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ABSTRACT
In the past few yeas, wireless sensor networks (WSNs) have
been widely used in many areas. In these applications, sen-
sors are remotely deployed to gather related environmental
information for further analysis. To support higher scala-
bility and better data aggregation, sensor nodes are often
grouped into disjoint and mostly non-overlapping clusters.
All nodes in a cluster can send their data to the cluster
head within d-hop distance, and the head should commu-
nicate with other cluster heads and pass all data to base
station. For better communication between these cluster
heads, lower maintenance cost and easier management, it
is necessary to make the number of the clusters as small
as possible. Moreover, in many environments like moun-
tainous area or underwater monitoring, node deployment is
often not flat, resulting in a high dimensional network. In
this paper, we focus on proposing a scheme to select cluster
heads for a homogenous network in three-dimension situa-
tion. The scheme meets two requirements: The number of
cluster heads is minimum; and the head nodes can commu-
nicate with each other. These requirements can be formed
as an NP-complete problem named d-hop connected domi-
nating set. Correspondingly, we proposed a distributed ap-
proximation algorithm, and proved its approximation ratio
as (d+ 1)β, where β is a calculated parameter w.r.t. d. We
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also analyzed the performance of our algorithm with corre-
sponding numerical experiments.
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1. INTRODUCTION
Wireless sensor networks (WSNs) are autonomous and

self-organized communication systems consisting of many
small, inexpensive, and battery-powered embedded devices
called sensor nodes, each with sensing, computing, commu-
nication capabilities. These sensor nodes serve not only as
mobile hosts but also as routers. Because of such character-
istics, WSNs can be widely used in lots of applications such
as disaster management, battlefield reconnaissance, border
patrol and surveillance, etc. In these applications, sensor
nodes are mainly used to gather vital information from the
surrounding areas such as temperature, sound, vibration,
pressure, motion or pollutants, etc. Also, sensor nodes need
to transmit their collected data to base stations directly or
indirectly. The related researches have been widely studied
in past decades [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

In wireless sensor networks, sensor nodes have constraint
in terms of processing power. In most case, the unattended
nature of WSNs makes it quite difficult to recharge node
batteries or replace sensor nodes. Therefore, energy conser-
vation is a major design goal in these networks. To prolong
the lifetime of WSNs, a considerable number of researches
have been done [2, 3, 4, 6, 8, 12]. In addition, sensor nodes
are limited by communication bandwidth and storage space,
which makes it difficult to transmit message throughout the
whole network and to process a mass of data. In order to



overcome such shortcomings, the efficient approach that is
commonly agreed by most of researchers is clustering. We
can divide the whole network into disjoint and mostly non-
overlapping sets called clusters. Each cluster elects a leader
called cluster head. All ordinary nodes in a cluster transmits
their data to the cluster head, and the head passes all data to
the base station. Additionally, each cluster header can com-
municate with other cluster heads. Clustering schemes offer
reduced communication overheads and efficient resource al-
locations, thus decreasing the overall energy consumption
and reducing interferences among sensor nodes.

With clustering in WSNs, energy consumption, lifetime
and scalability of the network can be greatly improved. Be-
cause all the ordinary nodes transmit their data to the clus-
ter, a lot of energy can be saved by absence of flooding and
multiple routes. Furthermore, any changes within a clus-
ter effects only this cluster locally, so clustering can ensure
efficient resource allocation, with greater network scalabil-
ity. To make the best use of clustering, one of the most
important task is to partition a given network into disjoint
and mostly non-overlapping groups. Numbers of cluster-
ing algorithms were proposed according to this idea. In [5],
the authors proposed a clustering algorithm which based
on cell combination for the networks. Based on the fact
that we can improve the system’s lifetime by improving each
cluster’s lifetime, [6] alternates cluster head in a cluster to
maximize the cluster’s lifetime and finally determines each
cluster and the corresponding head. In [7], through coor-
dination of nodes belonging to the same cluster which can
effectively avoid redundant sensing or processing, Alaei et.al
proposed a clustering method to optimize the energy con-
servation and prolong network lifetime. Other related clus-
tering algorithms can refer to [8, 12, 13].

Easily to know, small size clusters leads to a large number
of clusters, which will congest the area; while a few number
of clusters will exhaust the cluster head with large amounts
of messages transmitted from cluster members. An effec-
tive way to control the average size of clusters is to assume
that each cluster head can be at most d-hop away from the
nodes within its dominating range, where d can be manually
set based on the real circumstance. When sensor nodes in
a network are uniformly and independently distributed, [9]
gives a solution to evaluate the average hop distance. In this
paper, we focus on constructing d-hop clusters for a given
WSN. Usually, the set of cluster heads can be viewed as a
connected dominating set (CDS) of graph G, which is ab-
stracted from the corresponding network. For a given graph
G = (V,E), a CDS of G is a subset C ⊆ V such that for
each vertex v ∈ V \C, there exists a vertex u ∈ C satisfy-
ing (u, v) ∈ E. Moreover, the subgraph induced by C is
connected. Similarly, to construct d-hop clusters for a given
WSN is equivalent to choose a d-CDS for a given graph. The
formal definition of d-CDS is: For a given graph G = (V,E),
a d-CDS of G is a subset C ⊆ V such that for each vertex
v ∈ V \C, there exists a vertex u ∈ C and a path p from
v to u satisfying the length of p is at most d. Moreover,
the subgraph induced by C is connected. To reduce the
message redundancy, finding a minimum d-CDS is of great
significance.

