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Abstract—Using a centralized controller for resource manage-
ment and coordination is a common practice in cloud services.
For scalability concern, in recent literature a novel approach,
namely devolved controllers, was proposed. Such approach splits
the network into regions, while each controller only monitors a
portion of the traffic. This technique alleviates scalability issue,
but brings other critical problems, such as unbalanced work load
among controllers and reconfiguration complexities. In this paper,
we investigate the usage of devolved controllers for large-scale
data centers, and design a new scheme to overcome shortcom-
ings, and to improve system performance. We first define Load
Balancing problem for Devolved Controllers (LBDC), and prove
its NP-completeness. For LBDC, we design an f -approximation,
where f is the largest number of potential controllers for a switch
in the network. We also propose both centralized and distributed
approaches to solve LBDC time effectively. The numerical results
validate our designs, which become a solution to manage and
coordinate large-scale data centers.

I. INTRODUCTION

In recent years, data center has emerged as an infras-
tructure that holds thousands of servers and supports many
cloud services like computing, group collaboration, storage
and financial applications, etc. The fast proliferation of cloud
computing has promoted a rapid growth of large-scale com-
mercial data centers. Companies such as Amazon, Cisco,
Google and Microsoft have made huge investments in Data
Center Networks (DCNs) for improvement.

Typically, a DCN has a centralized controller to monitor,
manage network resources, and update routing information [1]
[2] [3]. For instance, Hedera [4] and SPAIN [5] use a controller
to collect the traffic statistics and reroute flows. Controller also
provides address look-up services for VM migrations [6].

However, for large-scale DCN with thousands of racks,
centralized controller suffers from many problems, such as
scalability and availability. Driven by unprecedent scale and
control objectives, researchers tried to deploy multiple con-
trollers in DCNs [7]–[11]. The concept of devolved controllers
is thereby introduced in [7], where they used dynamic flow [8]
to illustrate the detailed configuration. Devolved controllers are
a set of controllers that function as an omniscient controller.
However, none of them have the entire information. Instead,
every controller only maintain partial information beforehand,
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thus reduces the workload significantly.
Multi-controller technique alleviates the scalability prob-

lem, but still has several issues to explore. Firstly, pre-
computed multipaths must be recalculated and network must
be reconfigured if we expand the current network, which brings
updating difficulties and heavy load for computation. Secondly,
the flow queries will send to every controller, which makes
controllers relatively busy and ignores the distance between
senders and receivers. Thirdly, the pre-computation is actually
centralized when configuring the network, which does not fit
the distributed and MapReduce related applications. With the
advent of Software Defined Network (SDN) [13] as proposed
by OpenFlow [14], data center networking become revolution-
izing in the industry, and several papers in designing distributed
controller [9]–[12] appear. In [9], the authors overcome the
limitation of statically configured mapping between switches
and controllers, and propose migration protocol. Thus it is
desirable to design an efficient strategy for devolved controllers
to better manage the network traffic, and reduce routing cost.

Motivated by these challenges, in this paper, we propose a
novel scheme to manage the traffic within OpenFlow frame-
work. In our scheme, each controller monitors the traffic of
switches locally. When traffic load imbalance occurs, some
controllers will migrate part of their work to other controllers
to keep the workload dynamically balanced. We define this
problem as Load Balancing problem for Devolved Controllers
(LBDC). We prove that LBDC is NP-complete, and then
design one linear programming with deterministic rounding
approximation, one centralized and one distributed algorithm,
to dynamically balance the traffic load among controllers.
Such methods can avoid the emergence of traffic hot spot,
which will degrade network performance. Also, these schemes
can significantly improve the availability and throughput of
DCN. To the best of our knowledge, we are the first to
discuss workload balancing problem among multi-controllers
in DCNs, which has both theoretical and practical significance.

The rest of the paper is organized as follows. Section II
presents the scenario and problem statement. Section III and IV
presents LBDC solutions. Section V exhibits our performance
evaluation. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT
Traffic in DCN can be considered as Virtual Machine (VM)

communication. VMs in different servers collaborate together
to complete designated tasks. In order to communicate between
VMs, communication flow will go through several switches.

