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Abstract

In this paper, we design a B+-tree based me-
chanical auto-construction system for asynchronous
multi-channel wireless data broadcast. We name it as
SAMBox (Smart Asynchronous Multi-channel black

Box ), which is an integrated framework. Given the
number of available channels and the data set to be
broadcast, the framework can automatically construc-
t an optimal broadcast program with best index tree
structure, channel assignment, as well as index and da-
ta allocation, such that the overall performance of the
data broadcast system will become optimal according
to different client requirements. Theoretical analysis
are also provided to prove the efficiency of SAMBox.
Key Words: Data Broadcast; B+-Tree Indexing

1 Introduction

Recently, 4G networks together with smart-
phones make mobile computing within a wide area
possible. Mobile users prefer to access public infor-
mation like stock price, real-time traffic, and weather
information through a wireless connection. Wireless

Data Broadcast is an attractive solution to disseminate
data efficiently because of its scalability and flexibili-
ty [6]. In data broadcast systems, data are broadcast
periodically from a Base Station (BS) on some chan-
nels within a transmission range. Clients within this
range can freely access the data.

Energy conservation and access efficiency are two
main performance concerns for wireless data broadcast
systems. A mobile device usually supports two oper-
ation modes, active mode and doze mode, to facilitate
the energy conservation because of battery limitation.
Two metrics have been proposed to measure the ener-
gy conservation and access efficiency respectively [8]:
Tuning time: The total time when a client is in active
mode; and Access latency: The time elapsed from the

moment a client requests some data to the moment
when all the requested data are retrieved.

To reduce tuning time, a good way is to use in-
dex. By listening to certain index information, clients
will be able to compute the time they need to wait
until the data requested arrives. They can then turn
into doze mode during the waiting time and tune in
right before the target data arrive. Several indexing
techniques such as B+-tree, alphabetic Huffman tree,
exponential indexing and hashing table have been ap-
plied to the wireless data broadcast environment. To
reduce access latency, an intuitive way is increasing
the throughput of the broadcast. Using more channels
for data broadcast can naturally increase the overal-
l throughput. Hence, considering data broadcast in
multi-channel wireless environment becomes a natural
extension for research in this area.

However, both solutions proposed above bring
new problems. In general, inserting indices will in-
crease the length of a broadcast cycle and consequently
make average access latency longer; on the other hand,
indexing is critical to decrease tuning time. Therefore,
a good balancing between access latency and tuning
time should be found. Meanwhile, the introduction of
multi-channel also poses new questions such as: how
to design an index scheme for data on multiple chan-
nels; how to allocate channels to indices and data; and
how to assign pointers and design index structures.

In this paper, we consider a global optimiza-
tion for efficient data broadcast scheme with B+-Tree
based distributed index under asynchronous multi-
channel wireless communication. We build a complete-
ly automatic framework named SAMBox : Smart

Asynchronous Multi-channel black Box. It can auto-
construct a complete data broadcast system under any
wireless communication, and will compute the best in-
dex structure, channel allocation, as well as data allo-
cation such that the system will be the most efficient



broadcasting system to its clients.
The rest of the paper is organized as following:

in Section 2 we introduce related works. In Section 3
we illustrate the system architecture for our design. In
Section 4 we describe SAMBox construction with five
processes. In Section 5 we discuss system performance
theoretically. Finally, Section 6 gives a conclusion.

2 Related Work

Researches on wireless data broadcast mainly fo-
cus on data allocation and index designs. For data
scheduling, Acharya et al. [1] proposed a “broadcast
disk” scheme to group data by similar access probabil-
ities. Vaidya et al. [16] optimized the average access la-
tency under nonuniform data access distribution. Vla-
jic et al. [17] gave an optimized data broadcast scheme
in systems of hierarchical cellular organization.

For indexing design, [10] presented a signature
technique for information filtering. Imielinski et al. [7]
proposed flexible index and hash-based index. They
later customized distributed B+-tree indexing [8]. Xu
et al. presented an exponential index scheme in [20].
Chen et al. [5] and Shivakumar et al. [15] discussed how
to construct an imbalanced index tree to minimize the
average tuning time. Yao et al. [21] designed a hash
function to facilitate skewed data access probabilities.