In most cases, people assume that wireless nodes are on a
two-dimensional plane, and use a unit disk graph (UDG) to
model the network, where each node has the same commu-
nication range and two nodes can communicate with each

other only when they are located within the communica-
tion range of the other. However, in many environment like
mountainous areas or underwater region, node deployment
is often not flat, resulting in a three dimensional network.
Correspondingly, we can use an unit ball graph (UBG) to
model such network in a 3D space. In an UBG G = (V,E),
each node also has the same communication range, denoted
as a ball, and any two vertices are adjacent if and only if the
Euclidean distance between them is at most 1. As far as we
know, there is not yet specialized works on d-CDS in unit
ball graph before this paper. The only related work is the
work done by Kim [14] which can be seen as 1-CDS example
in UBG.

Our goal in this paper is to partition a wireless sensor
network into d-hop clusters by finding a minimum d-CDS
for an UBG G = (V,E) derived from the given network. In
this paper, we proposed a two-phase distributed algorithm
to find a minimum d-CDS. The first part of this algorithm is
to select a d-MIS from a given network. Afterwards, we add
some extra nodes to connect the d-MIS to make it a d-CDS.

Our contributions are threefold: (1) As far as we know,
this is the first work focusing on finding a minimum d-CDS
in three-dimensional situation. (2) Since distributed algo-
rithms become more and more important for self-organized
WSNs, we proposed a distributed algorithm for minimum
d-CDS problem. As for the details of our algorithm, we first
introduce concepts of “level id” and “neighbor information”
to overcome some bug in design similar distributed algo-
rithms. (3) As the minimum d-CDS problem is NP-complete
which is proved by Vuong and Huynh [15], we analyzed the
performance of our algorithm and provided approximation
ratio for our algorithm. Moreover, the approximation ratio
is proved to be (d + 1)β, where β is a parameter given in
Section 5.

The rest of this paper is organized in the following struc-
ture: In Section 2, we describe the related work in detail.
Section 3 introduces some definitions and notations that will
be used in later sections. In Section 4, we present our four-
phase distributed algorithm to select a d-CDS for the given
graph. Afterwards, the corresponding performance analysis
is described in Section 5 and Section 6 gives the simulation.
Finally, Section 7 concludes this paper.

2. RELATED WORK
Since our goal is to find a minimum d-CDS for a given

graph G = (V,E), we will introduce some related work
about CDS in this section. Since CDS is commonly used
to construct virtual backbone for WSNs, lots of efforts have
been made in the past decades. In two-dimensional space,
researchers often use unit disk graph (UDG) to model wire-
less sensor networks. In an UDG G = (V,E), any two
vertices are adjacent if and only if the Euclidean distance
between them is at most 1. In order to improve the perfor-
mance of WSNs, we usually choose a minimum CDS (MCDS)
to act as the networks’ virtual backbone.

Clark et.al. [16] proved that the MCDS problem is NP-
hard even in UDG. Hence, a commonly used approach is
to use approximation algorithms to solve such problem. In
2002, Wan et.al [17] first found that MCDS problem has
polynomial-time constant-factor approximation solution and
proposed a two-phase algorithm to select a CDS. Based
on this design, a lot of similar two-phase algorithms were
proposed in literature. All these algorithms first choose a



maximal independent set (MIS), and the second phase is to
add some extra nodes to connect them. An MIS for graph
G = (V,E) is a subset M ⊆ V such that any two vertices
in M are not directly connected, and if we insert a node u
from V \M into M , M will not be an MIS any more. Obvi-
ously, MIS is also a dominating set (DS). Besides, the related
theoretical approximation ratio of such algorithms are also
been widely studied [18]. On the other side, Cheng et.al
[19] first found that MCDS problem has PTAS solutions.
Even though PTAS has a better approximation ratio, the
time cost in [19] is too high to implement in reality. Hence,
the main focus of this field is still on constructing effective
approximation algorithms to find a feasible solution within
polynomial time. Except for those maximal independent
set-based algorithms, there also exist other kinds of algo-
rithms, such as greedy algorithms [20], Steiner tree-based al-
gorithms [10], pruning-based algorithms [21] and connected
clustering-based algorithms [22].