Base on OpenFlow [14] concept, each switch has a flow
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table, and one responsibility of a controller is to modify
these flow tables when communication occurs. Every controller
composes of several hierarchical switches. Moreover, every
rack has a server called designated server [15], which is
responsible for aggregating, processing and sending the traffic
statistics to the controller. By receiving these data, the con-
troller assigns a routing component to compute flow reroute.
Then the controller installs the new route to all associated
switches by modifying their flow tables.

Now we define our problem formally. In a typical DCN,
denote si as the ith switch, with the corresponding traffic
weight w(si), which is defined as the number of out-going
flows. Next, given n switches S = {s1, · · · , sn} and m con-
trollers C = {c1, · · · , cm}, we make a weighted m-partition
for switches such that each controller will monitor a subset of
switches. The weight of a controller w(ci) is the weight sum
of its monitored switches. Due to physical limitations, assume
every si can only be monitored by its potential controller set
PC(si). Every ci can only control switches in its potential
switch set PS(ci). After the partition, the real controller and
switch subset is denoted by rc(si) and RS(ci) respectively.

The symbols used in this paper are listed in Table I:

TABLE I. DEFINITION OF TERMS

Term Definition
S, si switch set consists of n switches: S={s1, · · · , sn}
w(si) weight of si, defined as the number of out-going flows.
PC(si) Potential Controllers set of ith switch.
rc(si) the real controller of ith switch.
C, ci controller set consists of m controllers: C={c1, · · · , cm}
w(ci) the weight of ith controller, sum of RS(ci)’s weight.
PS(ci) Potential Switches set of ith controller.
RS(ci) Real Switches set of ith controller.
AN(ci) Adjacent Nodes (1-hop neighborhood) of ith controller.

To keep the quality of network management, each con-
troller should have nearly the same workload. Otherwise,
if all switches always communicate with the same con-
troller, it will bring bottleneck congestion, hence down-
grade performance. To precisely quantify the balancing per-
formance among controllers, we define Standard Deviation
of the partitions’ weights as the metric, denoted by σ =√

1
m

∑m
i=1(w(ci)− w(c))2, where w(c) is the average weight

of controllers. If the traffic flows vary as system running and
the weight of ci grows explosively, then we must regionally
migrate some switches in RS(ci) to other available controllers
to reduce its workload and keep the traffic balanced.

Then our problem becomes balancing the weight among
m partitions. We define this problem as Load Balancing
problem for Devolved Controllers (LBDC). In our scheme,
each controller can dynamically migrate or receive switches to
keep load balanced. Figure 1 illustrates the migration pattern.

Fig. 1. An example of regional balancing migration. Controller cj dominates
17 switches and Controller ci dominates 13 switches. The traffic between ci
and cj is unbalanced, and cj is migrating one of its switch to ci.

Define xij =

{
1 If ci monitors sj
0 otherwise , Then LBDC can

be further formulated as an programming:

min

√
1
m

∑m
i=1

(∑n
j=1 w(si) · xij − w(c)

)2
(1)

s.t. w(c) = 1
m

∑m
i=1

∑n
j=1 w(sj) · xij (2)∑m

i=1 xij = 1, ∀1 ≤ j ≤ n (3)
xij = 0, if sj 6∈ PS(ci) or ci 6∈ PC(sj),∀i, j (4)

xij ∈ {0, 1} ∀i, j (5)

Eqn.(1) is the standard deviation, Eqn.(2) calculates the av-
erage weight among controllers, Eqn.(3) means each switch
should be monitored by exactly one controller, Eqn.(4) is the
regional constraints, while Eqn.(5) is the integer constraints.

Theorem 1. LBDC is NP complete.