Multi-channel broadcast enables further reduc-
tion of access latency. Prahakara et al. [13] presented
a air cache method to allocate data on multi-channels
based on their popularity factors. Yee et al. [23] gave
a near-optimal approximation to minimize the average
access latency. Ardizzoni et al. [3] proposed dynam-
ic programming to optimally allocate skewed data on
multi-channels with flat broadcast per channel. Saxe-
na et al. [14] developed an on-line broadcast scheduling
scheme to handle the volatility of the data. Chen et
al. [4] discussed disseminating time-constrained service
data through multi-channel broadcast.

Various index techniques have been developed for
multi-channel broadcast, including both index design
and index allocation. There are two popular categories
of index allocation. One is to interleave index with
data on multiple channels. Examples include [2], [12],
and [22]. Another is to separate channels as index
channels and data channels, like [9], [18], and [19].

3 System Model

Let D denote the set of t data items to be broad-
cast in a program, D = {d1, d2, · · · , dt}. For simplic-
ity, we assume that the keys for D are consecutively
increasing. P denotes the probability set for D, say,
each pi is the access frequency of di, and

∑t

i=1 pi = 1.
Let bucket denote the minimum logical unit in data

transmission process. Each data item may have differ-
ent sizes according to application constraints, and let
si denote the size of di (measured by bucket), which
can be intuitively viewed as the “length” of di on time
axis. Each datum is recognized by their primary key.

A BS periodically broadcasts data setD on multi-
channels. To reduce tuning time, a B+-tree Index
scheme is involved in SAMBox. We use a tree T to
index every datum by its primary key, and define k as
the maximum number of branch for each intermediate
node in this tree. A full B+-tree should be a k-ary
balanced tree. Let L be the depth of T . According
to [22], we consider depth-first index layouts. Similar
as the distributed index method in [8], T will be “cut”
at the lth level: nodes from level 1 to level l are repli-

cated part, while others from level l + 1 to level L are
non-replicated part. We also append control index to
replicated parts to connect every branch together.

Data and indices are partitioned onto different
channels to avoid data interleaving and speed up data
retrieval process. Let N denote the number of avail-
able channels for a BS, in which m channels are used
for broadcasting index and n channels for data item-
s. N = m + n. Let C denote the channel groups for
data items, C = {C1, C2, · · · , Cn}, and I for indices,
I = {I1, I2, · · · , Im}. Each Ci (Ii) contains the data
(indices) broadcast on the ith data (index) channel.

3.1 System Architecture

SAMBox system only needs the data information
D with access probability P and length S, and avail-
able channel number N . It will decide:

(1) Which B+-tree should be applied for index?
At which level should it be cut to form a dis-
tributed index? (determine k and l);

(2) How many channels should be used to broad-
cast indices and data? (determine m and n);

(3) How to allocate indices and data onto N chan-
nels? (determine data and index allocation).

Figure 1 illustrates the whole system architecture
for our design with 11 elements, 5 of which will be
discussed in this paper.
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Figure 1: System Architecture for Data Broadcast



The flow of SAMBox is shown as follows. First,
the server collects the information of data group and
available channels for broadcast. Here data are re-
trieved from local DBMS by a Database Manager.
Each data item has different client access probabili-
ty, which are generated by Access Probability Manag-

er, using statistics of historical records from BS. Next,
according to data information, Index Generator will
generate an efficient k-ary B+-tree, and then gener-
ate a distributed index sequence cut at lth level. Af-
ter getting the length of index tree and data group,
Channel Allocator will split N channels into two part-
s: index channels I of size m and data channels C of
size n. After that, Data Allocator will assign D onto
n channels with appropriate permutation. Index allo-

cator will put the index group onto m channels. After
each bucket has its fixed allocation, Pointer Construc-
tor will generate values within each pointer figuring
out the correct location it points. Finally, a Broadcast

Cycle Constructor will merge index channels and da-
ta channels together, make a complete broadcast cycle
and send it to BS. Data will continuously broadcast as
radio waves, and clients can download their required
data by accessing corresponding channels.

3.2 Bucket and Pointer Design

Bucket is the minimum logical unit for both in-
dices and data. Each bucket should have a head seg-
ment and payload segment. The head segment con-
tains the following information:

bucket type data or index bucket flag.
bucket id id of this bucket.
bucket sq sequence number in a bcycle.
bucket length length of the bucket.
bucket optional auxiliary space for future usage.

