjatovic, and W. Hu, “Efficient computation of robust
average of compressive sensing data in wireless sensor networks in
the presence of sensor faults,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 8, pp. 1525–1534, 2013.

[31] E. M. Knox and R. T. Ng, “Algorithms for mining distance-based outliers
in large datasets,” in VLDB, 1998.

[32] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM Sigmod Record, vol. 29, no. 2.
ACM, 2000, pp. 93–104.

[33] V. Misra, S. Ioannidis, A. Chaintreau, and L. Massoulié, “Incentivizing
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