As for the two-phase algorithm, it is very common to ap-
ply color-marking algorithm to first select an MIS from a
given graph G = (V,E) [17]. After we have obtained a DS,
connecting this DS into a CDS is equivalent to finding a
Steiner Tree for G. The formal definition of Stenner Tree is
as follows: Given a graph G = (V,E), a selected subset S,
a Steiner Tree is a tree in G includes all vertices in S. In
those MIS-based algorithms, Steiner Tree is commonly used
in the connecting part. The detailed introduction about
Steiner Tree used in constructing MCDS can refer to [10].

In a wireless sensor network, implementing cluster-based
hierarchical structure is much more helpful to achieve effi-
cient routing, increase the lifetime of networks and improve
the network’s scalability. Further, such structure can be
modeled as d-hop CDS. Most of related works on d-hop
CDS were finished within recent decades. In 2006, Huynh
et.al [23] first proved that finding a minimum d-hop CDS
in UDG is NP-complete. For a period of time since then,
people could only propose some heuristic algorithms which
has no exact performance analysis, especially the quantita-
tive description about the gap between optimal solution and
feasible solution. Until recently, some theoretical researches
came out. In [11], Gao et.al proposed a two-phase approxi-
mation algorithm to compute a d-hop CDS in a UDG with a
constant-factor approximation which is relevant with O(d3).
Later, Zhang et.al [24] improved the approximation ratio
into O(d2) level.

Obviously, UBG can formulate a network environment
more precisely than UDG because UBG model can reflect
more detail of real world. Although the design of algorithms
for MCDS in UBG seems to be similar with the design in
UDG, the analysis part of these approximation algorithms
could be much harder than that in UDG. Because of such dif-
ficulty, few papers study MCDS approximation in 3D space
to the best of our knowledge. Actually, in most case, when
people begin to study MCDS in UBG, they usually modify
and generalize the corresponding approximation algorithms
in 2D space, such as the two-phase algorithms mentioned
above. In [25], Butenko and Ursulenko first proved that the
ratio between the size of MIS and MCDS is at most 11 which
leads to an approximation ratio of 22 for MCDS in UBG.
Later, Kim [14] improved that ratio into 14.937.

As far as we know, there is few work studying minimum
d-hop CDS in UBG. This paper is the first to study the
relevant research.

3. PRELIMINARIES
In this section we will introduce some definitions and no-

tations, which will be used later in our algorithms and anal-
ysis.

As mentioned before, for any given graph, we hope to find
a minimum d-CDS to gather data and cluster the network.
When designing algorithms for CDS, many researchers adopt
a two-step algorithm as follows:

1. Construct a maximal independent set (MIS).

2. Connect this MIS into a CDS.

We follow a similar pattern in the design of our d-CDS
algorithm. We first select a d-MIS, then connect this d-MIS
into a d-CDS. The following are the definition of d-MIS, d-
DS and the relation between them.

Definition 1. A d-IS (independent set) for a given graph
G = (V,E) is a vertex set I such that for any pair of nodes
in I, the distance between them is greater than or equal to d
hops.

Definition 2. A d-MIS (maximal independent set) for a
graph G = (V,E) is a d-IS such that if we insert any vertex
from V \ I, I is no longer a d-IS.

By definition, it is easy to get the following lemma.

Lemma 1. A d-MIS for a graph G is also a d-DS for G.

In the following sections, the distance between any two
nodes u, v always means the smallest number of hops needed
from u to v, and we use dis(u, v) to denote this distance. For
any node u, we use d-hop neighbors for u to denote the set
of nodes within d hops from u (except itself), i.e.,

Nd(u) = {v ∈ V | 1 ≤ dis(u, v) ≤ d}.

4. A DISTRIBUTED ALGORITHM
Our distributed algorithm has two subroutines, which is a

generalization of the algorithm described in [26, 11]. Based
on a spanning tree, we first construct a d-MIS, then insert
additional nodes to connect the selected nodes as a d-CDS.
Specifically, all previous works failed to clarify the details of
message interchange processes in their distributed designs,
which might easily bring deadlock and termination prob-
lems. Our algorithm design avoids such problems, which
can be implemented in any asynchronous systems.

4.1 Algorithm Description
Before entering our algorithm, there are some prepara-

tions to be finished. Given a UBG G = (V,E), we select
an arbitray root r(usually with maximum node degree and
locates at the center of the network), and then use the dis-
tributed leader-election algorithm mentioned in [27] to con-
struct a spanning tree. In the meanwhile, we calculate the
level of each node, which is the number of hops from root
to this node. As for the root r, level = 0. Then we can give
a rank to every node by using the pair of its level and its
id, (level, id). For any two node nx, ny, suppose nx.level,
ny.level is their level information, nx.id, ny.id is their id
information, then nx has a lower rank than ny if and only if
one of the following conditions holds:

1. nx.level < ny.level; or



2. nx.level = ny.level and nx.id < ny.id.