Intuitively, the minimum logical unit is one index
node, so we set the size of payload be the informa-
tion stored in an index. If a bucket is a data bucket,
then payload stores information of such datum, else if
it is an index bucket, then the payload stores several
pointers on index tree to depict locations of its chil-
dren. The size of a bucket is the size of an index node.
Note that a datum may be split into several buckets.

In traditional disk storage, an index contains sev-
eral pointers, each of which points to the address of
the target index/data item as its children. The point-
er only consumes several bits to record the location of
target. Different from that, in wireless data broadcast
system, the “address” for an index (data item) is a “lo-
cation” on the time axis. Thus, previous literature set
this pointer as an offset from current moment, which
guides clients to tune out for offset time and tune in
again at the moment when target data appears. In our

paper, a pointer should contain the following items for
asynchronous multi-channel environment:

pointer key for client to find search direction.
target id id of the bucket pointed to.
target channel channel id where the target resides.
target sq target sequence number in a bcycle.
target blength length of the target channel.

Therefore, a pointer is a five-tuple containing all
necessary information to find a bucket. A client can
follow the pointer to find its requested data. Each
index bucket contains several pointers, depending on
the B+-tree design. Figure 2 is an example bucket
storing an index A in a 3-ary B+-tree.
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Figure 2: An Index Bucket in a 3-ary B+-Tree

4 System Design

4.1 Distributed B+-Tree Index Generator

We adopt the main idea in [8] to generate a k-ary
B+-Tree cut at the lth level, with a different pointer
structure. Fig. 3 is an example with k = 3 and l = 2.
We denote each node as Bj

i , means the jth index on
the ith level of T . Nodes above l are the replicated

part, named as control index, while nodes below l are
the non-replicated part, named as search index. L is
the height of T . Then we transform the index search
tree into an index sequence with three steps:

(1) Cut T at the lth level. On level l+1, there
are at most kl non-replicated subtrees, rooted at B1

l+1,

B2
l+1, · · · , BR

l+1, where R is the total number of nodes

on the l + 1th level of T . We use △i to represent each
subtree. For instance, in Fig. 3, △1 is a subtree rooted
at B1

3 , with three children B1
4 , B

2
4 , and B3

4 .
(2) Traverse T . Let path(Bj

i ) be a path from

root B1
1 to Bj

i ({B1
1 , · · · , Bj

i }\{Bj
i }), and lca(Bj

i , B
l
k)

be the least common ancestor of Bj
i and Bl

k. Let Vi

be a distributed path for △i. Then V1=path(B1
l+1),

Vi=path(Bi
l+1)\path(Bi−1

l+1 )+lca(Bi
l+1, B

i−1
l+1 ). E.g.,

in Fig. 3, V4={B1
1 , B

2
2} for B4

3 . Next, we generate
the distributed index sequence, denoted as B from
B1

1 . We traverse each Vi, followed by a depth-first
traversal of subtree △i, defined by dft(△i). Thus,
B = {V1,dft(△1), V2,dft(△2), · · · , VR,dft(△R)}.

Fig. 4 is an example of B for index tree in Fig. 3.
Here t = 81, k = 3, l = 2. There are totally 48 indices,
12 as control indices and 36 as search indices.
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Figure 3: An Example of a 3-ary B+-tree cut at the 2rd level
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Figure 4: An Example of B with Control Tables

In Fig. 4 the number above each block is the sequence
number. Block △i is a depth-first traverse for △i, il-
lustrated in search index sequence. Vi is the distribut-
ed path for △i, represented as grey blocks. Since each

control index appears k times, we use B
j[1]
i , · · · , Bj[k]

i

to represent each appearance of Bj
i .

(3) Append control tables. For each B
j[x]
i

in Vg, Let {B1[x1]
1 ,B

j2[x2]
2 ,· · · ,Bji−1[xi−1]

i−1 } be the index

sequence in path(B
j[x]
i ), where each xr is the xth

r ap-

pearance for Bjr
r along B (1≤xi≤k). Let max(Bj

i )
denote the maximum key value of data items indexed
by Bj

i , and similarly we can define max(△g). Then

B
j[x]
i has a control table as follows:

(

max(△g−1), B
1[1]
1

)

, ← 1st entry
(

max(Bj2
2 ), B

1[(x1+1)%k]
1

)

, ← 2rd entry
· · · , · · ·
(

max(Bjr
r ), B

jr−1[(xr−1+1)%k]
r−1

)

, ← rth entry
· · · , · · ·
(

max(Bj
i ), B

ji−1[(xi−1+1)%k]
i−1

)

. ← ith entry

Each entry gives faster direction for clients to find
datum which does not belong to current branch. For
more explanation please refer [8]. After finishing index
generation, we need to set up each bucket head. For

index B
j[x]
i ∈ B, we can set every exponent except

bucket sq (we will assign it after index allocation).