Proof. We will prove the NP completeness of LBDC by
considering a decision version of the problem, and show a
reduction from PARTITION problem [16]. An instance of
PARTITION is: given a finite set A and a size(a) ∈ Z+

for each a ∈ A, is there a subset A′ ⊆ A such that∑
a∈A′ size(a) =

∑
a∈A\A′ size(a)? Now we construct an

instance of LBDC. In this instance there are 2 controllers c1,
c2 and |A| switches. Each switch sa represents an element
a ∈ A, with weight w(sa) = size(a). Both controller can
control every switch (PS(c1) = PS(c2) = {sa|a ∈ A}).
Then, given a YES solution A′ for PARTITION, we have a
solution RS(c1) = {sa|a ∈ A′}, RS(c2) = {sa|a ∈ A\A′}
with σ = 0. The reverse part is trivial. The reductions can be
done within polynomial time, which completes the proof. 2

Next we present our solutions for LBDC. We implement
the scheme within OpenFlow, which changes the devolved
controllers from a mathematical model into an implementable
prototype. Also, our scheme is topology free, which is scalable
for any DCN topology like Fat-Tree, BCube, Portland, etc.

III. LINEAR PROGRAMMING AND ROUNDING
Given the traffic status of the current DCN with devolved

controllers, we can solve LBDC using programming (1)-(5).
To simplify this programming, we can transfer it into a similar
integer programming. Firstly, we can convert the standard
deviation (1) to the sum of absolute values:

min 1
m

∑m
i=1 |

∑n
j=1 w(si) · xij − w(c)| (6)

Then we rewrite Eqn.(6), and obtain the integer programming:

min 1
m

∑m
i=1 yi (7)

s.t. yi ≥
∑n
j=1 w(si) · xij − w(c) (8)

yi ≥ w(c)−
∑n
j=1 w(si) · xij (9)

w(c) = 1
m

∑m
i=1

∑n
j=1 w(sj) · xij (10)∑m

i=1 xij = 1, ∀1 ≤ j ≤ n (11)
xij = 0, if sj 6∈ PS(ci) or ci 6∈ PC(sj),∀i, j (12)

xij ∈ {0, 1} ∀i, j (13)

In general, integer programs may not be easily solved
in polynomial time, so we adopt relaxation to transfer our
integer programming into a linear programming (LP). Then
we can get a fractional solution and round it to a feasible
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solution of the original integer programming. To obtain the
linear programming, we replace Eqn.(13) with xij ≥ 0 (∀i, j).

After solving this LP, we recover a feasible solution to
LBDC by a deterministic rounding [17] stated as follows:

Algorithm 1: Deterministic Rounding (LBDC-R)
1 for Each switch sj do
2 Search the solution space of LP:
3 Let l = arg max

i
{xij | 1 ≤ i ≤ m};

4 if ∃ several maximal xij then
5 Let l = arg min

i
{
∑n
j=1 w(sj) | each max xij}

6 Round xlj = 1;
7 for ci 6= cl do
8 Round xij = 0;

For instance, if the switch j has x1j = 0.2, x2j =
0.7, x3j = 0.1 in the solution space of LP, then according
to Alg. 1, we round x2j = xlj = 1, x1j = x3j = 0. We claim
that the solution is feasible for LBDC.

Theorem 2. LBDC-R results in a feasible solution for LBDC.

Proof. According to LBDC-R, for each sj , we only round
the maximum xij = 1,∀1 ≤ i ≤ m, all the other xij = 0. Each
switch is dominated by only one controller and no switches
are idle. Thus we can get a feasible solution for LBDC. 2

Next we analyze the performance of LBDC-R. We define
Z∗,ZLP and ZR as the integer programming solution, linear
programming solution and the solution after the rounding
process respectively. f is defined as the maximum number
of controllers in which any switch potentially appears. More
formally, f = max

i=1,...,n
|PC(si)|. We claim that LBDC-R is an

f -approximation. To prove it, we first prove lemma 1 and 2.