Additionally, each ni has a variable ni.children for count-
ing its children. It also uses a set ni.nb to record its d-hop
neighbors. Each entry of nb is the in the form of (IDu, levelu).
Table 1 summarizes the variables used for each node ni,
some of which will be defined later.

Table 1: Variables for each node ni

Name Explanation
level number of hops from root to ni.
id the ordering number of ni.

parent ni’s parent in tree.
children the number of ni’s children.

nb the set of ni’s d-hop neighbors.
color ni’s color.

blackpath the path from one black node to another black
node which actives it.

Subroutine 1 is a coloring process to select a d-DS for the
given network. All the nodes are initially colored white, and
will be colored black or grey eventually. We use three special
variable WHITE, BLACK, GREY to denote these three
colors. When a node u colors itself black, it will broadcast
a black message, which will reach all nodes in Nd+1(u), and
each node v in Nd(u) will color itself grey and broadcast
a grey message which will also reach all nodes in Nd(v).
Each node in Nd+1(u) \Nd(u) will record the path to u in
blackpath if it is still white and its blackpath has not been
determined. Once a node knows that all its lower rank d-
hop neighbors have been colored grey already, it will color
itself black and broadcast a black message. All the black
nodes will consists of a d-MIS for G after this subroutine.
The detailed description is shown in Alg. 1. We use ni.x to
count the unterminated children.

In subroutine 2, we will connect d-DS into a d-CDS. For
each black node except the root, we color the nodes in its
blackpath as black to connect it with another black node.
The function pop(blackpath) means to take out the last entry
of blackpath. After this subroutine, all the black nodes will
consists of a d-CDS for G. The detailed description is shown
in Alg. 2.

The two subroutines form our algorithm, and we will refer
to this algorithm as d-CDS algorithm in the following sec-
tion. Alternatively, instead of connecting each black domi-
nator directly via blackpath, we may use distributed Steiner
tree algorithm to connect black nodes (denoted as Steiner
nodes), which could improve the final approximation ratio.

4.2 An Example
In this subsection, we use an example to illustrate our

algorithm. To keep it simple and precise, we just plot the
example in two-dimensional space as is shown in Fig. 1.

Originally, we have a given UBG G = (V,E) with 17
nodes, as is shown in Fig. 1 (a). We want to find a 2-
hop CDS for G. Before all of the work starts, we need to
construct a spanning tree T for G. As Fig. 1 (b) shows, a
spanning tree is formed according to the original graph and
every node has a unique id number. A solid line between two
nodes means there is an edge between them in the spanning
tree T , and a dashed line between two nodes means there is
an edge between them in the original graph G, but this edge
is not included in T . Before actually processing coloring
subroutine, each node should have already got its level and

Algorithm 1 d-MIS coloring

1: ni.color = WHITE; . Initialization
2: ni.x = ni.children;
3: if ni is root then
4: broadcast black({ni.id});
5: end if
6: if receive black(path) then
7: if length(path) ≤ d then
8: push ni.id to path;
9: broadcast black(path);

10: if ni.color = WHITE then
11: ni.color = GREY ;
12: broadcast grey(ni.id, d);
13: end if
14: else if length(path) = d+ 1 & ni.color = WHITE

& ni.blackpath is not set then
15: ni.blackpath = path;
16: end if
17: end if
18: if receive grey(nj .id, k) & k > 1 then
19: mark nj .id as colored in ni.nb;
20: broadcast grey(nj .id, k − 1);
21: end if
22: if all lower rank d-hop neighbors are colored grey &

ni.color = WHITE then
23: ni.color = BLACK;
24: broadcast black({ni.id});
25: end if
26: if ni.children = 0 & ni.color 6= WHITE then
27: broadcast colored(ni.parent); terminate;
28: end if
29: if receive colored(nj .parent) & ni.id = nj .parent then
30: ni.x = ni.x− 1;
31: if ni.x = 0 then
32: if ni is not root then
33: broadcast colored(ni.parent);
34: end if
35: terminate;
36: end if
37: end if

Algorithm 2 d-CDS connecting

1: if ni.color = BLACK then
2: nexthop = pop(ni.blackpath);
3: broadcast join(nexthop, ni.blackpath);
4: end if
5: if receive join(nexthop, blackpath) then
6: if ni.id = nexthop and blackpath 6= ∅ then
7: nexthop = pop(blackpath);
8: broadcast join(nexthop, blackpath);
9: ni.color = BLACK;

10: end if
11: end if

d-hop neighbor information. Then we can start to color the
network.