4.2 Global Optimal Channel Allocator

If we have N available channels, to avoid inter-
leaving of data and indices, we divide N into m index
channels and n data channels. Clients first access in-

dex channels to find the direction of required datum,
and then access data channel to download data. Here
we face a contradiction: if we assign more channels for
indices, then access latency for index searching will re-
duce, while the access latency for data downloading
will increase. To find a good balance, we need a global
optimization method to determine m and n. Based on
our observation, we find that there are three param-
eters affecting the performance of the data broadcast
system: the k-ary structure of the index tree k, the cut
level of the distributed index scheme l and the number
of index channels m. Thus we define a client-oriented
objective function for our optimization as

F (k, l,m) = a · E(AL) + b ·E(TT ) (1)

where a and b can be adjusted by system users, and
E(AL) and E(TT ) are the average expected access la-
tency and tuning time. F is a function of k, l, and
m. By computing minimum F we can find the cor-
responding (k, l,m) tuple as the optimal solution (We
will explain the calculation in Sec. 5). Thus we can
setup m and n accordingly.

4.3 Dynamic Weight Data Allocator

We design an algorithm named Dynamic Weight-

Schedule, using similar idea as [9]. The main differ-
ence is we use a dynamic threshold other than 1/n to
guarantee accuracy after each iteration. The detailed
description is shown in Alg. 1.

In Alg. 1, C1 contains minimum number of data
items, with highest access probability, while Cn con-
tains maximum number of data items, with lowest ac-



Algorithm 1 Dynamic Weight-Schedule

Input: D, P , C;
Output: Data Permutation for each Ci ∈ C.

1: Sort di ∈ D by pi

si
in descending order. Reorder D

as D = {d′1, d′2, · · · , d′t}.
2: Set ave=0, j=1, p=1, thre= 1

n
, Ci=∅, i∈[1, n].

3: for i = 1 to t do
4: if ave ≤ thre then
5: ave = ave+ p′i; Cj = Cj ∪ {d′i};
6: else
7: p−=ave; ave=0; thre= p

n−j
; j++; i−−;

8: end if
9: end for

cess probability. Thus the higher the access probabil-
ity is, the more times this data item can be repeated
within a certain time. Let bcast denote the broad-
cast sequence of one round of data on Ci. After data
allocation, we can set up head for each data bucket.

4.4 Wrap-Around Index Allocator

After getting B, an Index Allocator allocate the
index buckets onto m index channels. It equally splits
B into m parts, and separately allocates each part on-
to one channel based on McNaughton’s wrap-around
rule [11], which is proven to be an optimal solution
for scheduling problem. This algorithm is described in
Alg. 2, in which ave is the average length of each Ii.
We also set bucket sq value for each index bucket.

Algorithm 2 McNaughton’s Wrap-Around Method

Input: B, I;
Output: Index Permutation for each Ii ∈ I.

1: Set ave =
⌈

|B|
m

⌉

, Ii = ∅, ∀1 ≤ i ≤ n.

2: for i = 1 to m do
3: for j = 1 to ave do
4: x = (i − 1) × ave + j; Ii = Ii ∪ {Bx};

Bx.bucket sq = j;
5: end for
6: end for

Alg. 2 is simple and yet can reduce the access la-
tency dramatically by 1

m
. We also need to assign value

for pointers inside each index after index allocation.

4.5 Broadcast Cycle Generator

Since data can only be updated between succes-
sive broadcasts, we need to adjust the length of data
on each channel such that all channels for one pro-
gram have the same length. Similar as [19], we use
least common multiple (LCM) among all channels as

the common length for each Ci. Data on Ci will
repeat corresponding times due to this length. We
name this length as bcycle. Define function lcm(·)
the LCM of all inputs. Now, we have that bcycle =
lcm(|C1|, · · · , |Cn|, ⌈|B|/m⌉). For asynchronous envi-
ronment, LCM is used as a global cut for consistency.