Lemma 1. w(c)LP = w(c)∗ = w(c)R

Proof. From the definition of the original w(c), the ideal
weight of each controller is the sum of the weight of all
switches divided by the number of controllers. This definition
is suited for all the solution space, thus we can conclude that
w(c)LP = w(c)∗ = w(c)R = 1

m

∑n
i=1 w(si). 2

Lemma 2. xRij ≤ xLPij · f

Proof. We have the constraint
∑m
i=1 x

LP
ij = 1 (∀1 ≤ j ≤

n). Also xLPlj is the largest of all xLPij (∀1 ≤ i ≤ m), then
by Pigeonhole principle, we must have xLPlj · f ≥ 1. Since for
each sj , xRlj equals to 1 and others equal to zero, which is
less than or equal to the corresponding LP solution times the
f factor. Then for any ci, we have xRij ≤ xLPij · f . 2

Theorem 3. LBDC-R is an f -approximation algorithm.

Proof. Since the LP is a relaxation, we have ZLP ≤ Z∗.
Also we have Z∗ ≤ ZR because the solution of LBDC-R is
feasible by Theorem 2, while Z∗ denotes the optimal solution.

Because w(c) means the ideal weight of each controller, it
must be the same in all the solutions according to Lemma 1,
thus we let w = w(c). From ZLP ≤ Z∗ we can derive:

1

m

m∑
i=1

∣∣∣ n∑
j=1

w(si) · xLPij − w
∣∣∣ ≤ 1

m

m∑
i=1

∣∣∣ n∑
j=1

w(si) · x∗ij − w
∣∣∣

Since we already know |x| − |y| ≤ |x|+ |y|, we can get:

1

m

m∑
i=1

∣∣∣ n∑
j=1

w(si) · xLPij
∣∣∣ ≤ 1

m

m∑
i=1

∣∣∣ n∑
j=1

w(si) · x∗ij
∣∣∣+ 2w

The approximation ratio can be obtained by the following:

1

m

m∑
i=1

∣∣∣ n∑
j=1

w(si) · xRij − w
∣∣∣ ≤ 1

m

m∑
i=1

(∣∣∣ n∑
j=1

w(si) · xRij
∣∣∣+ w

)
≤ 1

m

m∑
i=1

∣∣∣ n∑
j=1

w(si) · xLPij · f
∣∣∣+ w

≤ f · 1

m

m∑
i=1

∣∣∣ n∑
j=1

w(si) · x∗ij
∣∣∣+ (1 + 2f)w

= f ·OPT + (1 + 2f)w

Therefore LBDC-R is an f -approximation. 2

IV. ALGORITHM DESIGN
Linear programming and rounding can solve LBDC the-

oretically. But solving an LP is time consuming and not
practical for real-world applications. Therefore it is essential
to design efficient and applicable algorithms. In this section,
we propose centralized and distributed greedy algorithms for
LBDC. Centralized scheme is suitable for relatively small scale
DCNs, while distributed is natural for huge scale DCNs.

A. Centralized Migration
Centralized Migration splits into two phases. First we need

to configure and initialize the DCN. As the traffic changes
dynamically, we come to the dynamical migration phase.

Centralized Initialization: First we need to initialize DCN
and assign switches to controllers, satisfying the load balance
requirement. So we design centralized initialization algorithm
(LBDC-CI). In order to get rid of dilemmas when selecting
conflicted switches/controllers, we first present Break Tie Law.

Break Tie Law: 1) When choosing si from S, we select
the largest weight one. If there are several switches, the one
with the smallest |PC(si)| is preferred. If there are still several
candidates, pick randomly. 2) When choosing ci from C, we
select the minimum weight one. If there are several controllers,
the one with the smallest |RS(ci)| is preferred. If there are still
several candidates, we choose by physical distance. Finally, if
we still cannot make decision, pick randomly.

Then we design LBDC-CI as shown in Alg. 2.

Algorithm 2: Centralized Initialization (LBDC-CI)
Input : S with w(si); C with w(ci);
Output: An m-Partition of S to C

1 RemList={s1,s2,· · · ,sn};
33 while RemList 6= ∅ do
4 Pick si from RemList;
5 if |PC(si)| = 1 then
6 Assign si to its unique controller in PC(si);
7 else
8 Assign si to the cj with min w(cj) in PC(si);
9 Remove si from RemList;

LBDC-CI needs O(n) to assign the switches in RemList.
In while loop, it takes O(f) to select a cj . Hence the worst case
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running time is O(n2). If we store the RemList in priority
heap, we can reduce the overall running time as O(n).