In the coloring procedure as is shown in Alg. 1, initially all
nodes are white. In Fig. 1 (b), root r colors itself black, and
broadcasts a black message. In Fig. 1 (c), upon receiving
a black message and detecting that there is a black node
within its 2-hop distance, node 2, 3, 4, 5, 6 color themselves
grey, and broadcast a grey message to inform all their d-hop
neighbors that they have already been colored. At this time,



node 8 notices that all its lower rank 2-hop neighbors have
been colored grey (they are node 2, 4, 5, respectively), so
node 8 colors itself black and broadcasts a black message.
In Fig. 1 (d), node 9, 10, 13, 14, and 15 receive the black
message initiated from node 8, and thus color themselves as
grey and broadcast grey messages. Now node 11 can color
itself black and broadcast a black message, which will lead
node 12, 16, and 17 to color themselves as grey in Fig. 1 (e).
Finally, the set of node {1, 8, 11} is our selected 2-MIS for
G, also a 2-DS for G.

Fig. 1 (f) shows a possible way to connect these black
nodes into a 2-CDS, since both node 8 and node 11 record
the path from node 1 as their blackpaths. As a result, the
set of nodes {1, 2, 3, 4, 6, 8, 11} is our selected 2-CDS.

5. PERFORMANCE ANALYSIS
In this section we will analyze the performance of our d-

hop CDS algorithm. We first prove the correctness of this
design, and then discuss its approximation ratio.

Theorem 1. d-CDS algorithm can successfully terminate
with consistent agreement.

Proof. First, we prove the termination for the d-CDS
algorithm above. According Line 1-25 in Alg. 1, after enough
time, all nodes will be colored either black or grey. From
Line 25-26, leaf nodes will first terminate. Then leaf nodes
will feed the messages of termination to their parents. Their
parents will also terminate when all their children terminate
according to Line 29-37. As for Alg. 2, the entire network
will terminate when all blackpaths pop out.

Next, we will prove the property of agreement. Since each
message in d-CDS algorithm except for Alg. 1 is broadcasted
only once by each node, it is easy to understand the agree-
ment in this situation. Besides, in Alg. 1, Line 22 ensures the
sequence of the chosen black nodes is deterministic. Hence,
the algorithm must meet the requirement of agreement.

Theorem 2. All the black nodes after Alg. 1 consists of
a d-MIS for G.

Proof. We noticed that every node must be colored as
black or grey after Alg. 1, otherwise Alg. 1 cannot terminate.

Then we prove that the distance between any two black
nodes is greater than or equal to d. We prove it by contra-
diction. Suppose there are two black nodes u and v with
distance less than d. Because all the nodes are totally or-
dered by rank, without loss of generality we assume u has
a higher rank than v. Then u cannot color itself unless it
knows that v has been already colored. However, since the
distance between u and v is less than d, in all black messages
initiated from v and reached u, there must be one traveling
less than d hops. Then by Alg. 1, u will be colored grey,
which yields a contradiction.

We also cannot insert any more black nodes because if we
change any grey nodes into black, there must exist a black
node within d hops.

Thus all the black nodes form a d-MIS for G.

Theorem 3. All the black nodes after Alg. 2 consists of
a d-CDS for G.

Proof. Denote the set of black nodes after Alg. 2 as C.
According to Lemma 1 and Lemma 2, the set of black nodes
after Alg. 1 is a d-MIS, so it is a d-DS for G by Lemma 1.

Hence we only need to prove the connectivity of C. In
Alg. 2, we use the nodes in blackpath to connect each black
node(except the root) to another black node, the connectiv-
ity just follows.

Then we move on to the discussion of the approximation
ratio. First we find an upper bound for the number of inde-
pendent vertices for in a node’s d-hop neighbors. Then we
use this upper bound to establish a connection between IS
and DS for a graph. Finally, we prove the approximation ra-
tio of our algorithm. During our derivation, we use a lemma
proved in [28], which is described in Lemma 2.

Lemma 2. ([28]) For any vertex u in a UBG G, the neigh-
borhood N(u) contains at most 12 independent vertices.

Lemma 3. I is a d-IS of a UBG G, then for any vertex
u, Nd(u) contains at most β vertices from I, where

β =


12 if d = 1,
125 if d = 2,

12 +
8d3 + 12d2 + 6d⌈

1
2

⌊
d−1
2

⌋⌉ if d ≥ 3.

Proof. It is easy to see that when d = 1, the result is
valid by Lemma 2. For d = 2, if we place a ball centered
at z with radius 0.5 for each vertex z from I, then all these
balls are mutually disjoint. Next, based on the knowledge
that node u’s any 2-hop neighbor (as a ball with radius 0.5)
should located within the ball centered at u with radius 2.5,
we can calculate the upper bound of β for d = 2 as

β ≤
4
3
π · 2.53

4
3
π · 0.53

= 125.