5 Performance Analysis

5.1 Evaluation for Access Latency

Let us first consider the access latency for one
index channel and n data channels (C1, · · · , Cn). Al-
l indices on the index channel can be divided into
B1, · · · ,BR blocks, where Bi = {Vi,dft(△i)}, for
1 ≤ i ≤ R. We denote P1, · · · , PR as their access
probabilities. The access probability of one block
can be computed by summing the access frequen-
cies of all data its leaf index nodes point to, that is,
Pi =

∑

j∈Bi
pj , i = 1, · · · , R. Let v be the average

length of Vi; u the average length of Bi, u = |B|/R.
The length of each Cj is denoted as |Cj |, j = 1, · · · , n.

Access latency consists of two parts: waiting time
to find the index pointer to the data, and the time used
to locate the data and download it. We use EI(AL)
and ED(AL) to represent their means respectively.

Lemma 1. The average index access latency is

EI(AL) =
R
∑

i=1

(

R−1
∑

w=1

(

wu + v
2

)

· P(i+w)%R · 1
R
+ v

2 · Pi

)

.

Proof. Consider a client that first tunes in the index
channel at block Bi. It then waits w blocks (not in-
cluding Bi) to eventually reach the index containing
the pointer to the datum it requires at Bi+w. Fig. 5 is
an example to illustrate the whole process.
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(w -1) b locks G et R esult

Figure 5: An Example for a Client’s Activity

When w ≥ 1, this period can be divided into
three phases: 1) the client tunes in block Bi, taking an
average of u/2; 2) it waits through (w − 1) complete
blocks, taking (w − 1)u; and 3) it finds the pointer
to the datum, which only exists in △, so the average
waiting is v + (u− v)/2. The mean of this period is:

EI(AL|b=i,d=w)=
u

2
+(w− 1)u+(v+

u− v

2
)=wu+

v

2

w = 0 is possible only when the client tunes in during
the broadcast of Vi, and the data pointer is right in
the following △i. In such a case, this period has only



phases 1) and 3), and its mean becomes:

EI(AL|b=i,d=0) =
v

2
+

u− v

2
=

u

2

Based on the above two equations and law of total
expectation, we can derive the average access latency
for finding the pointer to the requested datum as:

EI(AL) =

R
∑

i=1

R−1
∑

w=0

E(AL|b=i,d=w) · P (b = i, d = w)

=
R
∑

i=1

(

R−1
∑

w=1

E(AL|b= i, d=w)P (b= i, d=w)

+E(AL|b= i, d=0)P (b= i, d=0)
)

=

R
∑

i=1

(

R−1
∑

w=1

(

wu +
v

2

)

P(i+w)%R

1

R
+

v

2
Pi

)

�

Lemma 2. If data are broadcast on n channels, then

the average data access latency

ED(AL) =
n
∑

j=1

∑

i∈Cj

(

|Cj |
2 + si

)

· pi.

Proof. After a client finds the pointer to the datum di
required, it will hop to the corresponding data channel
Cj , wait for di to come and download it. The average
waiting time is |Cj |/2, and the downloading time is si.
Hence, according to the law of total expectation, we
have the above conclusion.

In Lemma 1, we consider one time unit as the time
needed to broadcast one index, while in Lemma 2 we
consider one time unit as the time needed to broadcast
a datum whose si = 1. However, these two sizes are
not equivalent. The size of an index is decided by the
size of head and the number of pointers in it. A point-
er contains five elements in our design, which takes
around 0.1KB. A head also contains five elements, so
we can set its size the same as a pointer. Thus, totally
an index takes (k+2)/10 KB. On the other hand, the
size of a datum (si) is usually measured by KB. There-
fore, we have E(AL) = (k+2)/10 ·EI(AL)+ED(AL).

If there are m index channels, the number of
blocks w a client needs to wait after tuning in can
be reduced to R

m
. Then we have Theorem 1.

Theorem 1. Average access latency for SAMBox is

k+2
10

R
∑

i=1

(

⌈R
m
⌉−1
∑

w=1

(

wu+ v
2

)

P(i+w)%R

R
+ vPi

2

)

+
n
∑

j=1

∑

i∈Cj

(

|Cj|
2 +si

)

pi.