As system runs, traffic may vary frequently and affect the
balanced status. Correspondingly, we design the centralized
migration algorithm (LBDC-CM) to alleviate the situation.

Centralized Regional Migration: Since we must assess
when the controller should execute migration, we set a thresh-
old to judge the traffic status. When the controller’s traffic
degree exceeds the threshold, we regard this controller as
unbalanced that needs migration. Some measurement studies
[18] [19] of data center traffic have shown that data center
traffic is expected to be linear. We set the threshold upon the
current traffic sample and the history record to mimic RTT and
Timeout of TCP [20]. This linear expectation use two factors
α and β depending on the traffic features of DCN, where
0 ≤ α ≤ 1 and β > 1. We divide the time into several rounds
and run LBDC-CM periodically. Then we use Thd and Efn
to denote the parameters of threshold and effluence, Avglast
and Avgnow to represent the average workload of the last and
the current sample round. In each round, we sample the current
weight of each node and calculate Avgnow = Σw(ci)/m.
The Linear Expectation can be computed as follows:

Thd = Avgnowα+Avglast(1− α), Efn = β × Thd

The core principle of LBDC-CM is migrating heavy
switches to light controllers greedily. Figure 2 and Alg. 3 il-
lustrates the workflow and procedure of centralized migration.

Algorithm 3: Centralized Migration (LBDC-CM)
Input: S with w(si); C with w(ci);

PendList = OverList = {∅};
1 Step 1: Add ci → OverList if w(ci) > Efn;
2 Step 2: Find cm of max weight in OverList;
3 if ∃cn ∈ AN(cm) : w(cn) < Thd then
4 repeat
5 Pick sm of max weight in cm, refer PC(sm):
6 if ∃cf ∈ AN(cm) && w(cf ) < Thd then
7 Send sm → cf ;
8 else
9 Ignore the current sm in cm;

10 until w(cm) ≤ Thd or w(cf ) ≥ Thd;
11 if still w(cm) > Efn, move cm to PendList;
12 else
13 Move cm from OverList to PendList;
14 Step 3: Repeat Step 2 until OverList = {∅};
15 Let OverList = PendList, Repeat Step 2 until
PendList become stable;

16 Step4: Now PendList has several connected
components CCi(1 ≤ i ≤ |CC|);

17 for each CCi ∈ CC do
18 Search the

⋃
cj∈CCi

AN(cj);

19 Compute avglocal = w(CCi∪AN(CCi))
|CCi|+|AN(CCi)| ;

20 if w(cj) > γ · avglocal, where cj ∈ CCi then
21 Migrate the smax ∈ RS(cj) to

cmin ∈ AN(CCi) repeatedly until
w(cj) ≤ γ · avglocal;

22 remove cj ∈ CCi from PendList;

23 Step5: Repeat Step 4 until PendList become stable.

LBDC-CM searches OverList to find cm in Step 2,
which takes O(n). Next, it migrate switches from OverList,
which takes O(n2). Step 3 invokes Step 2 several times until
OverList is empty and makes the PendList become stable,
which takes O(n3). Step 4 and Step 5 balance the PendList
locally as Step 2 and 3, so the worst case running time
is O(n3). Also by storing the OverList and PendList in
priority heap, we can reduce the complexity to O(n2).

Unbalanced

State

Traffic VariesNetwork

Initialization

w(c)>Efn

check next controller

Regional 

Migration

State

No

Yes

check

all?

No

Migration

Completed

Yes

_ g

Fig. 2. Dynamic Load Balancing Workflow of LBDC

B. Distributed Migration
Centralized algorithm is suitable for relatively small-scale

network because of its accuracy. But for large-scale network,
we need to design a faster and practical distributed algo-
rithm [21]. We assume a synchronous environment to perform
our two phase algorithm.