Now suppose d ≥ 3. For any u ∈ V , let

A = Ndd/2e(u) ∩ I = {a1, a2, ..., at}

denote the set of u’s d-hop independent neighbor within b d
2
c

hops, and we will show that t ≤ 12.
Suppose t > 12, then for any two vertices w, v ∈ A, denote

the shortest path from w to u and from v to u as Pw and
Pv, and denote w0, v0 as the last vertices on Pw and Pv.
Because N1(u) contains at most 12 independent vertices, if
t > 12, we could always choose two vertices w and v such
that w0 and v0 are within each other’s transmission range
(could be the same vertex). Then we could construct a path
from w to v by travel in this order: w, w0, v0, v, and the
length of this path is at most 2dd/2e − 1 ≤ d, contradicting
with the fact that w, v are d-hop independent. Thus∣∣∣Ndd/2e(u) ∩ I

∣∣∣ = t ≤ 12. (1)

Then consider the rest part of u’s d-hop neighbors. Let

B = Nd(u) \Ndd/2e(u) ∩ I = {b1, b2, ..., bm}.

For each 1 ≤ i ≤ m, let Qi be a shortest path from bi to u.
Denote Db as a ball centered at b with radius 0.5 and define
a region Ci such that

Ci =
⋃

b∈Nb(d−1)/2c(bi)∩V (Qi)

Db.

Here V (Qi) is the set of nodes on path Qi. We then claim
that Ci cannot intersect with Cj for any i 6= j. If it happens,
then we can construct a path between bi and bj , which has



(a). Original Network with n = 17
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(b). A Spanning Tree with node ids
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(c). Root spreads grey msgs
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(d). New nodes are colored as black
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(e). Continue coloring to form a 2-DS
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(f). Connect 2-DS as a 2-CDS

Figure 1: An example to construct a 2-CDS with 17 nodes

length at most 2b(d − 1)/2c + 1 ≤ d, contradicting the fact
that bi, bj are d-hop independent. Thus we have that Ci

does not intersect with each other.
Suppose Qi = w1w2w3 . . . . Since Qi is a shortest path

between bi and u, then Dw1 , Dw3 , . . . are disjoint with each
other, and the volume of Ci is at least

⌈
1
2

⌊
d−1
2

⌋⌉
4
3
π 1

23
.

Next, notice that bi /∈ Ndd/2e, so the distance between u
and bi is greater than d d

2
e, i.e. dis(u, bi) > d d2 e. For b ∈

Nb(d−1)/2c(bi)∩V (Qi), according to the triangle inequality,
we have

dis(u, b) ≥ dis(u, bi)− dis(b, bi)
> dd/2e − b(d− 1)/2c = 1,

which means Ci does not intersect with the ball at center
u with radius 0.5. Since every Ci locates within the ball at
center u with radius d+0.5, we have

m ≤

4

3
π(d+

1

2
)3 − 4

3
π

1

23⌈
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=
8d3 + 12d2 + 6d⌈
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2
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From Eqn. (1), and Eqn. (2) we can get our final result.

Lemma 4. Suppose D is a d-DS of G and I is a d-IS of
G. Then |I \D| ≤ β|D \ I|.

Proof. Denote X = I \D and Y = D \ I. Construct a
bipartite graph H = (X,Y,E). Here (x, y) ∈ E if and only
if x ∈ X, y ∈ Y , and dis(x, y) ≤ d. It is easy to see∑

x∈X

degH(x) =
∑
y∈Y

degH(y), (3)

where degH(x) represents the degree of x in the bipartite
graph H. Since any vertex in X is d-hop dominated by

some vertices, so for any x ∈ X,

degH(x) ≥ 1. (4)

Next, By Lemma 3, for any y ∈ Y ,

degH(y) ≤ β. (5)

Then our lemma follows from Eq. (3), (4), and (5).

Lemma 5. Suppose I is a d-MIS for G, then we need at
most d(|I| − 1) nodes to connect I in Alg. 1.

Proof. In Alg. 1, for every black node except the root,
there exists a black node at d hops away, just follow the
blackpath. Thus, the total nodes needed to connect I is at
most d(|I| − 1).

Next we prove our main result.

Theorem 4. Our d-CDS algorithm has an approxima-
tion ratio of (d+ 1)β.

Proof. Denote the set of black nodes after Alg. 1 as I,
and denote the set of all black nodes after Alg. 2 as C. Let
C∗ be the optimal solution of d-hop CDS in G. By Lemma 4,

|I \ C∗| ≤ β|C∗ \ I|
|I| − |I ∩ C∗| ≤ β|C∗| − β|C∗ ∩ I|

|I| ≤ β|C∗| − (β − 1)|C∗ ∩ I| (6)

Also by Lemma 5, we have

|C| ≤ d(|I| − 1) + |I|
≤ (d+ 1)|I| − d
≤ (d+ 1)β|C∗|

Then the theorem holds.