5.2 Evaluation for Tuning Time

Theorem 2. The average tuning time for SAMBox is
k+2
10

(
∑R

i=1
u+|△i|

|B| + L− l
2 + 1

)

+ 1 +
∑t

i=1 sipi

Proof. The tuning time for one data retrieval includes:
1. Client tunes in an index channel with 1 unit time.

2. If the first visited index is not a control in-
dex, the client may need to hop twice to find
the right starting index. This has a probabil-
ity of

∑R

i=1 |△i|/|B|. Thus totally it takes 2 ·
∑R

i=1 |△i|/|B|. If the first visited index is a con-
trol index, then the client only needs to hop one
time, which takes 1 ·∑R

i=1 (u− |△i|)/|B|.
3. Then, the client searches for the pointer to the

datum on index channels. The average number of
visited index buckets here is l

2 + (L− l) = L− l
2 .

4. The client tunes in the target data channel.

5. The client downloads the datum with average
downloading time

∑t

i=1 sipi.

To summarize, we can get the average tuning time

E(TT )=
k+2

10

(

R
∑

i=1

u+|△i|
|B| +L− l

2

)

+
k+12

10
+

t
∑

i=1

sipi.�

5.3 Global Optimization

To minimize F (k, l,m), we need to find the best
(k, l, m) tuple. There are several existing algorithms,
such as powell method, genetic algorithm or simulated
annealing. In our system, we notice that the total
number of possible (k, l) pairs is limited given a data
set. Since the number of pointers at the bottom level
of an index tree should equal to the size of data, the
scale of k should be bounded by t. Assume an index
tree has at least three levels. Since any internal node
of an B+-tree should have at least two children, k is
bounded as 2 6 k 6

3
√
t. The cut level l is bounded

between 1 and L − 1, and L is decided by t and k.
Thus, we can get the total number of possible (k, l)
pairs once the data set is decided. In such a case,
using enumeration to find the optimal (k, l,m) should
be more time-efficient than most of the optimization
algorithms. Table 6 is a sample optimization result of
(k, l,m) given 10 data sets of sizes 1,000 to 7,000, and
available channels from 6 to 30. Server can setup the
system parameter according to this table.

6 Conclusion

In this paper, we design an efficient automat-
ic system named SAMBox : Smart Asynchronous

Multi-channel black Box for wireless data broadcast.
A server only needs to setup some parameters, input
the data sets and the available channel numbers, then
SAMBox will automatically generate a distributed in-
dex sequence and allocate data items and index se-
quences onto available channels to guarantee the best
performance. We also provide theoretical analysis.



Table 1: Optimal (k, l,m) for different N and t
N \t 1000 2000 3000 4000 5000 6000 7000
6 (4,4,2) (3,6,2) (4,5,2) (3,1,2) (4,1,2) (4,1,2) (4,1,2)
8 (3,6,3) (3,6,3) (4,5,3) (4,5,3) (3,7,3) (4,1,2) (4,1,2)
10 (3,6,3) (3,6,3) (4,5,3) (4,5,3) (3,7,3) (3,7,3) (4,1,2)
12 (2,9,5) (3,6,4) (3,7,4) (3,7,4) (3,7,4) (3,7,4) (3,8,4)
14 (2,9,5) (3,6,4) (3,7,4) (3,7,4) (3,7,4) (3,7,5) (3,8,5)
16 (2,9,5) (3,6,5) (3,7,5) (3,7,5) (3,7,5) (3,7,4) (3,8,5)
18 (2,9,6) (3,6,5) (3,7,5) (3,7,5) (3,7,5) (3,7,5) (3,8,5)
20 (2,9,6) (3,6,6) (3,7,6) (3,7,6) (3,7,5) (3,7,6) (3,8,6)
22 (2,9,8) (3,6,7) (3,7,6) (3,7,6) (3,7,6) (3,7,6) (3,8,6)
24 (2,9,7) (3,6,6) (3,7,6) (3,7,7) (3,7,7) (3,7,7) (3,8,7)
26 (2,9,8) (3,6,7) (3,7,7) (3,7,7) (3,7,7) (3,7,7) (3,8,7)
28 (2,9,8) (3,6,7) (3,7,7) (3,7,8) (3,7,7) (3,7,7) (3,8,7)
30 (2,9,8) (3,6,8) (3,7,7) (3,7,7) (3,7,7) (3,7,7) (3,8,7)
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