Distributed Initialization: During this phase, we assign
each switch a controller randomly by message communication.
Alg. 4 illustrates the distributed initialization procedure.

Algorithm 4: Distributed Initialization (LBDC-DI)
1 Send “CONTROL” message to my own PS(cmy);
2 si reply the first-come “CONTROL” message with

“YES”, all the other messages after that with “NO”;
3 Move each si with “YES” from PS(cmy) to RS(cmy);
4 Wait until all the switches in PS(cmy) reply, terminate;

After initialization, we design the distributed migration
algorithm (LBDC-DM) to balance the workload dynamically.

Distributed Regional Migration: In this phase, the con-
troller uses the threshold to decide whether it should start
migration. Since it only access the neighborhood, the threshold
is not a global one, but an independent value computed by each
controller locally. The algorithm runs periodically in several
rounds. In each round, each controller samples AN(ci) and
applies Linear Expectation again:

Avg =

∑
ck∈AN(ci)+ci

w(ck)

|AN(ci)|+ 1

Thd = Avgnowα+Avglast(1− α)

Efn = β × Thd

A controller monitors its traffic status by local threshold. When
the traffic degree is larger than Efn, it enters sending state and
initiate a transaction to transfer heavy switches to neighbors.
Alg. 5 illustrates the distributed migration procedure.
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Algorithm 5: Distributed Migration (LBDC-DM)
1 if ≥ Efn→ sending then
2 if ∃ci ∈ AN(cmy) in receiving or idle then
3 add ci → RList(receiving > idle);
4 repeat
5 Pick smax with max weight, refer PC(smax),

find cj(in RList) with min weight, send
“HELP[ci, smax]” to cj , then check response:

6 if response=“ACC” then
7 cmy start migration with cj and smax.
8 else if response=“REJ” then
9 remove cj from RList, find next cj , send

“HELP” again, check response.
10 until w′(ci) ≤ Efn;
11 else if ≤ Thd→ receiving then
12 When receiving “HELP” messages:
13 repeat
14 receive switches for cj and send back “ACC”;
15 until w(cj) + w(smax) ≥ Thd;
16 Now all “HELP” messages will reply “REJ”
17 else if (Thd,Efn)→ idle then
18 When receiving “HELP” message:
19 repeat receiving state until

w(cj) + w(smax) > Efn;
20 Now facing other “HELP”s, controller will reply

“REJ” and enter the sending state;

It is easy to prove the features of a distributed algorithm
such as termination, agreement, and validity for Alg. 5, which
indicates its correctness and efficiency.

V. PERFORMANCE EVALUATION
We evaluate the performance of our scheme by considering

the case of traffic demand changes and examine whether the
metric of balanced workload is minimized. We also take the
number of migrated switches into consideration. Furthermore,
we check how different parameters will impact the results.

A. Environment Setup
We place 10000 switches and 100 controllers in a 100 ×

100 m2 square. Switches are evenly distributed, that is, a
switch is 1m away from its neighbors. The controller is
also evenly distributed and each one is 10m away from its
neighbor. Each controller can control the switches within
30m, and can communicate with other controllers within the
range of 40m. We assume the weight of each switch follows
Pareto distribution with its parameter α = 3. Now we set
α = 0.8, β = 1.2, γ = 1.5 in default.

B. Controller Number
Figure 5 uses the default configuration described above,

except that the number of controllers varies from 20 to 100.
We first apply LBDC-CI and change the traffic demands
dynamically to emulate unpredictable user requests. Then we
apply LBDC-CM to ease the spot congestion. We use the
metric described in Section II to evaluate the performance. In
Fig. 5, we compare the standard deviation of the initial bursty
traffic state and the state after migration. We find that after
migration, the metric decreases. As the number of controllers is

increasing, the improvement ratio is also increasing. It is quite
intuitive that more controllers will share jobs to reach balanced
load. This figure also shows that our algorithm has pretty good
performance when the number of controllers grows, which
indicates our scheme is suitable for huge DCNs.