(a). Original Network with n = 100 (b). A 3-DS with 11 nodes (c). A 3-CDS with 28 nodes

Figure 2: An example to illustrate the procedure of our algorithm.
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(c). 3-MIS and 3-CDS size w.r.t. n

Figure 3: An example to illustrate d-MIS and d-CDS size w.r.t. network size.

6. SIMULATION AND EVALUATION
In this section, we first present our experiment settings,

then we show our evaluation results with corresponding anal-
ysis.

6.1 Experiment Settings
To evaluate the performance of our algorithm, we ran-

domly generate different sets of nodes (with different node
numbers and coordinates) on a space of size 100×100×100
units. For each fixed hop setting (d = 1, d = 2, d = 3), we
repeatedly run the algorithm for 50 different cases to achieve
an average performance. We focus on the following impacts
to evaluate the performance of our algorithm under different
network sizes and different hop settings.

• The size of chosen CDS versus the size of the network,
which is a direct reflection of algorithm performance.
A smaller CDS is easier to maintain and has lower
energy cost, bring benefits to the service providers.

• The d-MIS size versus the d-CDS size. This parameter
reflects the construction of two-step d-CDS algorithm,
and exposes the cost in each step.

• The hop count of chosen CDS, reflecting the concen-
tration level of CDS. If d is smaller, then more nodes
need to be selected into d-MIS, while if d is larger, then
more nodes are needed to connect two cluster heads.

The various parameters used in our simulation are tabu-
lated in Table 2.

6.2 Experiment Results
In this part, we will provide some numerical results on the

distributed algorithm proposed above. First, Fig. 2 (a)-(c)
shows the detailed procedure of how our algorithm success-
fully obtains a d-CDS. In this exhibition, we set the biggest

Table 2: Simulation Parameters

System Parameter Description

number of nodes in WSN 100-500
number of samples in each round 50
step length 2
number of hops 1-3

monitoring ability of a dominator as 3 hops and the number
of total nodes as 100. We try to construct a 3-CDS with our
algorithms. Fig. 2 (a) exhibits the initial state of a wireless
sensor network. In this state, every node is colored as green.
After running Alg. 1, we get Fig. 2 (b). In this figure, the
black nodes form a 3-MIS with 11 nodes among 100 candi-
dates. These nodes also form a dominating set which can
dominate all other nodes in graph within 3 hops. Then we
connect nodes in 3-MIS with some extra nodes with Alg. 2.
We color that extra nodes black and form a 3-CDS shown
in Fig. 2 (c). Finally, 28 nodes are selected as 3-CDS for the
given graph, which is only around 30% of the network.

Next, let us compare the d-MIS size versus d-CDS size.
This parameter reflects the construction cost for our algo-
rithm. Fig. 3 (a)-(c) shows the error bar graph for d-MIS
and d-CDS size w.r.t. network size where d is setting as 1,
2, and 3, respectively. In each case we take the best, the
average, and the worst case results among 50 distinct ex-
periments. From this figure we can see that as d increases,
the size of d-MIS reduces significantly while the size of con-
nectors is relatively increased. This phenomenon is easy to
explain from the nature of our algorithm: (1) as d increases,
less number of clusters are needed to dominate the whole
network; (2) whereas more number of connectors are needed
to connect pairwise cluster heads because the distance be-
tween them are increased according to d.



7. CONCLUSION
In this paper we propose a distributed algorithm for clus-

tering problem in high dimensional homogeneous wireless
sensor networks, which has an approximation ratio of (d +
1)β, where d is the number of hops in each cluster. Our
algorithm has 2 subroutines. We first use coloring process
to select a d-hop minimum independent set (d-MIS) for a
graph G, then connect this d-MIS as a tree. We propose an
example to illustrate our idea, give a detailed analysis to this
algorithm, and prove its approximation ratio theoretically.
Finally, numerical experiments validate the efficiency of our
design. To the best of our knowledge, we are the first work
to design a distributed approximation algorithm for d-hop
connected clustering problem in high dimensional space.

8. REFERENCES
[1] Chi-Fu Huang and Yu-Chee Tseng. The coverage

problem in a wireless sensor network. Mobile Networks
and Applications, 10(4):519–528, 2005.

[2] Vinay Kumar, Sanjeev Jain, Sudarshan Tiwari, et al.
Energy efficient clustering algorithms in wireless sensor
networks: A survey. IJCSI International Journal of
Computer Science Issues, 8(5):1694–0814, 2011.

[3] Seema Bandyopadhyay and Edward J Coyle. An
energy efficient hierarchical clustering algorithm for
wireless sensor networks. In INFOCOM 2003,
volume 3, pages 1713–1723. IEEE, 2003.

[4] Curt Schurgers and Mani B Srivastava. Energy
efficient routing in wireless sensor networks. In
MILCOM 2001, volume 1, pages 357–361. IEEE, 2001.