Figure 6 shows that our distributed algorithm has the effect
of minimizing our metric. The performance of the LBDC-
DM is poor when the number of the controllers is relatively
small. This phenomenon is attributed to the fact that devolved
controllers can only cover switches within 30m. When the
number of controllers is small, more switches can only be
controlled by one particular controller without much choices.
As the number of the controller increases, LBDC-DM has
better performance and larger improvement ratio.
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Fig. 3. Colormap before migration
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Fig. 4. Colormap after migration

C. Centralized Protocol vs. Distributed Protocol
Next, we compare our centralized and distributed protocols

by changing the number of controllers from 30 to 210 with
a step of 20. The results are shown in Fig. 7. It depicts that
the performance of centralized version is much better than
the distributed version, but the difference between them is
decreasing as the number of the controllers increases.

We then assess the migration phase. Figure 3 and 4 shows
the effectiveness of our migration algorithms. We consider
a scenario: at the beginning of a time slot, the weights of
switches are updated and we run the migration algorithm.
The weight of switches follows Pareto distribution with its
parameter α = 3. Figure 8 shows the performance of LBDC-
CM dynamically, which significantly reduce the metric. Figure
9 shows the performance of LBDC-DM. As expected, the
performance metric is pretty large after initialization because
LBDC-DI just assigns each switch a controller without load
balancing consideration. As time goes by, the performance
increases greatly.

Next we compare the number of migrate switches of
centralized and distributed scheme, and information from Fig.
10 shows that the metric of centralized algorithm fluctuates
at a certain value while the metric of distributed algorithm is
decreasing and becomes stable as time goes by. This is because
LBDC-CM can migrate switches from a global perspective.
Therefore every time the number of migrated switches is
almost the same. But LBDC-DM only migrates locally, so the
number of migrated switches reduce significantly and become
stable slowly.

D. Parameter Specification
Next we explore the impact of the threshold parameters

α, β, γ. Here α is a parameter to balance conservativeness and
radicalness. We examine the impact of changing α. Due to
Step 4 in LBDC-CM, the impact is relatively small. β is a
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Fig. 5. Improvement of different number of con-
trollers in centralized migration
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Fig. 6. Improvement of different number of con-
trollers in distributed migration
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Fig. 8. Centralized migration traffic statistics at
different time slot
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Fig. 9. Distributed migration traffic statistics at
different time slot
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crucial parameter which decide whether to migrate or not. We
set different value for β and see the impact of changing β.
TABLE II list the statistics for β ranging from 1.1 to 1.5.
Clearly, the improvement rate and the number of migrated
switches is decreasing as β increases, which is correct from
the threshold definition. γ is used in Step 4 of LBDC-CM and
the effect of γ is similar to β, so we omit the discussion.

TABLE II. INFLUENCE OF β FACTOR
β Initial After Migration Rate switch no.
1.1 150.279 96.165 0.541 376
1.2 157.080 107.749 0.414 356
1.3 166.194 123.509 0.365 316
1.4 166.904 130.265 0.327 259
1.5 151.475 119.928 0.287 196

VI. CONCLUSION
As the evolution of DCNs, the usage of a centralized

controller is the performance bottleneck of the DCN and the
traffic management problem becomes severer. In this paper, we
have explored the usage of devolved controllers to manage the
data center effectively as well as alleviate the scalability issue.
In order to monitor and manage the traffic of data centers,
we have developed a new implementable scheme to overcome
the shortcomings such as workload congestions and reconfig-
uration complexities. We have further defined Load Balancing
problem for Devolved Controllers (LBDC) and given its NP-
completeness. We have also provided an f -approximation
solution, designed applicable centralized and distributed algo-
rithms to balance the workload among controllers in dynamic
situation. The feature of traffic load balancing ensures scaling
efficiently, enhances responsiveness of client’s requests as well
as improves the throughput and the availability of DCNs. Our
performance evaluation validates our design, which becomes
a solution to monitor, manage, and coordinate large-scale data
centers.
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