[5] Luo Chang-ri, Zhu Yun, Zhang Xin-hua, and Zhou
Zi-bo. A clustering algorithm based on cell
combination for wireless sensor networks. In ETCS
2010, volume 2, pages 74–77. IEEE, 2010.

[6] Xiaorong Zhu, Lianfeng Shen, and T-SP Yum.
Hausdorff clustering and minimum energy routing for
wireless sensor networks. Vehicular Technology, IEEE
Transactions on, 58(2):990–997, 2009.

[7] Mohammad Alaei and Jose M Barcelo-Ordinas. Node
clustering based on overlapping fovs for wireless
multimedia sensor networks. In WCNC 2010, pages
1–6. IEEE, 2010.

[8] Ossama Younis and Sonia Fahmy. Distributed
clustering in ad-hoc sensor networks: A hybrid,
energy-efficient approach. In INFOCOM 2004,
volume 1. IEEE, 2004.

[9] Natalija Vlajic and David Xia. Wireless sensor
networks: to cluster or not to cluster? In WoWMoM
2006, pages 258–268. IEEE Computer Society, 2006.

[10] Jeremy Blum, Min Ding, Andrew Thaeler, and
Xiuzhen Cheng. Connected dominating set in sensor
networks and manets. In Handbook of Combinatorial
Optimization, pages 329–369. Springer, 2005.

[11] Xiaofeng Gao and Weili Wu. A constant–factor
approximation for d–hop connected dominating sets in
unit disk graph. International Journal of Sensor
Networks, 12(3):125–136, 2012.

[12] Ya Xu, John Heidemann, and Deborah Estrin.
Geography-informed energy conservation for ad hoc
routing. In Proceedings of the 7th annual international
conference on Mobile computing and networking, pages
70–84. ACM, 2001.

[13] Suman Banerjee and Samir Khuller. A clustering
scheme for hierarchical control in multi-hop wireless
networks. In INFOCOM 2001, volume 2, pages
1028–1037. IEEE, 2001.

[14] Donghyun Kim and Ding-Zhu Du. A better
approximation algorithm for computing connected
dominating sets in unit ball graphs. Mobile
Computing, 9(8):1108–1118, 2010.

[15] Tasi HP Vuong and Dung T Huynh. Adapting d-hop
dominating sets to topology changes in ad hoc
networks. In Computer Communications and
Networks, 2000, pages 348–353. IEEE, 2000.

[16] Brent N Clark, Charles J Colbourn, and David S
Johnson. Unit disk graphs. Discrete mathematics,
86(1):165–177, 1990.

[17] Peng-Jun Wan, Khaled M Alzoubi, and Ophir Frieder.
Distributed construction of connected dominating set
in wireless ad hoc networks. In INFOCOM 2002,
volume 3, pages 1597–1604. IEEE, 2002.

[18] Jun Li and Xiaofeng Gao. Performance analysis for
approximating mcds in wireless ad-hoc network.
International Information Institute(Tokyo).
Information, 16(2), 2013.

[19] Xiuzhen Cheng, Xiao Huang, and Ding-Zhu Du. A
polynomial-time approximation scheme for the
minimum-connected dominating set in ad hoc wireless
networks. Networks, 42(4):202–208, 2003.

[20] Bevan Das and Vaduvur Bharghavan. Routing in
ad-hoc networks using minimum connected
dominating sets. In Communications, 1997. ICC 97
Montreal,’Towards the Knowledge Millennium’,
volume 1, pages 376–380. IEEE, 1997.

[21] Fei Dai and Jie Wu. An extended localized algorithm
for connected dominating set formation in ad hoc
wireless networks. Parallel and Distributed Systems,
IEEE Transactions on, 15(10):908–920, 2004.

[22] Mario Gerla and Jack Tzu-Chieh Tsai. Multicluster,
mobile, multimedia radio network. Wireless networks,
1(3):255–265, 1995.

[23] Trac N Nguyen and Dung T Huynh. Connected d-hop
dominating sets in mobile ad hoc networks. In
Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, 2006, pages 1–8. IEEE, 2006.

[24] Zhao Zhang, Qinghai Liu, and Deying Li. Two
algorithms for connected r-hop k-dominating set.
Discrete Mathematics, Algorithms and Applications,
1(04):485–498, 2009.

[25] Sergiy Butenko, Sera Kahruman-Anderoglu, and
Oleksii Ursulenko. On connected domination in unit
ball graphs. Optimization Letters, 5(2):195–205, 2011.

[26] Peng-Jun Wan, Khaled M Alzoubi, and Ophir Frieder.
Distributed construction of connected dominating set
in wireless ad hoc networks. In INFOCOM 2002,
volume 3, pages 1597–1604. IEEE, 2002.

[27] Israel Cidon and Osnat Mokryn. Propagation and
leader election in a multihop broadcast environment.
In Distributed Computing, pages 104–118. 1998.
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